The Possible Importance of Silicon in Marine Eutrophication

Total Page:16

File Type:pdf, Size:1020Kb

The Possible Importance of Silicon in Marine Eutrophication Vol. 3: 83-91. 1980 MARITUE ECOLOGY - PROGRESS SERIES Published July 31 Mar. Ecol. hog. Ser. REVIEW The Possible Importance of Silicon in Marine Eutrophication C. B. Officer1 and J. H. Ryther2 ' Earth Sciences Department, Dartmouth College, Hanover, New Hampshire 03755, USA Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA ABSTRACT: Diatom phytoplankton populations are the usual food for zooplankton and filter feeding fishes and contribute in a direct way to the large fishable populations in coastal zones. Flagellates, on the other hand, are frequently poor foods for most grazers and can lead to undesirable eutrophication effects. Arguments are presented that silicon is often the controlling nutrient in altering a diatom to a flagellate community. The alteration is governed by the relative magnitudes of the natural fluxes of the nutrients nitrogen, phosphorus and silicon to the receiving water body and the recycled fluxes of nitrogen and phosphorus from zooplankton grazing and phytoplankton respiration and decomposition. Examples of such alterations are presented for oceanic, estuarine and inland water bodies. THESIS To our knowledge all excessive marine phytoplank- ton growths which have led to undesirable eutrophica- We can delineate several phytoplankton-based tion effects have been related to flagellate blooms. ecosystems in the coastal zone which may be altered These eutrophication effects can take several forms. by human introduction of nutrients and other bio- One, the excessive growth, which is not grazed, can stimulatory chemicals into the ocean. Two such sys- lead to oxygen deficiencies when the organic particu- tems are of particular importance. One is the ecosys- late matter sinks and subsequently consumes oxygen tem dominated by diatoms which are the usual food for by respiration and decay. Such anoxic conditions can filter feeding fishes and zooplankton and contribute in lead directly to fish and shellfish kills. Two, the a direct way to the large fishable populations in coastal toxic dinoflagellates, including some red tides, can zones. Diatoms grow very rapidly, have short lifetimes, adversely effect the marine ecosystem and can poison are grazed heavily, and are rarely a nuisance. The man through the consumption of shellfish which have other is the nondiatom ecosystem usually dominated filtered out the toxic components. Three, the flagellate by flagellates, including dinoflagellates, chrysophytes, blooms can reach proportions which discolor the water chlorophytes and coccolithophoridae, though it also and make it unsightly and malodorous, reducing its may contain large proportions of nonmotile green esthetic and recreational value. and bluegreen algae, particularly in brackish and In general, diatoms are able to grow at least as estuarine environments. For convenience, the latter rapidly as other kinds of unicellular algae (Jitts et al., will be referred to here as the 'flagellate' ecosystem. 1964; Thornas et al., 1978; Brand, 1979). A reasonable Flagellates persist for longer periods of time, many are question, then, is what environmental conditions will known to be poor foods for most grazers, and the motile lead to a flagellate growth dominant over a diatom species are able to concentrate to undesirable concen- growth. Several possibilities exist, which include ini- trations due to their ability to swim and respond to tial seed population, trace elements and chemicals, light. Certain dinoflagellate epidemics, for example, sinking and motility, preferential grazing, and nutrient are serious pollution events that must be understood to concentrations. We should like to discuss one such be predicted and controlled. possibility - the importance of the nutrient silicon. O by Inter-Research 84 Mar. Ecol. Prog. Ser. 3: 83-91, 1980 Diatoms require the major nutrients nitrogen, phos- Table 1. Concentrations of inorganic nitrogen phorus and silicon for their photosynthesis; diatoms (NH; +NO~+NO~),silicon (SiO;) and phosphorus (PO~,and use silicon in approximately a one-to-one atomic ratio N:Si ratios in secondary sewage effluent (pg~l-l).Sources: (1) Garside et al. (1976),(2) Dunstan and Tenore (1972),(3) with nitrogen (Redfield et al., 1963). The