Osteochondral Allograft Transplantation of the Knee in the Pediatric and Adolescent Population Ryan T

Total Page:16

File Type:pdf, Size:1020Kb

Osteochondral Allograft Transplantation of the Knee in the Pediatric and Adolescent Population Ryan T The American Journal of Sports Medicine http://ajs.sagepub.com/ Osteochondral Allograft Transplantation of the Knee in the Pediatric and Adolescent Population Ryan T. Murphy, Andrew T. Pennock and William D. Bugbee Am J Sports Med 2014 42: 635 originally published online January 10, 2014 DOI: 10.1177/0363546513516747 The online version of this article can be found at: http://ajs.sagepub.com/content/42/3/635 Published by: http://www.sagepublications.com On behalf of: American Orthopaedic Society for Sports Medicine Additional services and information for The American Journal of Sports Medicine can be found at: Email Alerts: http://ajs.sagepub.com/cgi/alerts Subscriptions: http://ajs.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav >> Version of Record - Feb 28, 2014 OnlineFirst Version of Record - Jan 10, 2014 What is This? Downloaded from ajs.sagepub.com at Harvard Library on May 13, 2014 Osteochondral Allograft Transplantation of the Knee in the Pediatric and Adolescent Population Ryan T. Murphy,* MS, Andrew T. Pennock,y MD, and William D. Bugbee,z§ MD Investigation performed at Scripps Clinic, La Jolla, California, USA Background: Multiple studies in adults have shown that osteochondral allograft transplantation is an effective treatment option for large chondral and osteochondral defects of the knee. Limited outcome data are available on osteochondral allografts in the pediatric and adolescent patient populations. Purpose: To describe a 28-year experience with osteochondral allograft transplantation in patients younger than 18 years with a focus on subjective outcome measures, return to activities, and allograft survivorship. Study Design: Case series; Level of evidence, 4. Methods: A total of 39 patients (43 knees) underwent fresh osteochondral allograft transplantation for treatment of chondral and osteochondral lesions. Twenty-six male and 17 female knees with a mean age of 16.4 years (range, 11.0-17.9 years) at index sur- gery were followed-up at a mean of 8.4 years (range, 1.7-27.1 years). Thirty-four knees (79%) had at least 1 previous surgery. The most common underlying causes of the lesions were osteochondritis dissecans (61%), avascular necrosis (16%), and traumatic chondral injury (14%). Mean allograft size was 8.4 cm2. The most common allograft location was the medial femoral condyle (41.9%), followed by the lateral femoral condyle (35%). Each patient was evaluated with the International Knee Documentation Committee pain, function, and total scores; a modified Merle d’Aubigne´ -Postel (18-point) scale; and Knee Society function score. Failure was defined as revision osteochondral allograft or conversion to arthroplasty. Results: Five knees experienced clinical failure at a median of 2.7 years (range, 1.0-14.7 years). Four failures were salvaged suc- cessfully with another osteochondral allograft transplant. One patient underwent prosthetic arthroplasty 8.6 years after revision allograft. Graft survivorship was 90% at 10 years. Of the knees whose grafts were in situ at latest follow-up, 88% were rated good/excellent (18-point scale). The mean International Knee Documentation Committee scores improved from 42 preoperatively to 75 postoperatively, and the Knee Society function score improved from 69 to 89 (both P \ .05). Eighty-nine percent of patients reported ‘‘extremely satisfied’’ or ‘‘satisfied.’’ Conclusion: With 88% good/excellent results and 80% salvage rate of clinical failures with an additional allograft, osteochondral allograft transplantation is a useful treatment option in pediatric and adolescent patients. Keywords: fresh osteochondral allograft transplantation; adolescent; pediatric; knee; osteochondral defect; cartilage Chondral and osteochondral injuries of the knee are a diffi- lesion is large and occurs in younger patients, for whom cult clinical challenge, particularly in situations where the alternatives such as partial or total knee arthroplasty are rarely advised. Increasing interest in biological alternatives §Address correspondence to William D. Bugbee, MD, Scripps Clinic, has led to the use of a number of surgical interventions 10666 North Torrey Pines Road, MS 116, La Jolla, CA 92037, USA designed to repair or