Tidal Disruption of Planetary Bodies by White Dwarfs I: a Hybrid SPH-Analytical Approach

Total Page:16

File Type:pdf, Size:1020Kb

Tidal Disruption of Planetary Bodies by White Dwarfs I: a Hybrid SPH-Analytical Approach MNRAS 492, 5561–5581 (2020) doi:10.1093/mnras/staa142 Advance Access publication 2020 January 16 Tidal disruption of planetary bodies by white dwarfs I: a hybrid SPH-analytical approach Uri Malamud 1,2‹ and Hagai B. Perets 1,3 Downloaded from https://academic.oup.com/mnras/article-abstract/492/4/5561/5707426 by California Institute of Technology user on 26 March 2020 1Department of Physics, Technion – Israel Institute of Technology, Technion City, 3200003 Haifa, Israel 2School of the Environment and Earth Sciences, Tel Aviv University, Ramat Aviv, 6997801 Tel Aviv, Israel 3TAPIR, California Institute of Technology, Pasadena, CA 91125, USA Accepted 2020 January 12. Received 2020 January 9; in original form 2019 November 21 ABSTRACT We introduce a new hybrid method to perform high-resolution tidal disruption simulations, at arbitrary orbits. An SPH code is used to simulate tidal disruptions only in the immediate spatial domain of the star, namely, where the tidal forces dominate over gravity, and then during the fragmentation phase in which the emerging tidal stream may collapse under its own gravity to form fragments. Following each hydrodynamical simulation, an analytical treatment is then applied to instantaneously transfer each fragment back to the tidal sphere for its subsequent disruption, in an iterative process. We validate the hybrid model by comparing it to both an analytical impulse approximation model of single tidal disruptions, as well as full-scale SPH simulations spanning the entire disc formation. The hybrid simulations are essentially indistinguishable from the full-scale SPH simulations, while computationally outperforming their counterparts by orders of magnitude. Thereby our new hybrid approach uniquely enables us to follow the long-term formation and continuous tidal disruption of the planet/planetesimal debris, without the resolution and orbital configuration limitation of previous studies. In addition, we describe a variety of future directions and applications for our hybrid model, which is in principle applicable to any star, not merely white dwarfs. Key words: hydrodynamics – white dwarfs – transients: tidal disruption events. et al. 2006, 2008; Dennihy et al. 2016, 2018;Cauleyetal.2018). The 1 INTRODUCTION origin of material at such close proximity to the WD is clearly not Given the short sinking time-scale of elements heavier than helium primordial (Graham et al. 1990), since the WD disruption radius in the atmospheres of white dwarfs (WD, Koester 2009), the large is of the order of the progenitor star’s main-sequence physical fraction of WDs that are polluted with heavy elements (Zuckerman radius (Bear & Soker 2013). It is instead thought to originate et al. 2003, 2010;Koester,Gansicke¨ & Farihi 2014) is readily from planetary bodies which are perturbed by some mechanism explained by accretion of planetary material (Debes & Sigurdsson (Debes & Sigurdsson 2002; Bonsor, Mustill & Wyatt 2011;Debes, 2002;Jura2003; Kilic et al. 2006;Jura2008). The current view, Walsh & Stark 2012; Kratter & Perets 2012; Perets & Kratter 2012; based on the inferred composition of both WD atmospheres (Wolff, Shappee & Thompson 2013; Michaely & Perets 2014;Veras& Koester & Liebert 2002; Dufour et al. 2007; Desharnais et al. Gansicke¨ 2015; Stone, Metzger & Loeb 2015; Hamers & Portegies 2008; Klein et al. 2010;Gansicke¨ et al. 2012; Jura & Young 2014; Zwart 2016; Veras 2016; Payne et al. 2016; Caiazzo & Heyl 2017; Harrison, Bonsor & Madhusudhan 2018; Hollands, Gansicke¨ & Payne et al. 2017; Petrovich & Munoz˜ 2017; Stephan, Naoz & Koester 2018; Doyle et al. 2019;Swanetal.2019)andtheirdiscs Zuckerman 2017; Smallwood et al. 2018) to highly eccentric orbits (Reach et al. 2005;Juraetal.2007;Reachetal.2009; Jura, Farihi & with proximity to the WD, and are subsequently tidally disrupted Zuckerman 2009; Bergfors et al. 2014; Farihi 2016;Manseretal. to form a circumstellar disc of planetary debris. 