flagellates Ryther (1977) associated with coastal eutrophication effects need only nitrogen and phosphorus, together with the trace Locations N Si P N:Si elements and micronutrients that all autotrophs re- quire. Tallman Island, NY (1) 1200 80 130 15 : 1 In temperate latitudes silicon in the form of dissolved Cranston, RI (2) 2166 110 213 20:l 100 295 13.1 silicate is usually supplied in plentiful amounts Warwick, RI (2) 1342 Plymouth, MA (2) 1176 70 243 17:1 through land weathering to the estuarine and coastal Otic AFB, MA (2) 1265 110 264 11:l zones. Nitrogen and phosphorus are also available Wareham, MA (3) 1205 173 142 7:1 from river runoff inputs including sewage, industrial and agricultural sources. When the solar conditions are appropriate, which usually occurs in late spring or confined estuarine or coastal water body could lead not early summer but also in midwinter in some shallow only to an increased plankton bloom but also to a estuaries, a common event is a diatom dominated change in the initial blooms from a diatom to a flagel- bloom. The organic nitrogen and phosphorus compo- late dominated population. nents of the diatoms will be recycled rapidly back to an inorganic form through zooplankton grazing, depend- ing on the size of the bloom and the zooplankton CONCEPTUAL RELATIONS population, and through respiration and decay. The silicon is largely confined to the tests, skeletal mate- The proposed nutrient cycle relations for a diatom rial, of the diatoms. The animals which feed on the bloom followed by a flagellate bloom are shown in diatoms have no use for silicon and reject it directly. Figure 1. In the discussion above we have considered a The tests dissolve and recycle silicon at a much slower riverine source of nutrients, which is the usual case in rate than the organic nitrogen and phosphorus compo- coastal eutrophication. We could alternatively have nents. We may, then, expect following the initial considered an oceanic source either of a continuous or diatom bloom period that a new nutrient pool will be an intermittent nature related to coastal upwelling or produced which is rich in inorganic nitrogen and phos- seasonal overturn, as shown in the figure. phorus but depleted in silicon. The relative amount of The fluxes, as shown by the arrows in the figure, silicon depletion in this second nutrient pool will, of depend both on the magnitude, or concentration level, course, also depend on the amounts and rate process of the nutrient involved in the given process and the relations between the organic nutrient cycling and the continuing river nutrient inputs. We now have condi- OCEANIC SOURCE or RIVERINE SOURCE tions suitable for a flagellate bloom, and depending on INTERMlTTEYT OR CONTtNUOUS R:VER RUNOCF N2TR:EN: FLUXES the nutrient levels this could lead to an excessive, TO CQASTAL UPWELLING OR eutrophic, growth. This sequence of events from a late spring-early N,D,Si r' summer diatom dominated bloom to a later surnmer- i ~HUTRIENTPOOL - N, P, ~i 1 I early fall flagellate dominated bloom is a common AWROcPIL-E SCLbR fNSDUT'3N, I WATER TEVDERATUQE A93 TUR- OEP.ETIOtI D' NU'PIENT PML. 4 occurrence in temperate coastal waters (Margalef, BlDlTY F09 BLOOMS. RAP10 OlATOU BLOOMS 1958). We suggest that this sequence from one popula- GROWTH RATES FOR Dlb'3WS I tion to the other is controlled by the silicon regenera- I N, P PARTIAL RECYCLING I 1, 1, GRAZING AN2RESP7RATION OF ,.I tion cycle. ORjAC.: FRACTION. OEF:CIINCY Also, it is important to note that sewage effluents OF SI which invariably contain high nitrogen and phos- phorus nutrient levels usually do not have a corre- APPROPRIATE SOLAR INSCLATION, DEPLETICN OC SECOND %UTRIENT WATER TEMPERATURE AND TUR 1 N, P P03-. FLAGE-LATE BLOOMS, sponding level of silicon, i. e. equivalent to nitrogen, as 3131-" FOR BLCOVS SLCWER Al3ED BY MCTIL'-Y Arit LOWEP required by diatoms. Table 1 is a summary of observed GROWTH RATFS F35 FLPGEL- NJTPIENT NEEDS secondary sewage effluents for the East Coast of the United States. The silicon levels are principally deter- NUTRIENT RELEASE, PRINCIPALLY mined by the land weathered, municipal water input BY RESPIRATION PNO DECAY levels. We would, then, expect that increased sewage Fig. 1. Proposed nutrient (N, P, Si) cycIes related to diatom inputs, whether primary or secondary treated, to a blooms and possible, undesirable flagellate blooms