Appendix A: Fish

Total Page:16

File Type:pdf, Size:1020Kb

Appendix A: Fish Appendix A: Fish Sea Lamprey Petromyzon marinus Federal Listing State Listing SC Global Rank State Rank S3 Regional Status Photo by John Lyons Justification (Reason for Concern in NH) Sea lampreys are blocked from much of their spawning habitat by dams. In New Hampshire they depend on functional fishways to reach suitable spawning habitat. Although Atlantic coastal populations are not currently considered threatened, there have been significant declines in lamprey populations throughout the northern hemisphere (Renaud 1997). A complex life cycle, which is dependent on multiple habitats in freshwater and marine ecosystems, makes the sea lamprey vulnerable to the effects of urbanization in coastal watersheds (Creel 2003). Sea lamprey may also be impacted by a decline in host species due to overfishing of marine fish stocks (Nislow and Kenard 2009). Distribution The sea lamprey inhabits Atlantic coastal rivers throughout eastern North America and western Europe, as far south as the western Mediterranean Sea and the gulf coast of Florida (Scott and Crossman 1973). In New Hampshire, sea lampreys migrate into the Connecticut River, Merrimack River, and coastal rivers up to the first impassable barriers. Habitat Sea lampreys spend their adult lives in the ocean as a parasite on other fish. After 20 to 30 months at sea they migrate into freshwater, following pheromones from larvae (ammocoetes) upstream (Vrieze and Sorenson 2001). Sea lampreys construct nests in gravel/cobble riffle sections of freshwater streams (Scarola 1987). Once hatched, the larvae float downstream to slow moving pools where they burrow into the substrate and filter feed on organic detritus drifting in the water column (Scarola 1987). In freshwater, sea lampreys use river reaches with gravel substrate for spawning. Spawning habitat is similar to that used by salmon, occurring at the upstream end of riffles and the tail end of pools. Ammocoetes require fine silt and sand that is loose enough to burrow into, yet protected from washing away in higher flows. These areas often occur on the inside of river bends, along stream banks, and behind structures such as boulders or fallen trees. Sea lamprey play an important ecological role in freshwater. Their nests improve spawning substrate for other fish species and create interstitial spaces between stones for macroinvertebrates (Kircheis 2004). Sea lamprey ammocoetes are filter feeders, which, in large numbers, may trap nutrients and improve water quality. Adult sea lampreys die after spawning and their carcasses release marine derived nutrients into freshwater rivers (Nislow and Kynard 2009). New Hampshire Wildlife Action Plan Appendix A Fish-132 Appendix A: Fish NH Wildlife Action Plan Habitats ● Large Warmwater Rivers ● Warmwater Rivers and Streams ● Coldwater Rivers and Streams ● Estuarine ● Marine Distribution Map Current Species and Habitat Condition in New Hampshire Sea lamprey numbers are well below their potential in New Hampshire rivers. Populations are generally declining or stable at low levels despite improvements in access to spawning habitat. Coastal Watersheds Sea lampreys typically number less than a 1,000 in coastal rivers where fish counts are recorded. The majority of sea lamprey returns are recorded each spring in the Cocheco, Exeter, and Lamprey Rivers. Sea lamprey numbers have remained low since the early 1980’s, when over 25,000 sea lampreys were removed from coastal fish ladders for medical research. Merrimack River Sea lamprey counts at the Essex dam in Lawrence average 6,603 annual returns since 1983. Counts have declined each decade, with an average of 12,220 sea lamprey counted per year between 1985 and 1994, 6,160 between 1995 and 2004, and 2,270 in the last 10 years. No sea lamprey were recorded in 2006 due to flooding. Connecticut River The average number of sea lampreys counted at the Holyoke Fishway each spring since 1975 is 34,231, with a peak of 100,000 counted in 1998. Annual sea lamprey counts at the Holyoke dam are highly variable, but returns have been below average since 2010. A recent sea lamprey pit tagging study showed that most sea lamprey move rapidly upstream between dams, but only 50% of the sea lamprey that enter fish ladders successfully pass through the ladder (Ted Castros Santos, USGS, unpublished data). New Hampshire Wildlife Action Plan Appendix A Fish-133 Appendix A: Fish Population Management Status There are no current stocking efforts focused on sea lamprey. Migrating sea lampreys are able to detect pheremones from ammocoetes, which they use to navigate to their spawning grounds. This trait makes stocking sea lamprey upstream a potential restoration strategy for seeding new populations in rivers or stream where sea lampreys have been denied access. This approach would be most effective where a migration barrier is expected to be removed or mitigated, either by dam removal or fishway construction. However, population recovery may be limited by the availability of marine host species (Nislow and Kenard 