2016; Dennihy et al. 2018) suggests that the polluting material is To date, there exist very few detailed simulations of disc forma- terrestrial-like and typically dry. tion by tidal disruptions. The study of Veras et al. (2014) constitutes Orbiting dust is deduced from measurements of infrared excess, the most detailed and relevant work thus far, which investigates the while gas is inferred from metal emission lines. The spatial initial formation of WD debris discs, caused by the tidal disruption distribution of the gas is typically within the WD tidal disruption of kilometre-sized asteroids (∼1014 kg). It follows a similar study radius, and it often orbits the star with some eccentricity (Gansicke¨ by Debes et al. (2012) which only considered the first initial tidal disruption of an extremely eccentric asteroid instead of the entire debris disc formation, while both studies used the same modified N-body code (PKDGRAV). Under the conditions discussed in the Veras E-mail: [email protected] C 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 5562 U. Malamud and H. B. Perets et al. (2014) paper, the disrupted asteroid debris fill out a highly approach is to omit unnecessary calculations far from the vicinity eccentric ring of debris, along the original asteroid trajectory. The of the star, by fully following the disruption and coagulation of material in this disc does not immediately accrete on to the WD at particles into fragments with SPH, only when they are within the this early stage, and instead the disc is required to evolve further, star’s immediate environment. For the reminder of their orbits, frag- perhaps through various radiation processes (Veras et al. 2015), into ment trajectories are calculated and tracked analytically assuming a more compact state. Keplerian orbits. I.e. we make the assumption (for simplicity) that Being conceptually similar, the study of Weissman et al. (2012, the disc of debris is largely collisionless, as well as dynamically Downloaded from https://academic.oup.com/mnras/article-abstract/492/4/5561/5707426 by California Institute of Technology user on 26 March 2020 basedontheN-body code developed by Movshovitz, Asphaug & unaffected by radiation or other processes, and then instantaneously Korycansky 2012) investigates the tidal disruption of the Sun- transfer the fragments back to the tidal sphere for their next flyby, in grazing, Kreutz-family progenitor. Their results show that the dis- an iterative process. Our assumptions are discussed and quantified. ruption around the Sun breaks the object into multiple clumps, de- With each disruption, the semimajor-axis dispersion of newly pending on the exact density and perihelion distance assumed. They formed fragments depends on the exact size and orbit of their suggest that the observed size distribution of the Kreutz group can progenitor. The hybrid code handles the synchronization, and timing perhaps be produced, however multiple returns are needed by the and dissemination of SPH jobs. The disc formation completes only parent object and its initial ensuing fragments in order to provide the when reaching one of two outcomes: either all fragments have observed temporal separation of major fragments. The Weissman ceased disrupting given their exact size, composition and orbit; et al. (2012) and Debes et al. (2012) studies underline the difficulties or fragment disruption is inhibited when reaching the numerical of modelling such tidal disruptions – since these objects are often minimum size – that of a single SPH particle. highly eccentric (with e approaching 1), time-step limitations make The hybrid approach enables studying tidal disruptions for any tracking of the entire orbit for multiple returns computationally progenitor orbit (even objects originating from tens or hundreds implausible. One can substantially reduce either the resolution or of au) with the same efficiency. The code easily handles partial the eccentricity (or both) in order to circumnavigate this problem, disruptions (i.e. those resulting in little mass shedding when the which was precisely the solution adopted by Veras et al. (2014)in pericentre distance is sufficiently large), since now the number of order to enable multiple returns (orbits) in their simulations. iterations is not limited by a large semimajor axis. At the opposite end of the planetary size distribution, some studies The layout of the paper is structured as follows: in Section 2, we consider the tidal disruption of gas giants, demonstrating the exact first outline an analytical model of tidal disruptions. This model same problem. Faber, Rasio & Willems (2005), Liu et al. (2013)use provides