replace diseased or damaged chondral (e-mail: [email protected]). and subchondral tissue. These options include chondro- *University of California, Irvine, Irvine, California, USA. 14 27,31 y plasty, microfracture, autologous osteochondral trans- Rady Children’s Hospital, San Diego, California, USA. 12 3,26 zDivision of Orthopaedic Surgery, Scripps Clinic, La Jolla, California, fer, and autologous chondrocyte implantation. USA. Numerous studies have reported on the outcome of patients k One or more of the authors has declared the following potential con- undergoing each of these procedures with clinical success flict of interest or source of funding: W.D.B. is a consultant to the Joint reported between 50% and 90% depending on the diagnosis, Restoration Foundation; receives royalties from DePuy, Zimmer Biolog- lesion size, previous treatment, and patient characteristics. ics, and Smith & Nephew; is a consultant for DePuy, Smith & Nephew, Zimmer, and Moximed; owns stock in Moximed, OrthoAlign, and Alexan- However, few studies have focused on the use of cartilage 20,21,25,28 drea Research Technologies; and receives research support from restoration procedures in young patients. OrthoAlign, Alter-G, and Joint Restoration Foundation. Fresh osteochondral allograft transplantation has been utilized in knee joints for more than 100 years. Lexer19 The American Journal of Sports Medicine, Vol. 42, No. 3 DOI: 10.1177/0363546513516747 Ó 2014 The Author(s) kReferences 1, 2, 4, 6, 8, 11, 12, 18, 21, 22, 24, 25, 30. 635 Downloaded from ajs.sagepub.com at Harvard Library on May 13, 2014 636 Murphy et al The American Journal of Sports Medicine TABLE 1 TABLE 2 Patient Information and Clinical Assessment Surgical History of Patients Who Underwent Operative Treatment on the Knee Before Receiving Clinical Information Results an Osteochondral Allograft (n = 34) No. of patients studied 39 No. Percentage Total No. of knees studied 43 Mean age at time of surgery, y (range) 16.4 (11.0-17.9) Procedure Sex, No. of knees Arthroscopic 26 76.5 Male 26 Arthroscopic and open 5 14.7 Female 17 Open 3 8.8 Body mass index, kg/m2 (range) 24.4 (18.8-51.0) Total 34 No. of knees with a previous surgery (%) 34 (79.1) Chondral debridement 18 31.6 Mean No. of previous surgeries (range) 1.5 (1-3) Subchondral marrow stimulation 14 24.6 Mean allograft size, cm2 (range) 8.4 (2.2-20.8) Loose body removal 13 22.8 Underlying cause of lesions, No. Partial lateral meniscus 3 5.3 Osteochondritis dissecans 26 Total lateral meniscus 2 3.5 Avascular necrosis 7 Osteotomy 2 3.5 Traumatic chondral injury 6 Physeal staple 1 1.8 Other osteochondral fracture 2 Osteochondral allograft transplantation 1 1.8 Degenerative chondral lesion 2 Pin fixation 1 1.8 Location of graft, No. Extensor mechanism 1 1.8 Medial femoral condyle 18 Autologous bone graft 1 1.8 Lateral femoral condyle 15 Total 57a Patella 3 Trochlea 2 aSeveral patients had more than 1 procedure. Tibial plateau 1 Multiple sites 4 No. of grafts patients with large osteochondral lesions due to osteochon- 130dritis dissecans, osteonecrosis, or trauma, for example. The 210purpose of this study was to investigate the outcome of 33osteochondral allograft transplantation performed in the knee joint in patients younger than 18 years. first reported on the use of hemijoint transplants in 1908. 8,11,23 Gross popularized the use of allografts for posttrau- MATERIALS AND METHODS matic reconstruction of the knee in the 1970s and 1980s. More recently, many authors have reported good to excel- Patient Selection and Outcome Assessment lent short- and medium-term success using fresh refriger- ated osteochondral allografts for treatment of such Since 1983, under institutional review board approval, clin- conditions as osteochondritis dissecans and focal chondral ical data were prospectively collected to evaluate the out- lesions.5,6,17,22,32 come of fresh osteochondral allograft transplantation in The basic fundamentals of fresh osteochondral allograft the knee. We used this database to identify pediatric and transplantation involve the transplantation of mature hyaline adolescent patients who underwent knee allograft trans- cartilage containing viable chondrocytes along with a variable plantation. Our inclusion criteria were those who were an amount of supporting subchondral bone to replace a chondral age younger than 18 years at the time of surgery and or osteochondral defect.9 Theallograftboneisincorporated were at least 