Officerand Ryther: Importance of silicon in eutrophication 85 rate constant for the process. In each case the flux may supply for continued phytoplankton production and be represented by a term of the form cV/t, where c is that this recycling process is rapid. Dugdale and Goe- the concentration of the nutrient involved in the proc- ring (1967) and Eppley et al. (1973) discuss the impor- ess, Vthe volume of water defining the nutrient pool or tance of this regeneration process in the euphotic zone plankton bloom, and zthe time constant of the process. of oceanic areas. Carpenter et al. (1969) argue that A summary of these time constants is given in Table zooplankton grazing is the determining process for the 2. In the original investigations from which these continuation of the steady state phytoplankton popula- values were taken, rate coefficients k, or doubling tion in Chesapeake Bay during the summer. From times Tm, have sometimes been given. They have all measurements of radiocarbon productivity they give a been converted to time constants z, for convenience in value of 0.2 mgl-' d-l of organic carbon being produced comparison, by the usual relation t = Ilk = T/0.693. in the euphotic zone during the summer, correspond- The time constants for diatom production under opti- ing to an uptake of 4 pg at 1-' d-' of nitrogen.
Recommended publications
  • A New Type of Plankton Food Web Functioning in Coastal Waters Revealed by Coupling Monte Carlo Markov Chain Linear Inverse Metho
    A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis Marouan Meddeb, Nathalie Niquil, Boutheina Grami, Kaouther Mejri, Matilda Haraldsson, Aurélie Chaalali, Olivier Pringault, Asma Sakka Hlaili To cite this version: Marouan Meddeb, Nathalie Niquil, Boutheina Grami, Kaouther Mejri, Matilda Haraldsson, et al.. A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis. Ecological Indicators, Elsevier, 2019, 104, pp.67-85. 10.1016/j.ecolind.2019.04.077. hal-02146355 HAL Id: hal-02146355 https://hal.archives-ouvertes.fr/hal-02146355 Submitted on 3 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 A new type of plankton food web functioning in coastal waters revealed by coupling 2 Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis 3 4 5 Marouan Meddeba,b*, Nathalie Niquilc, Boutheïna Gramia,d, Kaouther Mejria,b, Matilda 6 Haraldssonc, Aurélie Chaalalic,e,f, Olivier Pringaultg, Asma Sakka Hlailia,b 7 8 aUniversité de Carthage, Faculté des Sciences de Bizerte, Laboratoire de phytoplanctonologie 9 7021 Zarzouna, Bizerte, Tunisie.
    [Show full text]
  • Carbothermal Synthesis of Silicon Nitride
    Carbothermal Synthesis of Silicon Nitride Xiaohan Wan A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Materials Science and Engineering Faculty of Science March 2013 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Wan First name: Xiaohan Other name/s: Abbreviation for degree as given in the University calendar: PhD School: Materials Science and Engineering Faculty: Science Title: Carbothermal synthesis of silicon nitride Abstract 350 words maximum Carbothermal synthesis of silicon nitride Si3N4 followed by decomposition of Si3N4 is a novel approach to production of solar-grade silicon. The aim of the project was to study reduction/nitridation of silica under different conditions and to establish mechanism of silicon nitride formation. Carbothermal reduction of quartz and amorphous silica was investigated in a fixed bed reactor at 1300-1650 °C in nitrogen at 1-11 atm pressure and in hydrogen-nitrogen mixtures at atmospheric pressure. Samples were prepared from silica-graphite mixtures in the form of pellets. Carbon monoxide evolution in the reduction process was monitored using an infrared sensor; oxygen, nitrogen and carbon contents in reduced samples were determined by LECO analyses. Phases formed in the reduction process were analysed by XRD. Silica was reduced to silicon nitride and silicon carbide; their ratio was dependent on reduction time, temperature and nitrogen pressure. Reduction products also included SiO gas which was removed from the pellet with the flowing gas. In the experiments, reduction of silica started below 1300 °C; the reduction rate increased with increasing temperature. Silicon carbide was the major reduction product at the early stage of reduction; the fraction of silicon nitride increased with increasing reaction time.