invaluable insights about the outcome of single tidal an SPH code in order to simulate a close gas giant flyby around a star disruptions. While discussing its limitations, we develop a deeper (i.e. a single tidal encounter), whereas Guillochon, Ramirez-Ruiz & understanding of what may be expected in performing full numerical Lin (2011) use a grid-based code and considered both single as well tidal disruption simulations involving terrestrial- or dwarf-sized as multiple passage encounters. As in the Veras et al. (2014) study, planets; In Section 3, we then perform full-scale tidal disruption multiple returns were accomplished only by considerably lowering simulations using SPH. We discuss the code details and setup, show the assumed eccentricity of the planets. the various disruption outcomes which depend on our choice of Using a very simple analytical model, we demonstrate in
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Dust in Brown Dwarfs and Extrasolar Planets V
    A&A 603, A123 (2017) Astronomy DOI: 10.1051/0004-6361/201629696 & c ESO 2017 Astrophysics Dust in brown dwarfs and extrasolar planets V. Cloud formation in carbon- and oxygen-rich environments Ch. Helling, D. Tootill, P. Woitke, and G. Lee Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, UK e-mail: [email protected] Received 12 September 2016 / Accepted 6 December 2016 ABSTRACT Context. Recent observations indicate potentially carbon-rich (C/O > 1) exoplanet atmospheres. Spectral fitting methods for brown dwarfs and exoplanets have invoked the C/O ratio as additional parameter but carbon-rich cloud formation modeling is a challenge for the models applied. The determination of the habitable zone for exoplanets requires the treatment of cloud formation in chemically different regimes. Aims. We aim to model cloud formation processes for carbon-rich exoplanetary atmospheres. Disk models show that carbon-rich or near-carbon-rich niches may emerge and cool carbon planets may trace these particular stages of planetary evolution. Methods. We extended our kinetic cloud formation model by including carbon seed formation and the formation of C[s], TiC[s], SiC[s], KCl[s], and MgS[s] by gas-surface reactions. We solved a system of dust moment equations and element conservation for a prescribed Drift-Phoenix atmosphere structure to study how a cloud structure would change with changing initial C/O0 = 0:43 ::: 10:0. Results. The seed formation efficiency is lower in carbon-rich atmospheres than in oxygen-rich gases because carbon is a very effective growth species.
    [Show full text]
  • Habitable Environments in Late Stellar Evolution
    Habitable Environments in Late Stellar Evolution Conditions for Abiogenesis in the Planetary Systems of White Dwarfs Author: Dewy Peters Supervisor: Prof. dr. F.F.S. van der Tak A thesis submitted in fulfillment of the requirements for the degree BSc in Astronomy Faculty of Science and Engineering University of Groningen The Netherlands March 2021 Abstract With very high potential transit-depths and an absence of stellar flare activity, the planets of White Dwarfs (WDs) are some of the most promising in the search for detectable life. Whilst planets with Earth-like masses and radii have yet to be detected around WDs, there is considerable evidence from spectroscopic and photometric observations that both terrestrial and gas-giant planets are capable of surviving post-main sequence evolution and migrating into the WD phase. WDs are also capable of hosting stable Habitable Zones outside orbital distances at which Earth-mass plan- ets would be disintegrated by tidal forces. Whilst transition- ing to the WD Phase, a main-sequence star has to progress along the Asymptotic Giant Branch (AGB), whereby orbit- ing planets would be subjected to atmospheric erosion by its harsh stellar winds. As a trade-off, the Circumstellar En- velope (CSE) of an AGB star is found to be rich in organics and some of the simple molecules from which more complex prebiotic molecules such as amino acids and simple sugars can be synthesised. It is found that planets with initial or- bital distances equivalent to those of Saturn and the Kuiper Belt would be capable of accreting a mass between 1 and 20 times that of the Earth’s atmosphere from the CSE and as a result, could obtain much of the material necessary to sustain life after the AGB and also experience minimal at- mospheric erosion.