2009). Regulatory Protection (for explanations, see Appendix I) ● Harvest permit ‐ season/take regulations Quality of Habitat The extent and quality of sea lamprey spawning and juvenile rearing habitat in New Hampshire is not well known. A large proportion of historic sea lamprey spawning habitat is currently inaccessible due to impassable dams. Coastal watersheds: Access to spawning habitat for sea lamprey has improved in coastal rivers over the last 10 years. A newly constructed fish ladder at the Wiswall Dam and the removal of the Bunker Pond Dam, on the Lamprey River, has greatly increased the amount of river habitat that is accessible to Sea Lamprey (12 km). The ruins of the Wadleigh Falls Dam, in Lee, has been shown to act as a barrier to river herring migration, but its effect on sea lamprey upstream movement is unknown. Potential dam removals or fishway improvements on the Exeter, Bellamy, and Winnicut Rivers may offer opportunities for sea lampreys to increase their range in New Hampshire. In the Cocheco River, sea lampreys have access to approximately 5 km of river from the fish ladder at the Cocheco Falls Dam in Dover upstream to the Watson Dam. A possible migration barrier, known as Factory Falls, which is downstream from the Watson Dam, may limit diadromous fish passage in the Cocheco River. Merrimack River: In the Merrimack River, sea lampreys are able to reach the Hooksett Dam, although they are rarely observed at the Amoskeag Dam Fishway, in Manchester. The Souhegan River is accessible up to the McLane Dam in Milford. Baboosic Brook, a tributary to the Souhegan River, is known to contain sea lamprey spawning habitat and ammocoetes. Sea lamprey ammocoete numbers have increased at the mouth of the Souhegan River, where excellent burrowing habitat was created by sediment deposited after the Merrimack Village Dam was removed in 2008. Juveniles have also been captured in a number of other small tributaries to the Merrimack River, but the extent of spawning habitat or the total number of individuals that spawn in the mainstem is not well known. Connecticut River: Sea Lamprey ammocoetes have been documented in the Connecticut River as far north as the town of Hanover, near the mouth of the White River. The location and relative importance of sea lamprey spawning areas in the mainstem and tributaries of the upper Connecticut River is not well understood. Studies related to the relicensing of the Connecticut River dams owned by TransCanada Corporation will provide more information on sea lamprey population status and spawning habitat in the upper Connecticut River. New Hampshire Wildlife Action Plan Appendix A Fish-134 Appendix A: Fish Habitat Protection Status Habitat Management Status Efforts to improve the efficiency and monitoring of fishways will benefit sea lampreys, but dam removals will have the greatest long term benefit. The end of Atlantic salmon restoration efforts in the Merrimack and Connecticut Rivers was a setback for sea lamprey, which often share spawning areas with Atlantic salmon. Maintaining and improving fish passage solely for sea lamprey can be a challenge due to its image as a nuisance species not commonly targeted by anglers. Fisheries managers should emphasize the important ecological role of sea lamprey in freshwater and seek to improve access to spawning habitat whenever possible. Threats to this Species or Habitat in NH Threat rankings were calculated by groups of taxonomic or habitat experts using a multistep process (details in Chapter 4). Each threat was ranked for these factors: Spatial Extent, Severity, Immediacy, Certainty, and Reversibility (ability to address the threat). These combined scores produced one overall threat score. Only threats that received a “medium” or “high” score have accompanying text in this profile. Threats that have a low spatial extent, are unlikely to occur in the next ten years, or there is uncertainty in the data will be ranked lower due to these factors. Disturbance from dams that block species from spawning areas or other important habitat (Threat Rank: High) Dams block access to freshwater spawning habitat. Dams have greatly reduced the amount of freshwater habitat available to sea lamprey and other diadromous species (Limburg and Waldman 2009). Before the construction of dams on the Merrimack River, sea lamprey were documented as far north as the Baker River in the town of Wentworth (Noon 2003). Currently, the Hooksett Dam is the upstream limit of sea lamprey migration in the Merrimack River. Access to the majority of sea lamprey habitat in New Hampshire coastal rivers is currently limited by dams. Disturbance from dams that delay upstream or downstream migration (Threat Rank: Medium) Delays in migration occur at dams as fish try to successfully navigate fish passage facilities. These delays may become energetically costly to the point where they impact spawning behavior. A recent pit tagging study of migrating sea lampreys documented delays and poor passage efficiency at a number of dams on the Connecticut River (Ted Castro‐Santos, USGS, personal communication).
