Periodic Table for Mantle Geochemistry

Total Page:16

File Type:pdf, Size:1020Kb

Periodic Table for Mantle Geochemistry 1+ Periodic Table for Mantle Geochemistry inert 1 2 H e H helium hydrogen highly highly U 3 He U 2+ incompatible compatible compatible 3+ 4+ 5+ 2- 1- Th 3 0.77 4 0.44 6 7 8 1.32 9 1.33 10 5 C N F N e Li Be B carbon oxygenO neon concentrated concentrated boron nitrogen florine lithium beryllium in crust, OIB concentrated in MORB in mantle 14 U 10 C 14 22Ne U 10 Be 14 C Th Be 1.5M 10Be (5.7K) C ? 58% Th 11 0.98 12 0.72 13 0.58 14 0.39 15 0.35 16 1.74 17 1.81 18 A r Na Mg Element compatibility during pressure-release melting A l S i P S C l argon sodium magnesium aluminum silicon phosphorus sulfur chlorine 3+ 36Ar K 0.15% 20.4% 4+ 1.8% ? 16% ? K 19 1.37 20 1.06 21 0.75 22 0.62 23 0.62 24 0.6 25 0.82 26 2+, .71 27 0.75 28 0.67 29 0.75 30 0.95 31 0.6 32 33 34 35 1.96 36 K 3 + 3+ 2+ 3+, .55 2+ 2+ 2+ 2+ 3+ potassium G e A s S e B r K r C a S c T i V C o N i C u Z n G a 40K-0.1140Ar calcium scandium titanium C r M n F e nickel germanium arsenic selenium bromine krypton 40 vandium chromium manganese iron cobalt copper zinc gallium 0.89 Ca K (1.256) 0.94% K 0.063% 4+. 5+ 0.11% 0.029% 2.4% 0.055% 37 1.53 38 1.17 39 0.90 40 0.72 41 0.64 42 43 44 0.62 45 0.66 46 0.76 47 48 49 50 51 52 53 2.2 54 Rb Sr Z r 5 + 4+ 3+ 3+ In S n S b T e I X e Y zirconium M o R h Pd A g C d iodine xenon rubidium strontium yttrium N b R u cadmium indium tin antimony tellenium 129I-- 87 87 niobium molybdenum ruthenium rhodium palladium silver 130 I,U Rb-- Sr 129Xe Xe IU 86 Pu (48.8G) Sr Rb (16M) Pu 55 1.75 56 1.35 57 1.16 72 0.76 7 0.64 74 75 76 0.63 77 0.68 78 0.63 79 0.67 80 81 82 2+, 1.2 83 84 85 86 3 5+ O s 4 + 3+ 4+ 3+ 4+, 0.9 C s B a L a H f W R e osmium P t H g T l B i P o A t R n cesium barium hafnium Ta tungsten rhenium I r platinum A u thallium P b bismuth polonium astatine radon lanthanum 187 187 lithium Re iridium gold mercury U tantalum Re- Os 188 Os Re 190 Pt- 186 Os lead U 177 Lu Pt Th Hf (42G) Pt (880G) ? 204 PbTh 87 88 88 R a F r radium A c 58 1.14 59 1.13 60 1.11 61 62 1.08 63 2+, 1.25 64 1.05 65 1.04 66 1.03 67 1.02 68 1.0 69 0.99 70 0.99 71 0.98 226Ra (1.6K) actinium 3+, 1.08 francium 228 C e P r N d S m G d T b D y H o E r T m Y b Lu Ra (5.8y) 3+ cerium praseo- neodymium lutetium samarium E u gadolinium terbium dysprosium Holmium erbium thulium ytterbium Th dynium 176Lu-- 144Nd europium Sm 176Hf (35G) concentrated in core Rare Earth Elements (Lanthanide Series) concentrated in exosphere 90 1.05 91 92 U 4+, 0.95 93 94 Th 4+ Pa 6+, 0.9 Pu uranium plutonium isotope decay halflife: thorium protactinium 235 207 4 U-- Pb, 7 He (0.7G) 244 131 132 134 232Th--208Pb, 64He (14G) 231Pa (34K) 238 206 4 131 Pu-- Xe, Xe, Xe, y = years U-- Pb, 8 He, Xe 136 230 Xe (82M) K = 103 years Th (75K) U U 132Xe, 134Xe, 136Xe (4.55G) M = 106 years Actinide Series G = 109 years atomic # MAJOR ELEMENT COMPOSITION 1 Mantle: Na0.02 Ca0.08 Al0.10 Fe0.14 Mg1.2 SiO3.6 Abbreviations (in table, mantle major element abundances are given in atom-%) 90 1.05 corresponding ionic radius (A) crust = continental crust Th 4+ common silicate valence 2 MORB: Na0.08 Ca0.28 Al0.39 Fe0.13 Mg0.3 SiO3.4 MORB = mid-ocean ridge basalt thorium 3 OIB = ocean-island basalt Crust: Na0.10 Ca0.12 Al0.32 Fe0.09 Mg0.11 SiO2.9 isotope decay 232Th--208Pb, 64He (14G) daughter(s) 1. LOSIMAG compositional model----Hart and Zindler, Chem. Geol., 57, 247-267, 1986 sequence 230 2. 'Promative MORB composition-----Green et al., 1979 Th (75K) U parent(s) 3. Rudnick and Fountain, Nature and composition of the continental crust---A lower crustal perspective, Rev. GEophys., 33, 267-309, 1979 .
Recommended publications
  • 10 NYCRR Part 16 Appendix a on Exemptions
    APPENDIX 16-A TABLE 1 EXEMPTIONS Table 1-A. Radioactive Materials Item (a) Exempt concentrations. (1) Except as provided in paragraph (2) of this item, any person is exempt from the requirements of this Part to the extent that such person transfers, receives, possesses or uses products or materials containing radioactive material in concentrations not in excess of those listed in Table 2 of this Appendix. (2) No person may introduce radioactive material into a product or material knowing or having reason to believe that it will be transferred to persons exempt under paragraph (1) of this item or equivalent regulations of the United States Nuclear Regulatory Commission or any agreement State, except in accordance with specific license issued by the department or a similar license issued by the State Department of Labor, the New York City Department of Health, the United States Nuclear Regulatory Commission, any agreement State or the general license provided in item (h) of Table 6 of this Appendix. Item (b) Exempt quantities.1 (1) Except as provided in paragraphs (2) and (3) of this item, any person is exempt from the requirements of this Part to the extent that such person transfers, receives, possesses or uses radioactive material in individual quantities each of which does not exceed the applicable quantity set forth in Table 3 of this Appendix. (2) Any person who possesses radioactive material received prior to July 1, 1973, under the exemption formerly provided in section 16.101 of this Part is exempt from the requirements of this Part to the extent that such person transfers, receives, possesses or uses such radioactive material.