    [Show full text]
  • Shallow Ultraviolet Transits of WD 1145+017
    Shallow Ultraviolet Transits of WD 1145+017 Item Type Article Authors Xu, Siyi; Hallakoun, Na’ama; Gary, Bruce; Dalba, Paul A.; Debes, John; Dufour, Patrick; Fortin-Archambault, Maude; Fukui, Akihiko; Jura, Michael A.; Klein, Beth; Kusakabe, Nobuhiko; Muirhead, Philip S.; Narita, Norio; Steele, Amy; Su, Kate Y. L.; Vanderburg, Andrew; Watanabe, Noriharu; Zhan, Zhuchang; Zuckerman, Ben Citation Siyi Xu et al 2019 AJ 157 255 DOI 10.3847/1538-3881/ab1b36 Publisher IOP PUBLISHING LTD Journal ASTRONOMICAL JOURNAL Rights Copyright © 2019. The American Astronomical Society. All rights reserved. Download date 09/10/2021 04:17:12 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/634682 The Astronomical Journal, 157:255 (12pp), 2019 June https://doi.org/10.3847/1538-3881/ab1b36 © 2019. The American Astronomical Society. All rights reserved. Shallow Ultraviolet Transits of WD 1145+017 Siyi Xu (许偲艺)1 ,Na’ama Hallakoun2 , Bruce Gary3 , Paul A. Dalba4 , John Debes5 , Patrick Dufour6, Maude Fortin-Archambault6, Akihiko Fukui7,8 , Michael A. Jura9,21, Beth Klein9 , Nobuhiko Kusakabe10, Philip S. Muirhead11 , Norio Narita (成田憲保)8,10,12,13,14 , Amy Steele15, Kate Y. L. Su16 , Andrew Vanderburg17 , Noriharu Watanabe18,19, Zhuchang Zhan (詹筑畅)20 , and Ben Zuckerman9 1 Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720, USA; [email protected] 2 School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 6997801, Israel 3 Hereford Arizona Observatory, Hereford, AZ 85615, USA
    [Show full text]
  • The Kepler Revolution Observations and Satellite Inferences of the Kepler Space Telescope Will Soon Run out of Fuel and End Its Mission
    VOL. 99 • NO. 10 • OCT 2018 Models That Forecast Wildfires Recording the Roar of a Hurricane Earth & Space Science News How Much Snow Is in the World? The Honors and Recognition Committee is pleased to announce the recipients of this year’s Union Medals, Awards, and Prizes honors.agu.org Earth & Space Science News Contents OCTOBER 2018 PROJECT UPDATE VOLUME 99, ISSUE 10 20 Seismic Sensors Record a Hurricane’s Roar Newly installed infrasound sensors at a Global Seismographic Network station on Puerto Rico recorded the sounds of Hurricane Maria passing overhead. PROJECT UPDATE 26 How Can We Find Out How Much Snow Is in the World? In Colorado forests, NASA scientists and a multinational team of researchers test the limits of satellite remote sensing for measuring the water content of snow. 30 OPINION Global Water Clarity: COVER 14 Continuing a Century- Long Monitoring An approach that combines field The Kepler Revolution observations and satellite inferences of The Kepler Space Telescope will soon run out of fuel and end its mission. Here are nine Secchi depth could transform how we assess fundamental discoveries about planets aided by Kepler, one for each year since its water clarity across the globe and pinpoint launch. key changes over the past century. Earth & Space Science News Eos.org // 1 Contents DEPARTMENTS Senior Vice President, Marketing, Communications, and Digital Media Dana Davis Rehm: AGU, Washington, D. C., USA; [email protected] Editors Christina M. S. Cohen Wendy S. Gordon Carol A. Stein California Institute Ecologia Consulting, Department of Earth and of Technology, Pasadena, Austin, Texas, USA; Environmental Sciences, Calif., USA; wendy@ecologiaconsulting University of Illinois at cohen@srl .caltech.edu .com Chicago, Chicago, Ill., José D.