Recommended publications
  • Review of the Lampreys (Petromyzontidae) in Bosnia and Herzegovina: a Current Status and Geographic Distribution
    Review of the lampreys (Petromyzontidae) in Bosnia and Herzegovina: a current status and geographic distribution Authors: Tutman, Pero, Buj, Ivana, Ćaleta, Marko, Marčić, Zoran, Hamzić, Adem, et. al. Source: Folia Zoologica, 69(1) : 1-13 Published By: Institute of Vertebrate Biology, Czech Academy of Sciences URL: https://doi.org/10.25225/jvb.19046 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Journal-of-Vertebrate-Biology on 13 Feb 2020 Terms of Use: https://bioone.org/terms-of-use Journal of Open Acces Vertebrate Biology J. Vertebr. Biol. 2020, 69(1): 19046 DOI: 10.25225/jvb.19046 Review of the lampreys (Petromyzontidae) in Bosnia and Herzegovina:
    [Show full text]
  • NH Trout Stocking - April 2018
    NH Trout Stocking - April 2018 Town WaterBody 3/26‐3/30 4/02‐4/06 4/9‐4/13 4/16‐4/20 4/23‐4/27 4/30‐5/04 ACWORTH COLD RIVER 111 ALBANY IONA LAKE 1 ALLENSTOWN ARCHERY POND 1 ALLENSTOWN BEAR BROOK 1 ALLENSTOWN CATAMOUNT POND 1 ALSTEAD COLD RIVER 1 ALSTEAD NEWELL POND 1 ALSTEAD WARREN LAKE 1 ALTON BEAVER BROOK 1 ALTON COFFIN BROOK 1 ALTON HURD BROOK 1 ALTON WATSON BROOK 1 ALTON WEST ALTON BROOK 1 AMHERST SOUHEGAN RIVER 11 ANDOVER BLACKWATER RIVER 11 ANDOVER HIGHLAND LAKE 11 ANDOVER HOPKINS POND 11 ANTRIM WILLARD POND 1 AUBURN MASSABESIC LAKE 1 1 1 1 BARNSTEAD SUNCOOK LAKE 1 BARRINGTON ISINGLASS RIVER 1 BARRINGTON STONEHOUSE POND 1 BARTLETT THORNE POND 1 BELMONT POUT POND 1 BELMONT TIOGA RIVER 1 BELMONT WHITCHER BROOK 1 BENNINGTON WHITTEMORE LAKE 11 BENTON OLIVERIAN POND 1 BERLIN ANDROSCOGGIN RIVER 11 BRENTWOOD EXETER RIVER 1 1 BRISTOL DANFORTH BROOK 11 BRISTOL NEWFOUND LAKE 1 BRISTOL NEWFOUND RIVER 11 BRISTOL PEMIGEWASSET RIVER 11 BRISTOL SMITH RIVER 11 BROOKFIELD CHURCHILL BROOK 1 BROOKFIELD PIKE BROOK 1 BROOKLINE NISSITISSIT RIVER 11 CAMBRIDGE ANDROSCOGGIN RIVER 1 CAMPTON BOG POND 1 CAMPTON PERCH POND 11 CANAAN CANAAN STREET LAKE 11 CANAAN INDIAN RIVER 11 NH Trout Stocking - April 2018 Town WaterBody 3/26‐3/30 4/02‐4/06 4/9‐4/13 4/16‐4/20 4/23‐4/27 4/30‐5/04 CANAAN MASCOMA RIVER, UPPER 11 CANDIA TOWER HILL POND 1 CANTERBURY SPEEDWAY POND 1 CARROLL AMMONOOSUC RIVER 1 CARROLL SACO LAKE 1 CENTER HARBOR WINONA LAKE 1 CHATHAM BASIN POND 1 CHATHAM LOWER KIMBALL POND 1 CHESTER EXETER RIVER 1 CHESTERFIELD SPOFFORD LAKE 1 CHICHESTER SANBORN BROOK
    [Show full text]
  • Official List of Public Waters
    Official List of Public Waters New Hampshire Department of Environmental Services Water Division Dam Bureau 29 Hazen Drive PO Box 95 Concord, NH 03302-0095 (603) 271-3406 https://www.des.nh.gov NH Official List of Public Waters Revision Date October 9, 2020 Robert R. Scott, Commissioner Thomas E. O’Donovan, Division Director OFFICIAL LIST OF PUBLIC WATERS Published Pursuant to RSA 271:20 II (effective June 26, 1990) IMPORTANT NOTE: Do not use this list for determining water bodies that are subject to the Comprehensive Shoreland Protection Act (CSPA). The CSPA list is available on the NHDES website. Public waters in New Hampshire are prescribed by common law as great ponds (natural waterbodies of 10 acres or more in size), public rivers and streams, and tidal waters. These common law public waters are held by the State in trust for the people of New Hampshire. The State holds the land underlying great ponds and tidal waters (including tidal rivers) in trust for the people of New Hampshire. Generally, but with some exceptions, private property owners hold title to the land underlying freshwater rivers and streams, and the State has an easement over this land for public purposes. Several New Hampshire statutes further define public waters as including artificial impoundments 10 acres or more in size, solely for the purpose of applying specific statutes. Most artificial impoundments were created by the construction of a dam, but some were created by actions such as dredging or as a result of urbanization (usually due to the effect of road crossings obstructing flow and increased runoff from the surrounding area).