2 years past the date of the index surgery. into the recipient through the process of creeping substitution, Thirty-nine patients (43 knees) were identified who and the donor chondrocytes survive transplantation support- underwent osteochondral allograft transplantation at an ing the hyaline matrix. Multiple retrieval10,13,33 and basic sci- age younger than 18 years (Table 1). Previous surgical entific studies29 have given support to this ‘‘fresh allograft treatment was performed on 34 of 43 (79%) of the knees, paradigm’’ and demonstrated the biological response to fresh with a total of 57 procedures performed (Table 2). Three osteochondral allograft implantation. patients underwent simultaneous bilateral allograft trans- While results of fresh osteochondral allograft
Recommended publications
  • The Use of Bone Age in Clinical Practice – Part 2
    Mini Review HORMONE Horm Res Paediatr 2011;76:10–16 Received: March 25, 2011 RESEARCH IN DOI: 10.1159/000329374 Accepted: May 16, 2011 PÆDIATRIC S Published online: June 21, 2011 The Use of Bone Age in Clinical Practice – Part 2 a d f e b David D. Martin Jan M. Wit Ze’ev Hochberg Rick R. van Rijn Oliver Fricke g h j c George Werther Noël Cameron Thomas Hertel Stefan A. Wudy i k a a Gary Butler Hans Henrik Thodberg Gerhard Binder Michael B. Ranke a b Pediatric Endocrinology and Diabetology, University Children’s Hospital, Tübingen , Children’s Hospital, c University of Cologne, Cologne , and Paediatric Endocrinology and Diabetology, Justus Liebig University, Giessen , d e Germany; Department of Pediatrics, Leiden University Medical Center, Leiden , and Department of Radiology, f Emma Children’s Hospital/Academic Medical Center Amsterdam, Amsterdam , The Netherlands; Meyer Children’s g Hospital, Rambam Medical Center, Haifa , Israel; Department of Endocrinology, Royal Children’s Hospital h Parkville, Parkville, Vic. , Australia; Centre for Global Health and Human Development, Loughborough University, i Loughborough , and Institute of Child Health, University College London and University College London Hospital, j k London , UK; H.C. Andersen Children’s Hospital, Odense University Hospital, Odense , and Visiana, Holte , Denmark Key Words ness and cortical thickness should always be evaluated in -Skeletal maturity ؒ Bone age ؒ Tall stature ؒ relation to a child’s height and BA, especially around puber Precocious puberty ؒ Congenital adrenal hyperplasia ؒ ty. The use of skeletal maturity, assessed on a radiograph Bone mineral density alone to estimate chronological age for immigration author- ities or criminal courts is not recommended.
    [Show full text]
  • Viewed at a Minimum Follow-Up of 2 Years (Maximum of 3 Years and 9 Months)
    J Orthopaed Traumatol (2012) 13 (Suppl 1):S57–S89 DOI 10.1007/s10195-012-0210-2 12 NOVEMBER 2012 In-Depth Oral Presentations and Oral Communications IN-DEPTH ORAL PRESENTATIONS achieve a stable synthesis and an early mobilization of the MP and IP joints. However, if a malunion is present, it has to be corrected sur- gically as soon as possible. AT05–HAND AND WRIST Radio-distal epiphysis fractures: treatment with angular stability Treatment of malunion of the proximal phalangeal fractures plate of latest generation of the hand R. Di Virgilio*, E. Coppari, E. Condarelli, M. Rendine V. Potenza*, S. Bisicchia, R. Caterini, A. Fichera, P. Farsetti, E. Ippolito (Rome, IT) Universita` di Roma Tor Vergata (Rome, IT) Introduction Distal radius fractures are the most common fractures of the upper limb and coincide with 17 % of all fractures treated in Introduction It is difficult to treat fractures of the phalanges of the emergency rooms. The incidence of these fractures is greater in hand because they can cause complications such as deformity and patients aged 6 to 10 years, and in those between 60 and 70 years. joint limitation with a reduction in the grasping function. The most In older patients the incidence is higher in females. In the articular frequent complications are malunion of the fracture and joint limi- fractures, displaced, dislocated and highly unstable is indicated tation. The greatest incidence of complications can be found in open internal fixation (ORIF) to restore the congruity of the joint transverse fractures of the base of the proximal phalanx, in articular surface, to restore the correct length of the radius, its inclination fractures, comminuted fractures, and in those associated with lesions and palmar tilt.