    [Show full text]
  • Crustacean Zooplankton in Lake Constance from 1920 to 1995: Response to Eutrophication and Re-Oligotrophication
    Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53, p. 255-274, December 1998 Lake Constance, Characterization of an ecosystem in transition Crustacean zooplankton in Lake Constance from 1920 to 1995: Response to eutrophication and re-oligotrophication Dietmar Straile and Waiter Geller with 9 figures Abstract: During the first three quarters ofthis century, the trophic state ofLake Constance changed from oligotrophic to meso-/eutrophic conditions. The response ofcrustaceans to the eutrophication process is studied by comparing biomasses ofcrustacean zooplankton from recent years, i.e. from 1979-1995, with data from the early 1920s (AUERBACH et a1. 1924, 1926) and the 1950s (MUCKLE & MUCKLE­ ROTTENGATTER 1976). This comparison revealed a several-fold increase in crustacean biomass. The relative biomass increase was more pronounced from the early 1920s to the 1950s than from the 1950s to the 1980s. Most important changes ofthe species inventory included the invasion of Cyclops vicinus and Daphnia galeata and the extinction of Heterocope borealis and Diaphanosoma brachyurum during the 1950s and early 1960s. All species which did not become extinct increased their biomass during eutrophication. This increase in biomass differed between species and throughout the season which re­ sulted in changes in relative biomass between species. Daphnids were able to enlarge their seasonal window ofrelative dominance from 3 months during the 1920s (June to August) to 7 months during the 1980s (May to November). On an annual average, this resulted in a shift from a copepod dominated lake (biomass ratio cladocerans/copepods = 0.4 during 1920/24) to a cladoceran dominated lake (biomass ratio cladocerans/copepods = 1.5 during 1979/95).
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • The Preparation and Reactions of the Lower Chlorides and Oxychlorides of Silicon Joseph Bradley Quig Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1926 The preparation and reactions of the lower chlorides and oxychlorides of silicon Joseph Bradley Quig Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Quig, Joseph Bradley, "The preparation and reactions of the lower chlorides and oxychlorides of silicon " (1926). Retrospective Theses and Dissertations. 14278. https://lib.dr.iastate.edu/rtd/14278 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UlVli films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and impiroper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Phytoplankton As Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate
    sustainability Review Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate Samarpita Basu * ID and Katherine R. M. Mackey Earth System Science, University of California Irvine, Irvine, CA 92697, USA; [email protected] * Correspondence: [email protected] Received: 7 January 2018; Accepted: 12 March 2018; Published: 19 March 2018 Abstract: The world’s oceans are a major sink for atmospheric carbon dioxide (CO2). The biological carbon pump plays a vital role in the net transfer of CO2 from the atmosphere to the oceans and then to the sediments, subsequently maintaining atmospheric CO2 at significantly lower levels than would be the case if it did not exist. The efficiency of the biological pump is a function of phytoplankton physiology and community structure, which are in turn governed by the physical and chemical conditions of the ocean. However, only a few studies have focused on the importance of phytoplankton community structure to the biological pump. Because global change is expected to influence carbon and nutrient availability, temperature and light (via stratification), an improved understanding of how phytoplankton community size structure will respond in the future is required to gain insight into the biological pump and the ability of the ocean to act as a long-term sink for atmospheric CO2. This review article aims to explore the potential impacts of predicted changes in global temperature and the carbonate system on phytoplankton cell size, species and elemental composition, so as to shed light on the ability of the biological pump to sequester carbon in the future ocean.