    [Show full text]
  • Geochemistry - (2021-2022 Catalog) 1
    Geochemistry - (2021-2022 Catalog) 1 GEGN586 NUMERICAL MODELING OF GEOCHEMICAL 3.0 Geochemistry SYSTEMS GEOL512 MINERALOGY AND CRYSTAL CHEMISTRY 3.0 Degrees Offered GEOL513 HYDROTHERMAL GEOCHEMISTRY 3.0 • Master of Science (Geochemistry) GEOL523 REFLECTED LIGHT AND ELECTRON 2.0 MICROSCOPY * • Doctor of Philosophy (Geochemistry) GEOL535 LITHO ORE FORMING PROCESSES 1.0 • Certificate in Analytical Geochemistry GEOL540 ISOTOPE GEOCHEMISTRY AND 3.0 • Professional Masters in Analytical Geochemistry (non-thesis) GEOCHRONOLOGY • Professional Masters in Environmental Geochemistry (non-thesis) GEGN530 CLAY CHARACTERIZATION 2.0 Program Description GEGX571 GEOCHEMICAL EXPLORATION 3.0 The Graduate Program in Geochemistry is an interdisciplinary program * Students can add one additional credit of independent study with the mission to educate students whose interests lie at the (GEOL599) for XRF methods which is taken concurrently with intersection of the geological and chemical sciences. The Geochemistry GEOL523. Program consists of two subprograms, administering two M.S. and Ph.D. degree tracks, two Professional Master's (non-thesis) degree programs, Master of Science (Geochemistry degree track) students must also and a Graduate Certificate. The Geochemistry (GC) degree track pertains complete an appropriate thesis, based upon original research they have to the history and evolution of the Earth and its features, including but not conducted. A thesis proposal and course of study must be approved by limited to the chemical evolution of the crust and
    [Show full text]
  • Organic Geochemistry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ZENODO Organic Geochemistry Organic Geochemistry 37 (2006) 1–11 www.elsevier.com/locate/orggeochem Review Organic geochemistry – A retrospective of its first 70 years q Keith A. Kvenvolden * U.S. Geological Survey, 345 Middlefield Road, MS 999, Menlo Park, CA 94025, USA Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA Received 1 September 2005; accepted 1 September 2005 Available online 18 October 2005 Abstract Organic geochemistry had its origin in the early part of the 20th century when organic chemists and geologists realized that detailed information on the organic materials in sediments and rocks was scientifically interesting and of practical importance. The generally acknowledged ‘‘father’’ of organic geochemistry is Alfred E. Treibs (1899–1983), who discov- ered and described, in 1936, porphyrin pigments in shale, coal, and crude oil, and traced the source of these molecules to their biological precursors. Thus, the year 1936 marks the beginning of organic geochemistry. However, formal organiza- tion of organic geochemistry dates from 1959 when the Organic Geochemistry Division (OGD) of The Geochemical Soci- ety was founded in the United States, followed 22 years later (1981) by the establishment of the European Association of Organic Geochemists (EAOG). Organic geochemistry (1) has its own journal, Organic Geochemistry (beginning in 1979) which, since 1988, is the official journal of the EAOG, (2) convenes two major conferences [International Meeting on Organic Geochemistry (IMOG), since 1962, and Gordon Research Conferences on Organic Geochemistry (GRC), since 1968] in alternate years, and (3) is the subject matter of several textbooks.
    [Show full text]
  • W. M. White Geochemistry Chapter 5: Kinetics
    W. M. White Geochemistry Chapter 5: Kinetics CHAPTER 5: KINETICS: THE PACE OF THINGS 5.1 INTRODUCTION hermodynamics concerns itself with the distribution of components among the various phases and species of a system at equilibrium. Kinetics concerns itself with the path the system takes in T achieving equilibrium. Thermodynamics allows us to predict the equilibrium state of a system. Kinetics, on the other hand, tells us how and how fast equilibrium will be attained. Although thermo- dynamics is a macroscopic science, we found it often useful to consider the microscopic viewpoint in developing thermodynamics models. Because kinetics concerns itself with the path a system takes, what we will call reaction mechanisms, the microscopic perspective becomes essential, and we will very often make use of it. Our everyday experience tells one very important thing about reaction kinetics: they are generally slow at low temperature and become faster at higher temperature. For example, sugar dissolves much more rapidly in hot tea than it does in ice tea. Good instructions for making ice tea might then incor- porate this knowledge of kinetics and include the instruction to be sure to dissolve the sugar in the hot tea before pouring it over ice. Because of this temperature dependence of reaction rates, low tempera- ture geochemical systems are often not in equilibrium. A good example might be clastic sediments, which consist of a variety of phases. Some of these phases are in equilibrium with each other and with porewater, but most are not. Another example of this disequilibrium is the oceans. The surface waters of the oceans are everywhere oversaturated with respect to calcite, yet calcite precipitates from sea- water only through biological activity.