    [Show full text]
  • Pacific Lamprey My Scientific Name Did You Know? Entosphenus Tridentatus Zzpacific Lampreys Spawn Between March and July
    external pharyngeal (gill) slits anterior dorsal fin posterior dorsal fin buccal papillae caudal fin tail PacifIC Lamprey My ScientifIc Name Did you know? Entosphenus tridentatus zzPacific lampreys spawn between March and July. Males and females both construct nests--known as redds-- by moving stones with their By the Numbers mouths. Adults typically die within 3-36 days after spawning. As adults, we lamprey range in size from about 15 to 25 zzAfter larval lamprey (ammocoetes) hatch, they drift downstream to inches. We have been caught in depths ranging from areas with slower water velocity and fine sand for them to burrow 300 to 2,600 feet, and as far as 62 miles off the west into. Ammocoetes will grow and live in riverbeds and streambeds for coast of the United States! 2 to 7 years, where they mainly filter feed on algae. zzThe metamorphosis of Pacific lamprey from ammocoetes into How to Identify Me macropthalmia (juveniles) occurs gradually over several months. I belong to a primitive group of fishes that are eel-like That’s when they develop eyes, teeth, and emerge from substrate to in form but that lack the jaws and paired fins of true swimming. This transformation typically begins in the summer and is completed by winter. fishes. I have a round, sucker-like mouth, no scales, and seven breathing holes on each side of my body instead zzJuvenile lampreys drift or swim downstream to the estuaries of gills. I also don’t have any bones; my backbone is between late fall and spring. They mature into adults during this made of cartilage, like the stuff that makes up your ear! migration and when they reach the open ocean.
    [Show full text]
  • Lamprey, Hagfish
    Agnatha - Lamprey, Kingdom: Animalia Phylum: Chordata Super Class: Agnatha Hagfish Agnatha are jawless fish. Lampreys and hagfish are in this class. Members of the agnatha class are probably the earliest vertebrates. Scientists have found fossils of agnathan species from the late Cambrian Period that occurred 500 million years ago. Members of this class of fish don't have paired fins or a stomach. Adults and larvae have a notochord. A notochord is a flexible rod-like cord of cells that provides the main support for the body of an organism during its embryonic stage. A notochord is found in all chordates. Most agnathans have a skeleton made of cartilage and seven or more paired gill pockets. They have a light sensitive pineal eye. A pineal eye is a third eye in front of the pineal gland. Fertilization of eggs takes place outside the body. The lamprey looks like an eel, but it has a jawless sucking mouth that it attaches to a fish. It is a parasite and sucks tissue and fluids out of the fish it is attached to. The lamprey's mouth has a ring of cartilage that supports it and rows of horny teeth that it uses to latch on to a fish. Lampreys are found in temperate rivers and coastal seas and can range in size from 5 to 40 inches. Lampreys begin their lives as freshwater larvae. In the larval stage, lamprey usually are found on muddy river and lake bottoms where they filter feed on microorganisms. The larval stage can last as long as seven years! At the end of the larval state, the lamprey changes into an eel- like creature that swims and usually attaches itself to a fish.