    [Show full text]
  • Unit 2 Matter and Chemical Change
    TOPIC 5 The Periodic Table By the 1850s, chemists had identified a total of 58 elements, and nobody knew how many more there might be. Chemists attempted to create a classification system that would organize their observations. The various “family” systems were useful for some elements, but most family relationships were not obvious. What else could a classification system be based on? By the 1860s several scientists were trying to sort the known elements according to atomic mass. Atomic mass is the average mass of an atom of an element. According to Dalton’s atomic theory, each element had its own kind of atom with a specific atomic mass, different from the Figure 2.31 Dmitri atomic mass of any other elements. One scientist created a system that Ivanovich Mendeleev was so accurate it is still used today. He was a Russian chemist named was born in Siberia, the Dmitri Mendeleev (1834–1907). youngest of 17 children. Mendeleev Builds a Table Mendeleev made a card for each known element. On each card, he put data similar to the data you see in Figure 2.32. Figure 2.32 The card above shows modern values for silicon, rather than the ones Mendeleev actually used. His values were surprisingly close to modern ones. The atomic mass measurement indicates that silicon is 28.1 times heavier than hydrogen. You can observe other properties of silicon in Figure 2.33. Mendeleev pinned all the cards to the wall, in order of increasing atomic mass. He “played cards” for several Figure 2.33 The element silicon is melted months, arranging the elements in vertical columns and and formed into a crystal.
    [Show full text]
  • Fertilizing the Ocean with Iron Is This a Viable Way to Help Reduce Carbon Dioxide Levels in the Atmosphere?
    380 Fertilizing the Ocean with Iron Is this a viable way to help reduce carbon dioxide levels in the atmosphere? 360 ive me half a tanker of iron, and I’ll give you an ice Twenty years on, Martin’s line is still viewed alternately age” may rank as the catchiest line ever uttered by a as a boast or a quip—an opportunity too good to pass up or a biogeochemist.“G The man responsible was the late John Martin, misguided remedy doomed to backfire. Yet over the same pe- former director of the Moss Landing Marine Laboratory, who riod, unrelenting increases in carbon emissions and mount- discovered that sprinkling iron dust in the right ocean waters ing evidence of climate change have taken the debate beyond could trigger plankton blooms the size of a small city. In turn, academic circles and into the free market. the billions of cells produced might absorb enough heat-trap- Today, policymakers, investors, economists, environ- ping carbon dioxide to cool the Earth’s warming atmosphere. mentalists, and lawyers are taking notice of the idea. A few Never mind that Martin companies are planning new, was only half serious when larger experiments. The ab- 340 he made the remark (in his Ocean Iron Fertilization sence of clear regulations for “best Dr. Strangelove accent,” either conducting experiments he later recalled) at an infor- An argument for: Faced with the huge at sea or trading the results mal seminar at Woods Hole consequences of climate change, iron’s in “carbon offset” markets Oceanographic Institution outsized ability to put carbon into the oceans complicates the picture.