    [Show full text]
  • Fifth Giant Ex-Planet of the Solar System: Characteristics and Remnants
    Fifth giant ex-planet of the Solar System: characteristics and remnants Yury I. Rogozin* Abstract In recent years it has coming to light that the early outer Solar System likely might have somewhat more planets than today. However, to date there is unknown what a former giant planet might in fact have represented and where its orbit may certainly have located. Using the originally suggested relations, we have found the reasonable orbital and physical characteristics of the icy giant ex-planet, which in the past may have orbited the Sun about in the halfway between Saturn and Uranus. Validity of the results obtained here is supported by a feasibility of these relations to other objects of the outer Solar System. A possible linkage between the fifth giant ex-planet and the puzzling objects of the outer Solar System such as the Saturn’s rings and the irregular moons Triton and Phoebe existing today is briefly discussed. Keywords: planets and satellites; individuals: fifth giant ex-planet, Saturn´s rings, Triton, Phoebe 1 Introduction According to the existing ideas of the formation of the Solar System its planetary structure is held unchanged during about 4.5 billion years. Such a static situation of the things had been embodied, particularly, in offered in 1766 Titius-Bode’s rule of the orbital distances for known at that time the seven planets from Mercury to Uranus. As it is known, the conformity to this rule for planets Neptune and Pluto discovered subsequently has appeared much worse than for before known seven planets. However, the essential departures of the real orbital distances from this rule for these two planets so far have not obtained any explained justifying within the framework of such conservative insights into a structure of the Solar System.
    [Show full text]
  • Extrasolar Planet Detection and Characterization with the KELT-North Transit Survey
    Extrasolar Planet Detection and Characterization With the KELT-North Transit Survey DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Thomas G. Beatty Graduate Program in Astronomy The Ohio State University 2014 Dissertation Committee: Professor B. Scott Gaudi, Advisor Professor Andrew P. Gould Professor Marc H. Pinsonneault Copyright by Thomas G. Beatty 2014 Abstract My dissertation focuses on the detection and characterization of new transiting extrasolar planets from the KELT-North survey, along with a examination of the processes underlying the astrophysical errors in the type of radial velocity measurements necessary to measure exoplanetary masses. Since 2006, the KELT- North transit survey has been collecting wide-angle precision photometry for 20% of the sky using a set of target selection, lightcurve processing, and candidate identification protocols I developed over the winter of 2010-2011. Since our initial set of planet candidates were generated in April 2011, KELT-North has discovered seven new transiting planets, two of which are among the five brightest transiting hot Jupiter systems discovered via a ground-based photometric survey. This highlights one of the main goals of the KELT-North survey: to discover new transiting systems orbiting bright, V< 10, host stars. These systems offer us the best targets for the precision ground- and space-based follow-up observations necessary to measure exoplanetary atmospheres. In September 2012 I demonstrated the atmospheric science enabled by the new KELT planets by observing the secondary eclipses of the brown dwarf KELT-1b with the Spitzer Space Telescope.
    [Show full text]
  • What Is a Planet?