    [Show full text]
  • Lake Superior Food Web MENT of C
    ATMOSPH ND ER A I C C I A N D A M E I C N O I S L T A R N A T O I I O T N A N U E .S C .D R E E PA M RT OM Lake Superior Food Web MENT OF C Sea Lamprey Walleye Burbot Lake Trout Chinook Salmon Brook Trout Rainbow Trout Lake Whitefish Bloater Yellow Perch Lake herring Rainbow Smelt Deepwater Sculpin Kiyi Ruffe Lake Sturgeon Mayfly nymphs Opossum Shrimp Raptorial waterflea Mollusks Amphipods Invasive waterflea Chironomids Zebra/Quagga mussels Native waterflea Calanoids Cyclopoids Diatoms Green algae Blue-green algae Flagellates Rotifers Foodweb based on “Impact of exotic invertebrate invaders on food web structure and function in the Great Lakes: NOAA, Great Lakes Environmental Research Laboratory, 4840 S. State Road, Ann Arbor, MI A network analysis approach” by Mason, Krause, and Ulanowicz, 2002 - Modifications for Lake Superior, 2009. 734-741-2235 - www.glerl.noaa.gov Lake Superior Food Web Sea Lamprey Macroinvertebrates Sea lamprey (Petromyzon marinus). An aggressive, non-native parasite that Chironomids/Oligochaetes. Larval insects and worms that live on the lake fastens onto its prey and rasps out a hole with its rough tongue. bottom. Feed on detritus. Species present are a good indicator of water quality. Piscivores (Fish Eaters) Amphipods (Diporeia). The most common species of amphipod found in fish diets that began declining in the late 1990’s. Chinook salmon (Oncorhynchus tshawytscha). Pacific salmon species stocked as a trophy fish and to control alewife. Opossum shrimp (Mysis relicta). An omnivore that feeds on algae and small cladocerans.
    [Show full text]
  • Illicit Discharge Detection and Elimination: State/Local Partnerships
    Illicit Discharge Detection and Elimination: State/Local Partnerships Part 2: NHDES’s program Stormwater Management in Cold Climates November, 2003 ! Portland, ME Andrea Donlon, NHDES In this presentation… " Context " Methods " Status of work " Case studies Context of DES Watershed Assistance Section’s work " DES has been conducting investigations in " Coastal watershed since 1996 " Merrimack watershed since 2002 " Focus on bacteria sources " Efforts fall under N.H. Nonpoint Source Management Plan (October, 1999) Management Plan (2000) Water Quality Action Plans Illicit Connections in Urban Areas WQ-4A Establish on-going training and support for municipal personnel in monitoring storm drainage systems for illicit connections. WQ-4B Assist Seacoast communities in completing and maintaining maps of sewer and stormwater drainage infrastructure systems. WQ-4C Eliminate illicit connections in Seacoast communities. Required minimum control measures 1. Public education and outreach 2. Public participation / Involvement 3. Illicit discharge detection and elimination 4. Construction site runoff control 5. Post-construction runoff control 6. Pollution prevention / Good housekeeping Methods " Shoreline surveys " Investigations " Grant/technical support " Outreach " DES enforcement referrals are rare Shoreline surveys Nashua River, Nashua NH Surveys can be done on foot or by boat. They are conducted in dry weather and low tide. Back Channel We look for all outfall pipes and any sources of pollution. Souhegan River, Merrimack NH We document outfall type, size, location, appearance. We make note of flow, odors, staining, and floatables. Nashua NH A GPS unit is very helpful for keeping track of location. Nashua NH Samples are collected from all pipes discharging during dry weather. DES collects samples mainly for E.coli bacteria, but there are a variety of other methods.