    [Show full text]
  • The Role of Geochemistry and Stress on Fracture Development And
    Geothermal Technologies Program 2010 Peer Review Public Service of Colorado Ponnequin Wind Farm The Role of Geochemistry and Principal Investigator (Joseph Moore) Stress on Fracture Development Presenter Name (John McLennan) and Proppant Behavior in EGS Organization University of Utah Reservoirs Track Name Reservoir Characterization May 18, 2010 This presentation does not contain any proprietary confidential,1 | US DOE or Geothermalotherwise restricted Program information. eere.energy.gov Timeline DOE Start Date:9/30/2008 DOE Contract Signed: 9/26/2008 Ends 11/30/2011 Project ~40% Complete 2 | US DOE Geothermal Program eere.energy.gov Budget Overview DOE Awardee Total Share Share Project $972,751 $243,188 $1,215,939 Funding FY 2009 $244,869 $107,130 $351,999 FY 2010 $383,952 $64,522 $448,474 FY 2011 $343,930 $71,536 $415,466 DOE Start Date:9/30/2008 DOE Contract Signed: 9/26/2008 Ends 11/30/2011 Project ~40% Complete 3 | US DOE Geothermal Program eere.energy.gov Overview: Barriers and Partners . Barriers to EGS Reservoir Development Addressed: . Reservoir Creation . Long-Term Reservoir and Fracture Sustainability . Zonal Isolation . Partners . Independent Evaluation 4 | US DOE Geothermal Program eere.energy.gov Relevance/Impact of Research Problem . Maximizing initial conductivity of EGS domains . Maintaining long-term conductivity . Facilitate development of extensive stimulated domain via diversion Solution . Proppant placed in fractures Challenge . Proppant behavior at geothermal conditions poorly understood Use of proppant recognized as potential technology under Task “Keep Flow Paths Open” in DOE EGS Technology Evaluation Report 5 | US DOE Geothermal Program eere.energy.gov Relevance/Impact of Research OBJECTIVE Develop Improved Methods For Maintaining Permeable Fracture Volumes In EGS Reservoirs .
    [Show full text]
  • Historical Development of the Periodic Classification of the Chemical Elements
    THE HISTORICAL DEVELOPMENT OF THE PERIODIC CLASSIFICATION OF THE CHEMICAL ELEMENTS by RONALD LEE FFISTER B. S., Kansas State University, 1962 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree FASTER OF SCIENCE Department of Physical Science KANSAS STATE UNIVERSITY Manhattan, Kansas 196A Approved by: Major PrafeLoor ii |c/ TABLE OF CONTENTS t<y THE PROBLEM AND DEFINITION 0? TEH-IS USED 1 The Problem 1 Statement of the Problem 1 Importance of the Study 1 Definition of Terms Used 2 Atomic Number 2 Atomic Weight 2 Element 2 Periodic Classification 2 Periodic Lav • • 3 BRIEF RtiVJiM OF THE LITERATURE 3 Books .3 Other References. .A BACKGROUND HISTORY A Purpose A Early Attempts at Classification A Early "Elements" A Attempts by Aristotle 6 Other Attempts 7 DOBEREBIER'S TRIADS AND SUBSEQUENT INVESTIGATIONS. 8 The Triad Theory of Dobereiner 10 Investigations by Others. ... .10 Dumas 10 Pettehkofer 10 Odling 11 iii TEE TELLURIC EELIX OF DE CHANCOURTOIS H Development of the Telluric Helix 11 Acceptance of the Helix 12 NEWLANDS' LAW OF THE OCTAVES 12 Newlands' Chemical Background 12 The Law of the Octaves. .........' 13 Acceptance and Significance of Newlands' Work 15 THE CONTRIBUTIONS OF LOTHAR MEYER ' 16 Chemical Background of Meyer 16 Lothar Meyer's Arrangement of the Elements. 17 THE WORK OF MENDELEEV AND ITS CONSEQUENCES 19 Mendeleev's Scientific Background .19 Development of the Periodic Law . .19 Significance of Mendeleev's Table 21 Atomic Weight Corrections. 21 Prediction of Hew Elements . .22 Influence
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Radiogenic Isotope Geochemistry
    W. M. White Geochemistry Chapter 8: Radiogenic Isotope Geochemistry CHAPTER 8: RADIOGENIC ISOTOPE GEOCHEMISTRY 8.1 INTRODUCTION adiogenic isotope geochemistry had an enormous influence on geologic thinking in the twentieth century. The story begins, however, in the late nineteenth century. At that time Lord Kelvin (born William Thomson, and who profoundly influenced the development of physics and ther- R th modynamics in the 19 century), estimated the age of the solar system to be about 100 million years, based on the assumption that the Sun’s energy was derived from gravitational collapse. In 1897 he re- vised this estimate downward to the range of 20 to 40 million years. A year earlier, another Eng- lishman, John