    [Show full text]
  • Knee Surgery-Arthroscopic and Open Procedures Version 1.0 Effective February 14, 2020
    CLINICAL GUIDELINES CMM-312: Knee Surgery-Arthroscopic and Open Procedures Version 1.0 Effective February 14, 2020 Clinical guidelines for medical necessity review of Comprehensive Musculoskeletal Management Services. © 2019 eviCore healthcare. All rights reserved. Comprehensive Musculoskeletal Management Guidelines V1.0 CMM-312: Knee Surgery-Arthroscopic and Open Procedures CMM-312.1: Definitions 3 CMM-312.2: General Guidelines 5 CMM-312.3: Indications and Non-Indications 5 CMM-312.4: Experimental, Investigational, or Unproven 15 CMM-312.5: Procedure (CPT®) Codes 16 CMM-312.6: Procedure (HCPCS) Codes 19 CMM-312.7: References 20 ______________________________________________________________________________________________________ ©2020 eviCore healthcare. All Rights Reserved. Page 2 of 25 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Comprehensive Musculoskeletal Management Guidelines V1.0 CMM -312.1: Definitions The Modified Outerbridge Classification is a system that has been developed for judging articular cartilage injury to the knee. This system allows delineation of varying areas of chondral pathology, based on the qualitative appearance of the cartilage surface, and can assist in identifying those injuries that are suitable for repair techniques. The characterization of cartilage in this system is as follows: Grade I – Softening with swelling Grade II – Fragmentation and fissuring less than one square centimeter (1 cm2) Grade III – Fragmentation and fissuring greater than one square centimeter
    [Show full text]
  • Pediatric Ankle Fractures
    CHAPTER 26 PEDIATRIC ANKLE FRACTURES Sofi e Pinney, DPM, MS INTRODUCTION stronger than both the physis and bone. As a result, there is a greater capacity for plastic deformation and less chance of The purpose of this review is to examine the current intra-articular fractures, joint dislocation, and ligamentous literature on pediatric ankle fractures. I will discuss the disruptions. However, ligamentous injury may be more anatomic considerations of a pediatric patient, how to common than originally believed (1). A case-control study evaluate and manage these fractures, and when to surgically by Zonfrillo et al found an association between an increased repair them. Surgical techniques and complications will be risk of athletic injury in obese children, and concluded a briefl y reviewed. higher body mass index risk factor for ankle sprains (4). Ankle fractures are the third most common fractures in Secondary ossifi cation centers are located in the children, after the fi nger and distal radial physeal fracture. epiphysis. The distal tibial ossifi cation center appears at 6-24 Approximately 20-30% of all pediatric fractures are ankle months of age and closes asymmetrically over an 18-month fractures. Most ankle fractures occur at 8-15 years old. The period fi rst central, then medial and posterior, with the peak injury age is 11-12 years, and is relatively uncommon anterolateral portion closing last at 15 and 17 years of age for under the age 5. This injury is more common in boys. females and males, respectively. The distal fi bula ossifi cation The most common cause of pediatric ankle fractures is a center appears at 9-24 months of age and closes 1-2 years rotational force, and is often seen in sports injuries associated after the distal tibial.