    [Show full text]
  • Welcome to New Ipswich
    Welcome to the Town of New Ipswich New Hampshire’s First Purple Heart Community www.townofnewipswich.org 1 Table of Contents Automobile-Town Clerk 9 Building Inspector 8 Dog Registration-Town Clerk 11 Emergency 19 Fire Rescue Department 14 Green Center 15 Government 5 History of New Ipswich 3 Hospitals 17 Information and Support 21 Library 17 Marriage/Civil Union License-Town Clerk 11 Nature Trails 13 Notary Public 12 Outside Services 18 Places of Worship 17 Police Department 14 Recreation/Pool 12 Schools 17 Services 20 Tax Collector 9 Town Departments/Hours 18 Town Government 5 Transfer Station 15 Vital Records-Birth, Death, Marriage-Town Clerk 11 Voter Registration-Town Clerk/Supervisors of Checklist 7 2 A Capsule History of New Ipswich, NH The physical characteristics of New Ipswich made it an ideal location for industry in the early days of its settlement. Hills, mountains and valleys with riverlets emptying into the larger Souhegan River provided a surplus of water power to run the many saw mills, grist mills, starch mills and textile manufacturing plants in the Town’s past. Today, the only textile mill still in existence and operational is the Warwick Mill, which is now call Warwick Mills. This mill is notable as an example of fine brick work, as well as being the site of the second textile manufacturing plant established in New Hampshire. New Ipswich is a town of villages. Wilder Village to the west on Route 124 was the site of the Wilder Chair Factory from 1810 to 1869 and was home to the famous and much sought after Wilder Chair.
    [Show full text]
  • Learning Lessons About Lampreys Don Orth
    Learning Lessons about Lampreys Don Orth 11 American Currents Vol. 43, No. 3 LEARNING LESSONS ABOUT LAMPREYS Don Orth Virginia Tech University, Blacksburg, Virginia Lampreys are simple fish that leave me with many ques- tiative emerged. Will the Pacific Lamprey ever recover? The tions. Lampreys and hagfishes are genetically very similar Lost Fish movie tells an all too familiar story (Freshwaters and represent the oldest living groups of vertebrates (Fig- Illustrated 2015) of the loss of important fish populations ure 1). These two lineages of Chordates arose well before the before scientists even have a chance to discover their distri- appearance of jawed fishes. Lampreys and hagfish persisted butions and uniqueness (Carim et al. 2017; Wade et al. 2018). through at least four of five mass extinction events on Earth. Joni Mitchell’s lyrics from “Big Yellow Taxi” seem appropri- How did they survive when most other marine organisms ate here. perished? What does their presence today indicate? “Don’t it always seem to go Studies of evolutionary history tell us that the appear- That you don’t know what you’ve got till it’s gone ance of the cranium, eyes, pineal gland, inner ear, olfactory They paved paradise rosettes, lateral line, large brain, and muscular heart, were And put up a parking lot” first evident in the lamprey. In fact, the body form of lam- A common genus of lampreys in eastern USA drainages preys is essentially the same as a 360 million-year-old fos- is Ichthyomyzon, which includes six species. Ichthyomyzon sil lamprey (Gess et al.
    [Show full text]
  • Ecology of the River, Brook and Sea Lamprey Lampetra Fluviatilis, Lampetra Planeri and Petromyzon Marinus
    Ecology of the River, Brook and Sea Lamprey Lampetra fluviatilis, Lampetra planeri and Petromyzon marinus Conserving Natura 2000 Rivers Ecology Series No. 5 Ecology of the River, Brook and Sea Lamprey Conserving Natura 2000 Rivers Ecology Series No. 5 Peter S Maitland For more information on this document, contact: English Nature Northminster House Peterborough PE1 1UA Tel:+44 (0) 1733 455100 Fax: +44 (0) 1733 455103 This document was produced with the support of the European Commission’s LIFE Nature programme. It was published by Life in UK Rivers, a joint venture involving English Nature (EN), the Countryside Council for Wales (CCW), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), Scottish Natural Heritage (SNH), and the Scotland and Northern Ireland Forum for Environmental Research (SNIFFER). © (Text only) EN, CCW, EA, SEPA, SNH & SNIFFER 2003 ISBN 1 85716 706 6 A full range of Life in UK Rivers publications can be ordered from: The Enquiry Service English Nature Northminster House Peterborough PE1 1UA Email: [email protected] Tel:+44 (0) 1733 455100 Fax: +44 (0) 1733 455103 This document should be cited as: Maitland PS (2003). Ecology of the River, Brook and Sea Lamprey. Conserving Natura 2000 Rivers Ecology Series No. 5. English Nature, Peterborough. Technical Editor: Lynn Parr Series Ecological Coordinator: Ann Skinner Cover design: Coral Design Management, Peterborough. Printed by Astron Document Services, Norwich, on Revive, 75% recycled post-consumer waste paper, Elemental Chlorine Free. 1M. Cover photo: Erling Svensen/UW Photo Ecology of River, Brook and Sea Lamprey Conserving Natura 2000 Rivers This account of the ecology of the river, brook and sea lamprey (Lampetra fluviatilis, L.