    What is a Planet? Steven Soter Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, and Center for Ancient Studies, New York University [email protected] submitted to The Astronomical Journal 16 Aug 2006, published in Vol. 132, pp. 2513-2519 Abstract. A planet is an end product of disk accretion around a primary star or substar. I quantify this definition by the degree to which a body dominates the other masses that share its orbital zone. Theoretical and observational measures of dynamical dominance reveal gaps of four to five orders of magnitude separating the eight planets of our solar system from the populations of asteroids and comets. The proposed definition dispenses with upper and lower mass limits for a planet. It reflects the tendency of disk evolution in a mature system to produce a small number of relatively large bodies (planets) in non-intersecting or resonant orbits, which prevent collisions between them. 1. Introduction Beginning in the 1990s astronomers discovered the Kuiper Belt, extrasolar planets, brown dwarfs, and free-floating planets. These discoveries have led to a re-examination of the conventional definition of a “planet” as a non-luminous body that orbits a star and is larger than an asteroid (see Stern & Levison 2002, Mohanty & Jayawardhana 2006, Basri & Brown 2006). When Tombaugh discovered Pluto in 1930, astronomers welcomed it as the long sought “Planet X”, which would account for residual perturbations in the orbit of Neptune. In fact those perturbations proved to be illusory, and the discovery of Pluto was fortuitous.
    [Show full text]
  • Survival of Exomoons Around Exoplanets 2
    Survival of exomoons around exoplanets V. Dobos1,2,3, S. Charnoz4,A.Pal´ 2, A. Roque-Bernard4 and Gy. M. Szabo´ 3,5 1 Kapteyn Astronomical Institute, University of Groningen, 9747 AD, Landleven 12, Groningen, The Netherlands 2 Konkoly Thege Mikl´os Astronomical Institute, Research Centre for Astronomy and Earth Sciences, E¨otv¨os Lor´and Research Network (ELKH), 1121, Konkoly Thege Mikl´os ´ut 15-17, Budapest, Hungary 3 MTA-ELTE Exoplanet Research Group, 9700, Szent Imre h. u. 112, Szombathely, Hungary 4 Universit´ede Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France 5 ELTE E¨otv¨os Lor´and University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary E-mail: [email protected] January 2020 Abstract. Despite numerous attempts, no exomoon has firmly been confirmed to date. New missions like CHEOPS aim to characterize previously detected exoplanets, and potentially to discover exomoons. In order to optimize search strategies, we need to determine those planets which are the most likely to host moons. We investigate the tidal evolution of hypothetical moon orbits in systems consisting of a star, one planet and one test moon. We study a few specific cases with ten billion years integration time where the evolution of moon orbits follows one of these three scenarios: (1) “locking”, in which the moon has a stable orbit on a long time scale (& 109 years); (2) “escape scenario” where the moon leaves the planet’s gravitational domain; and (3) “disruption scenario”, in which the moon migrates inwards until it reaches the Roche lobe and becomes disrupted by strong tidal forces.
    [Show full text]
  • What Is a Planet?
    What is a Planet? Steven Soter Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, and Center for Ancient Studies, New York University [email protected] submitted to The Astronomical Journal, 16 August 06 Abstract A planet is an end product of disk accretion around a primary star or substar. I quantify this definition by the degree to which a body dominates the other masses that share its orbital zone. Both theoretical and observational measures of dynamical dominance reveal a gap of five orders of magnitude separating the eight planets of our solar system from the populations of asteroids and comets. This simple definition dispenses with upper and lower mass limits for a planet. It reflects the tendency of disk evolution in a mature system to produce a small number of relatively large bodies (planets) in non-intersecting or resonant orbits, which prevent collisions between them. 1. Introduction Beginning in the 1990s astronomers discovered the Kuiper Belt, extrasolar planets, brown dwarfs, and free-floating planets. These discoveries have led to a re-examination of the conventional definition of a “planet” as a non-luminous body that orbits a star and is larger than an asteroid (cf. Stern and Levison 2002, Mohanty and Jayawardhana 2006, Basri and Brown 2006). When Tombaugh discovered Pluto in 1930, astronomers welcomed it as the long sought “Planet X”, which would account for residual perturbations in the orbit of Neptune. In fact those perturbations proved to be illusory, and the discovery of Pluto was fortuitous. Observations later revealed that Pluto resembles neither the terrestrial nor the giant planets.