    [Show full text]
  • Commercial Musculoskeletal Codes
    Updated January 2018 Commercial Musculoskeletal Codes Investigational or Non-Covered Spine Surgery Pain Management Joint Surgery Codes associated with an Arthrogram CPT Description Commercial Notes Partial excision of posterior vertebral component (eg, spinous 22100 process, lamina or facet) for intrinsic bony lesion, single vertebral segment; cervical 22101 Partial excision of posterior vertebral component (eg, spinous process, lamina or facet) for intrinsic bony lesion, single vertebral segment; thoracic 22102 Partial excision of posterior vertebral component (eg, spinous process, lamina or facet) for intrinsic bony lesion, single vertebral segment; lumbar Partial excision of posterior vertebral component (eg, spinous process, 22103 lamina or facet) for intrinsic bony lesion, single vertebral segment; each additional segment (List separately in addition to code for primary procedure) Partial excision of vertebral body, for intrinsic bony lesion, without 22110 decompression of spinal cord or nerve root(s), single vertebral segment;cervical Partial excision of vertebral body, for intrinsic bony lesion, without 22112 decompression of spinal cord or nerve root(s), single vertebral segment; thoracic Partial excision of vertebral body, for intrinsic bony lesion, without 22114 decompression of spinal cord or nerve root(s), single vertebral segment; lumbar each additional vertebral segment (list separately in addition to code 22116 for primary procedure) Osteotomy of spine, posterior or posterolateral approach, 3 columns, 22206 1 vertebral
    [Show full text]
  • Ankle Injuries
    Pediatric Fractures of the Ankle Nicholas Frane DO Zucker/Hofstra School of Medicine Northwell Health Core Curriculum V5 Disclosure • Radiographic Images Courtesy of: Dr. Jon-Paul Dimauro M.D or Christopher D Souder, MD, unless otherwise specified Core Curriculum V5 Outline • Epidemiology • Anatomy • Classification • Assessment • Treatment • Outcomes Core Curriculum V5 Epidemiology • Distal tibial & fibular physeal injuries 25%-38% of all physeal fractures • Ankle is the 2nd most common site of physeal Injury in children • Most common mechanism of injury Sports • 58% of physeal ankle fractures occur during sports activities • M>F • Commonly seen in 8-15y/o Hynes D, O'Brien T. Growth disturbance lines after injury of the distal tibial physis. Their significance in prognosis. J Bone Joint Surg Br. 1988;70:231–233 Zaricznyj B, Shattuck LJ, Mast TA, et al. Sports-related injuries in school-aged children. Am J Sports Med. 1980;8:318–324. Core Curriculum V5 Epidemiology Parikh SN, Mehlman CT. The Community Orthopaedic Surgeon Taking Trauma Call: Pediatric Ankle Fracture Pearls and Pitfalls. J Orthop Trauma. 2017;31 Suppl 6:S27-S31. doi:10.1097/BOT.0000000000001014 Spiegel P, et al. Epiphyseal fractures of the distal ends of the tibia and fibula. J Bone Joint Surg Am. 1978;60(8):1046-50. Core Curriculum V5 Anatomy • Ligamentous structures attach distal to the physis • Growth plate injury more likely than ligament failure secondary to tensile weakness in physis • Syndesmosis • Anterior Tibio-fibular ligament (AITFL) • Posterior Inferior Tibio-fibular
    [Show full text]
  • CMM-314: Hip Surgery-Arthroscopic and Open Procedures Version 1.0.2019
    CLINICAL GUIDELINES CMM-314: Hip Surgery-Arthroscopic and Open Procedures Version 1.0.2019 Clinical guidelines for medical necessity review of speech therapy services. © 2019 eviCore healthcare. All rights reserved. Comprehensive Musculoskeletal Management Guidelines V1.0.2019 CMM-314: Hip Surgery-Arthroscopic and Open Procedures CMM-314.1: Definitions 3 CMM-314.2: General Guidelines 4 CMM-314.3: Indications and Non-Indications 4 CMM-314.4 Experimental, Investigational, or Unproven 6 CMM-314.5: Procedure (CPT®) Codes 7 CMM-314.6: References 10 © 2019 eviCore healthcare. All rights reserved. Page 2 of 13 400 Buckwalter Place Boulevard, Bluffton, SC 29910 • (800) 918-8924 www.eviCore.com Comprehensive Musculoskeletal Management Guidelines V1.0.2019 CMM-314.1: Definitions Femoroacetabular Impingement (FAI) is an anatomical mismatch between the head of the femur and the acetabulum resulting in compression of the labrum or articular cartilage during flexion. The mismatch can arise from subtle morphologic alterations in the anatomy or orientation of the ball-and-socket components (for example, a bony prominence at the head-neck junction or acetabular over-coverage) with articular cartilage damage initially occurring from abutment of the femoral neck against the acetabular rim, typically at the anterosui per or aspect of the acetabulum. Although hip joints can possess the morphologic features of FAI without symptoms, FAI may become pathologic with repetitive movement and/or increased force on the hip joint. High-demand activities may also result in pathologic impingement in hips with normal morphology. s It ha been proposed that impingement with damage to the labrum and/or acetabulum is a causative factor in the development of hip osteoarthritis, and that as many as half of cases currently categorized as primary osteoarthritis may have an etiology of FAI.