Jolly, estimated the age of the Earth to be about 100 million years based on the assump- tion that salts in the ocean had built up through geologic time at a rate proportional their delivery by rivers. Geologists were particularly skeptical of Kelvin’s revised estimate, feeling the Earth must be older than this, but had no quantitative means of supporting their arguments. They did not realize it, but the key to the ultimate solution of the dilemma, radioactivity, had been discovered about the same time (1896) by Frenchman Henri Becquerel. Only eleven years elapsed before Bertram Boltwood, an American chemist, published the first ‘radiometric age’. He determined the lead concentrations in three samples of pitchblende, a uranium ore, and concluded they ranged in age from 410 to 535 million years. In the meantime, Jolly also had been busy exploring the uses of radioactivity in geology and published what we might call the first book on isotope geochemistry in 1908.
    [Show full text]
  • Soluble Lutetium (CASRN 7439-94-3)
    EPA/690/R-18/003 | August 16, 2018 | FINAL Provisional Peer-Reviewed Toxicity Values for Stable (Nonradioactive) Soluble Lutetium (CASRN 7439-94-3) U.S. EPA Office of Research and Development National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (Cincinnati, OH) EPA/690/R-18/003 FINAL 08-16-2018 Provisional Peer-Reviewed Toxicity Values for Stable (Nonradioactive) Soluble Lutetium (CASRN 7439-94-3) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGER Scott C. Wesselkamper, PhD National Center for Environmental Assessment, Cincinnati, OH CONTRIBUTOR Chris Cubbison, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY SRC, Inc. 7502 Round Pond Road North Syracuse, NY 13212 PRIMARY INTERNAL REVIEWERS Paul G. Reinhart, PhD, DABT National Center for Environmental Assessment, Research Triangle Park, NC Q. Jay Zhao, PhD, DABT National Center for Environmental Assessment, Cincinnati, OH This document was externally peer reviewed under contract to: Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the content of this PPRTV assessment should be directed to the U.S. EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). ii Soluble Lutetium TABLE OF CONTENTS
    [Show full text]
  • Geochemistry and Crystallography of Recrystallized Sedimentary Dolomites
    Goldschmidt2019 Abstract Geochemistry and crystallography of recrystallized sedimentary dolomites GEORGINA LUKOCZKI1*, PANKAJ SARIN2, JAY M. GREGG1, CÉDRIC M. JOHN3 1 Oklahoma State University, Boone Pickens School of Geology, Stillwater, OK, USA 2 Oklahoma State University, School of Materials Science and Engineering, Tulsa, OK, USA 3 Imperial College London, Department of Earth Science and Engineering, London, UK (*Correspondence: [email protected]) Most sedimentary dolomites [CaMg(CO3)2] are meta- stable upon formation and either transform into more stable dolomite via recrystallization, or persist as meta-stable phases over deep geological time. The stability of dolomite has long been considered to be influenced by ordering and stoichiometry [1]; however, how recrystallization alters the crystal structure and chemistry of dolomites remains poorly understood. In order to better understand the relationship between various chemical and crystallographic properties and the underlying geological processes, sedimentary dolomites, formed in various diagenetic environments, were investigated in detail. The innovative aspect of this study is the application of high resolution diffraction techniques, such as sychrotron X-ray and neutron diffraction, together with various geochemical proxies, including clumped isotopes, to characterize recrystallized sedimentary dolomites. The age of the studied samples ranges from Holocene to Cambrian. The diagenetic environments of dolomitization and recrystallization were determined primarily on the basis of petrographic and geochemical data [2, 3, 4]. Rietveld refinement of high-resolution diffraction data revealed notable differences in crystallographic parameters across the various dolomite types. Several dolomite bodies have been identified as potential sites for CO2 sequestration [5]; therefore, new insights into what factors control dolomite ordering and stoichiometry will contribute to an improved understanding of dolomite reactivity and may be particularly important for CO2 sequestration studies.