    [Show full text]
  • Bill Beamish's Contributions to Lamprey Research and Recent Advances in the Field
    Guelph Ichthyology Reviews, vol. 7 (2006) 1 Bill Beamish’s Contributions to Lamprey Research and Recent Advances in the Field This paper is based on an oral presentation given at a symposium honouring Bill Beamish and his contributions to fisheries science at the Canadian Conference for Fisheries Research, in Windsor, Ontario on January 7, 2005 Margaret F. Docker Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada Current Address: Department of Zoology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada (e-mail: [email protected]) Key Words: review, sex determination, statoliths, pheromones, reproductive endocrinology, phylogeny Guelph Ichthyology Reviews, vol. 7 (2006) 2 Synopsis Since his first lamprey paper in 1972, Bill Beamish has published more than 50 papers on numerous aspects of lamprey biology, reporting on several native lamprey species as well as the Great Lakes sea lamprey. Bill and his colleagues have contributed to our knowledge of the basic biology of larval lampreys (e.g., abundance, habitat, feeding, growth, and gonadogenesis), helped refine techniques to determine age in larvae (using statoliths, structures analogous to the teleost otolith), and studied the process of metamorphosis and the feeding and bioenergetics of juvenile (parasitic) lampreys. Current research continues to build on Bill’s contributions, and also makes many advances in novel directions. This exciting current research includes: the use of high-resolution ultrasound to study gonadogenesis and evaluate sex ratio in live larval lampreys; the elucidation of some of the exogenous and endogenous triggers of metamorphosis; examination of the neuroendocrine control of reproduction and the role of unconventional sex steroids in lampreys; the discovery of migratory and sex pheromones and their potential use in sea lamprey control; the use of molecular markers to study lamprey mating systems and phylogeny; and the renewed interest in the conservation of native lampreys.
    [Show full text]
  • Sea Lampreys Zebra Mussels Asian Carp
    Invasive Species Threats to the North American Great Lakes Sea Lampreys Asian Carp What are Sea Lampreys? Zebra Mussels What are Zebra Mussels? What are Asian Carp? •The sea lamprey is an aggressive parasite, equipped with a tooth-filled mouth •The Zebra Mussel is a small non-native mussel originally found in Russia. •The Asian carp is a type of fish that includes four species: black carp, grass carp, that flares open at the end of its body. Sea lampreys are aquatic vertebrates • This animal was transported to North America in the ballast water of a bighead carp, and silver carp. native to the Atlantic Ocean. transatlantic cargo ship and settled into parts of Lake St. Clair. •Adults may be more than 28 kg in weight and 120 cm in length. •Sea lampreys resemble eels, but unlike eels, they feed on large fish. They can •In less than 10 years zebra mussels spread to all five Great Lakes, •Originally, Asian carp were introduced to the United States as a management tool live in both salt and fresh water. Sea lampreys were accidentally introduced into Mississippi, Tennessee, Hudson, and Ohio River Basins. for aqua culture farms and sewage treatment facilities. The carp have made their the Great Lakes in the early 20th century through shipping canals. Today, sea •Many inland waters in Michigan are now infested with Zebra Mussels. way north to the Illinois River after escaping from fish farms during massive lampreys are found in all of the Great Lakes. flooding along the Mississippi River. •Asian carp are a tremendous threat to the Great Lakes and could devastate the Zebra Mussels in the Great Lakes lakes if they enter our Great Lakes ecosystem.
    [Show full text]