    [Show full text]
  • Affecting Factors and Correction Ratio in Genu Valgum Or Varum Treated with Percutaneous Epiphysiodesis Using Transphyseal Screw
    Journal of Clinical Medicine Article Affecting Factors and Correction Ratio in Genu Valgum or Varum Treated with Percutaneous Epiphysiodesis Using Transphyseal Screws Si-Wook Lee * , Kyung-Jae Lee , Chul-Hyun Cho, Hee-Uk Ye, Chang-Jin Yon , Hyeong-Uk Choi, Young-Hun Kim and Kwang-Soon Song Department of Orthopedic Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, 1035 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; [email protected] (K.-J.L.); [email protected] (C.-H.C.); [email protected] (H.-U.Y.); [email protected] (C.-J.Y.); [email protected] (H.-U.C.); [email protected] (Y.-H.K.); [email protected] (K.-S.S.) * Correspondence: [email protected]; Tel.: +82-53-258-4771 Received: 30 November 2020; Accepted: 17 December 2020; Published: 18 December 2020 Abstract: This study evaluated the correction rates of idiopathic genu valgum or varum after percutaneous epiphysiodesis using transphyseal screws (PETS) and analyzed the affecting factors. A total of 35 children without underlying diseases were enrolled containing 64 physes (44 distal femoral (DT), 20 proximal tibial (PT)). Anatomic tibiofemoral angle (aTFA) and the mechanical axis deviation (MAD) were taken from teleroentgenograms before PETS surgery and screw removal. The correction rates of the valgus and varus deformities for patients treated with PETS were 1.146◦/month and 0.639◦/month using aTFA while using MAD showed rates of 4.884%/month and 3.094%/month. After aTFA (p < 0.001) and MAD (p < 0.001) analyses, the correction rate of DF was significantly faster than that of PT.
    [Show full text]
  • Statistical Analysis Plan
    ~ GILEAU STATISTICAL ANALYSIS PLAN Study Title: A Phase 2, Randomized, Open Label Study to Evaluate the Efficacy and Safety ofTenofovir Alafenamide (fAF) versus Tenofovir Disoproxil Fumarate (fDF)-containing Regimens in Subjects with Chmnic HBV Infection and Stage 2 or Greater Chronic Kidney Disease Who Have Received a Liver Transplant Name of Test Drug: Tenofovir Alafenamide (fAF) Study Number: GS-US-320-3912 Protocol Version (Date): Amendment 2 (28 March 2017) Analysis Type: Week 24 Analysis Plan Version: Version 1.0 Analysis Plan Date: 19 March 2018 ..._ ...... Analysis Plan Author(s): PD______ CONFIDENTIAL AND PROPRIETARY INFORMATION TAF GS-US-320-3912 Statistical Analysis Plan – Week 24 Analysis Version 1.0 TABLE OF CONTENTS TABLE OF CONTENTS ..............................................................................................................................................2 LIST OF IN-TEXT TABLES........................................................................................................................................4 LIST OF ABBREVIATIONS........................................................................................................................................5 1. INTRODUCTION ................................................................................................................................................8 1.1. Study Objectives ......................................................................................................................................8 1.2. Study Design ............................................................................................................................................9
    [Show full text]
  • Ipo) List for Cy 2021 (N=266)
    TABLE 31: PROPOSED MUSCULOSKELETAL-RELATED SERVICE REMOVALS FROM THE INPATIENT ONLY (IPO) LIST FOR CY 2021 (N=266) CY CY 2020 Long Descriptor Related Proposed Proposed 2020 Services CY 2021 CY 2021 CPT OPPS OPPS APC Code Status Assignment Indicator 0095T Removal of total disc arthroplasty 22856 N/A (artificial disc), anterior approach, each additional interspace, cervical (list separately in addition to code for primary procedure) 0098T Revision including replacement 22858 N/A of total disc arthroplasty (artificial disc), anterior approach, each additional interspace, cervical (list separately in addition to code for primary procedure) 0163T Total disc arthroplasty (artificial 22858 N/A disc), anterior approach, including discectomy to prepare interspace (other than for decompression), each