    [Show full text]
  • Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
    OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton,
    [Show full text]
  • Phytoplankton
    Phytoplankton • What are the phytoplankton? • How do the main groups differ? Phytoplankton Zooplankton Nutrients Plankton “wandering” or “drifting” (incapable of sustained, directed horizontal movement) www.shellbackdon.com Nekton Active swimmers Components of the Plankton Virioplankton: Viruses Bacterioplankton: Bacteria — free living planktobacteria; epibacteria attached to larger particles Mycoplankton: Fungi Phytoplankton: Photosynthetic microalgae, cyanobacteria, and prochlorophytes Zooplankton: Heterotrophic — Protozooplankton (unicellular) and Metazooplankton (larval and adult crustaceans, larval fish, coelenterates…) Components of the Phytoplankton: Older scheme Netplankton: Plankton that is retained on a net or screen, usually Inspecting a small plankton 20 - 100 µm net. In: "From the Surface to the Bottom of the Sea" by H. Nanoplankton: Plankton that Bouree, 1912, Fig. 49, p. 61. passes the net, but Library Call Number 525.8 B77. which is > 2 µm Ultrananoplankton: Plankton < 2µm Components of the Plankton (older scheme) Netplankton: Plankton that is retained on a net or screen, usually 20 - 100 µm Nanoplankton: Plankton that passes the net, but which is > 2 µm Ultrananoplankton: Plankton < 2µm Microzooplankton: Zooplankton in the microplankton (i.e., < 200 µm) Length Scales to Define Plankton Groups Sieburth, J. M., Smetacek, V. and Lenz, J. (1978). Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23: 1256-1263. Terminology and Scales:
    [Show full text]
  • SSWIMS: Plankton
    Unit Six SSWIMS/Plankton Unit VI Science Standards with Integrative Marine Science-SSWIMS On the cutting edge… This program is brought to you by SSWIMS, a thematic, interdisciplinary teacher training program based on the California State Science Content Standards. SSWIMS is provided by the University of California Los Angeles in collaboration with the Los Angeles County school districts, including the Los Angeles Unified School District. SSWIMS is funded by a major grant from the National Science Foundation. Plankton Lesson Objectives: Students will be able to do the following: • Determine a basis for plankton classification • Differentiate between various plankton groups • Compare and contrast plankton adaptations for buoyancy Key concepts: phytoplankton, zooplankton, density, diatoms, dinoflagellates, holoplankton, meroplankton Plankton Introduction “Plankton” is from a Greek word for food chains. They are autotrophs, “wanderer.” It is a making their own food, using the collective term for process of photosynthesis. The the various animal plankton or zooplankton eat organisms that drift or food for energy. These swim weakly in the heterotrophs feed on the open water of the sea or microscopic freshwater lakes and ponds. These world of the weak swimmers, carried about by sea and currents, range in size from the transfer tiniest microscopic organisms to energy up much larger animals such as the food jellyfish. pyramid to fishes, marine mammals, and humans. Plankton can be divided into two large groups: planktonic plants and Scientists are interested in studying planktonic animals. The plant plankton, because they are the basis plankton or phytoplankton are the for food webs in both marine and producers of ocean and freshwater freshwater ecosystems.
    [Show full text]
  • Directed Gas Phase Formation of Silicon Dioxide and Implications for the Formation of Interstellar Silicates
    ARTICLE DOI: 10.1038/s41467-018-03172-5 OPEN Directed gas phase formation of silicon dioxide and implications for the formation of interstellar silicates Tao Yang 1,2, Aaron M. Thomas1, Beni B. Dangi1,3, Ralf I. Kaiser 1, Alexander M. Mebel 4 & Tom J. Millar 5 1234567890():,; Interstellar silicates play a key role in star formation and in the origin of solar systems, but their synthetic routes have remained largely elusive so far. Here we demonstrate in a combined crossed molecular beam and computational study that silicon dioxide (SiO2) along with silicon monoxide (SiO) can be synthesized via the reaction of the silylidyne radical (SiH) with molecular oxygen (O2) under single collision conditions. This mechanism may provide a low-temperature path—in addition to high-temperature routes to silicon oxides in circum- stellar envelopes—possibly enabling the formation and growth of silicates in the interstellar medium necessary to offset the fast silicate destruction. 1 Department of Chemistry, University of Hawai’iatMānoa, Honolulu, HI 96822, USA. 2 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China. 3 Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA. 4 Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA. 5 Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, UK. Correspondence and requests for materials should be addressed to R.I.K. (email: [email protected]) or to A.M.M. (email: mebela@fiu.edu) or to T.J.M. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:774 | DOI: 10.1038/s41467-018-03172-5 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03172-5 — 28 + 28 + he origin of interstellar silicate grains nanoparticles ( SiO2 ), and 44 ( SiO ).
    [Show full text]