    [Show full text]
  • Three Related Topics on the Periodic Tables of Elements
    Three related topics on the periodic tables of elements Yoshiteru Maeno*, Kouichi Hagino, and Takehiko Ishiguro Department of physics, Kyoto University, Kyoto 606-8502, Japan * [email protected] (The Foundations of Chemistry: received 30 May 2020; accepted 31 July 2020) Abstaract: A large variety of periodic tables of the chemical elements have been proposed. It was Mendeleev who proposed a periodic table based on the extensive periodic law and predicted a number of unknown elements at that time. The periodic table currently used worldwide is of a long form pioneered by Werner in 1905. As the first topic, we describe the work of Pfeiffer (1920), who refined Werner’s work and rearranged the rare-earth elements in a separate table below the main table for convenience. Today’s widely used periodic table essentially inherits Pfeiffer’s arrangements. Although long-form tables more precisely represent electron orbitals around a nucleus, they lose some of the features of Mendeleev’s short-form table to express similarities of chemical properties of elements when forming compounds. As the second topic, we compare various three-dimensional helical periodic tables that resolve some of the shortcomings of the long-form periodic tables in this respect. In particular, we explain how the 3D periodic table “Elementouch” (Maeno 2001), which combines the s- and p-blocks into one tube, can recover features of Mendeleev’s periodic law. Finally we introduce a topic on the recently proposed nuclear periodic table based on the proton magic numbers (Hagino and Maeno 2020). Here, the nuclear shell structure leads to a new arrangement of the elements with the proton magic-number nuclei treated like noble-gas atoms.
    [Show full text]
  • Rounding up Lutetium Lars Öhrström Suspects That As Time Goes By, We May See More of Lutetium — the Last of the Lanthanoids
    in your element Rounding up lutetium Lars Öhrström suspects that as time goes by, we may see more of lutetium — the last of the lanthanoids. e’ll always have Paris” Rick says motexafin (based on the ‘texaphyrins’), a “ to Ilsa in their final goodbye on sub-class of porphyrin-like macrocycles Wthe foggy airstrip of Casablanca with five instead of four nitrogen atoms in in the eponymous film. However, the an approximately planar ring. Motexafin question among chemists about the element lutetium, which features Lu3+ and two lutetium, named after Lutetia, as the French acetate counter-ions coordinated on either capital was known in Roman times, is not so side of the macrocycle, is potentially a good much about having it (it is more abundant photosensitizer in dynamic phototherapy than silver in the Earth’s crust), but rather and has been going through phase I trials where to place it on the map. against prostate cancer2. With its valence electron configuration Uses of the naturally occurring element [Xe]4f 146s25d1, element 71 seems to belong are otherwise scarce, but its isotope Lu-177 is to group 3, but we often see it placed at successfully used in experimental and clinical BRITTA LANGEN, BRITTA SWEDEN UNIVERSITY OF GOTHENBURG, the very end of the lanthanoid series. Its treatments against some severe cancers by downstairs neighbour lawrencium, for which Illustration of a radiolabelled somatostatin hooking it up to a tetraazacyclododecane- experimental data are much more difficult to analogue built using PyMOL (https://pymol.org) tetraacetate (DOTA) ligand grafted to obtain, is in the same ambiguous situation.
    [Show full text]