additional interspace, lumbar (list separately in addition to code for primary procedure) 0164T Removal of total disc 22856 N/A arthroplasty, (artificial disc), anterior approach, each additional interspace, lumbar (list separately in addition to code for primary procedure) 0165T Revision including replacement 22858 N/A of total disc arthroplasty (artificial disc), anterior approach, each additional interspace, lumbar (list separately in addition to code for primary procedure) 0202T Posterior vertebral joint(s) 63030 J1 5115 arthroplasty (for example, facet joint[s] replacement), including facetectomy, laminectomy, foraminotomy, and vertebral column fixation, injection of bone cement, when performed, including fluoroscopy, single level, lumbar spine
    [Show full text]
  • Corrective Osteotomy After Damage of the Distal Radial Physis in Children: Surgical Technique and Results
    TECHNIQUE Corrective Osteotomy After Damage of the Distal Radial Physis in Children: Surgical Technique and Results Ricardo Kaempf de Oliveira, MD,* Pedro J. Delgado Serrano, MD,w Alejandro Badia, MD,z and Marco Tonding Ferreira, MDy The treatment depends on the physeal compromise, the Abstract: Distal radial physis closure in children can develop severe child’s growth potential, and the deformity. Near-complete wrist deformity (radial shortening). These patients can be treated using physeal closure creates distal radius shortening and angulation a single-step surgery. It was carried out in the form of a corrective that can compromise joint function, and create pain and osteotomy adopting the volar approach, with fixed-angle volar plate instability. Surgical treatment with different techniques, either fixation and bone grafting from the iliac crest. There have been few alone or combined, such as 1 or 2-staged bone lengthening descriptions of the use of this technique in the management of osteotomy, external fixation, and ulnar shortening with or deformities related to early epiphysiodesis in distal radius. The use of without epiphysiodesis, is indicated to correct the deformity.2 fixation systems for the radius, using fixed-angle locking plates, allows radius lengthening adjusted to demand after osteotomy, using the combination of the plate and distal locking pins as spacer—with custom- INDICATIONS sized tricortical iliac crest grafting within the defect. The freeing of soft The authors propose a novel, not earlier described in the literature, parts such as the dorsal periosteum and brachioradialis muscle tendon surgical technique for the treatment of deformities caused by allows adequate bone lengthening in a single-surgical step.
    [Show full text]
  • 2019 Compilation of Inpatient Only Procedure Lists by Specialty
    2019 Compilation of Inpatient Only Procedure Lists by Specialty (for CPT searching) 2019 Bariatric Surgery: Is the Surgery Medicare Inpatient Only or not? Disclaimer: This is not the CMS Inpatient Only Procedure List (Annual OPPS Addendum E). No guarantee can be made of the accuracy of this information which was compiled from public sources. CPT Codes are property of the AMA and are made available to the public only for non-commercial usage. Gastric Bypass or Partial Gastrectomy Procedures Inpatient Only Procedure Not an Inpatient Only Procedure 43644 Laparoscopy, surgical, gastric restrictive 43659 Unlisted laparoscopy procedure, stomach procedure; with gastric bypass and Roux-en-Y gastroenterostomy (roux limb 150 cm or less) 43645 Laparoscopy, surgical, gastric restrictive procedure; with gastric bypass and small intestine reconstruction to limit absorption 43775 Laparoscopy, surgical, gastric restrictive procedure; longitudinal gastrectomy (ie, sleeve gastrectomy) 43843 Gastric restrictive procedure, without gastric bypass, for morbid obesity; other than vertical- banded gastroplasty 43845 Gastric restrictive procedure with partial gastrectomy, pylorus-preserving duodenoileostomy and ileoileostomy (50 to 100 cm common channel) to limit absorption (biliopancreatic diversion with duodenal switch) 43846 Gastric restrictive procedure, with gastric bypass for morbid obesity; with short limb (150 cm or less) Roux-en-Y gastroenterostomy 43847 Gastric restrictive procedure, with gastric bypass for morbid obesity; with small intestine reconstruction
    [Show full text]