    [Show full text]
  • Theia (Planet)
    Theia (planet) Theia (/ˈθiːə/) is a hypothesized ancient planet in the early Solar System that, according to the 'giant impact hypothesis', collided with Gaia (the early Earth) around 4.5 billion years ago.[1][2] According to the hypothesis, Theia was an Earth trojan about the size of Mars, with a diameter of about 6,102 km (3,792 miles). Geologist Edward Young of the University of California, Los Angeles, drawing on an analysis of rocks collected by Apollo missions 12, 15, and 17, proposes that Theia collided head-on with Earth,[3] in contrast to the previous theory that suggested a glancing impact. Models of the impact indicate that Theia's debris gathered around Earth to form the earlyMoon . An artist's depiction of the Some scientists think the material thrown into orbit originally formed two hypothetical impact of a planet like [4][5] moons that later merged to form the single moon we know today. The Theia Theia and the Earth hypothesis also explains why Earth's core is larger than would be expected for a body its size: according to the hypothesis, Theia's core and mantle mixed with Earth's.[6] Contents Orbit Name Collision Hypotheses See also References Orbit Theia is thought to have orbited in the L4 or L5 configuration presented by the Earth–Sun system, where it would tend to remain. In that case, it would have grown, potentially to a size comparable to Mars. Gravitational perturbations by Venus could have eventually put it onto a collision course with the Earth.[7] Name Theia was named for the titaness Theia, who in Greek mythology was the mother of Selene, the goddess of the moon,[8] which parallels the planet Theia's collision with the early Earth that is theorized to have created theMoon .[9] An alternative name, Orpheus, is also used.[10] Collision According to the giant-impact hypothesis, Theia orbited the Sun, nearly along the orbit of the proto-Earth, by staying close to one or the other of the Sun–Earth system's two more stable Lagrangian points (i.e.
    [Show full text]
  • The Reclassification of Asteroids from Planets to Non- Planets
    Preprint: “The Reclassification of Asteroids from Planets to Non-Planets.” 3/16/2018 The Reclassification of Asteroids from Planets to Non- Planets Philip T. Metzger, Florida Space Institute, University of Central Florida, 12354 Research Parkway, Partnership 1 Building, Suite 214, Orlando, FL 32826-0650; [email protected] Mark V. Sykes, Planetary Science Institute, 1700 E. Fort Lowell, Suite 106, Tucson, AZ 85719; [email protected]. Alan Stern, Southwest Research Institute, 1050 Walnut St, Suite 300, Boulder, CO 80302; [email protected] Kirby Runyon, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA.; [email protected] Abstract It is often claimed that asteroids’ sharing of orbits is the reason they were re-classified from planets to non-planets. A critical review of the literature from the 19th Century to the present shows this is factually incorrect. The literature shows the term asteroid was broadly recognized as a subclass of planet for150 years. On-going discovery resulted in a de facto stretching of the concept of planet to include the ever smaller bodies. Scientists found utility in this taxonomic identification as it provided categories needed to argue for the leading hypothesis of planet formation, Laplace’s nebular hypothesis. In the 1950s, developments in planet formation theory found it no longer useful to maintain taxonomic identification between asteroids and planets, Ceres being the sole exception. At the same time, there was a flood of publications on the geophysical nature of asteroids showing them to be geophysically different than the large planets. This is when the terminology in asteroid publications calling them planets abruptly plunged from an average of 44%, where it had hovered from 1801 to 1957, to just 11%, where it then held constant for 3.5 decades (1960 – 1994).
    [Show full text]