Lascaux Cave
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Janus-Faced Dilemma of Rock Art Heritage
The Janus-faced dilemma of rock art heritage management in Europe: a double dialectic process between conservation and public outreach, transmission and exclusion Mélanie Duval, Christophe Gauchon To cite this version: Mélanie Duval, Christophe Gauchon. The Janus-faced dilemma of rock art heritage management in Europe: a double dialectic process between conservation and public outreach, transmission and exclusion. Conservation and Management of Archaeological Sites, Taylor & Francis, In press, 10.1080/13505033.2020.1860329. hal-03078965 HAL Id: hal-03078965 https://hal.archives-ouvertes.fr/hal-03078965 Submitted on 21 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Duval Mélanie, Gauchon Christophe, 2021. The Janus-faced dilemma of rock art heritage management in Europe: a double dialectic process between conservation and public outreach, transmission and exclusion, Conservation and Management of Archaeological Sites, doi.org/10.1080/13505033.2020.1860329 Authors: Mélanie Duval and Christophe Gauchon Mélanie Duval: *Université Grenoble Alpes (UGA), Université Savoie Mont Blanc (USMB), CNRS, Environnements, Dynamics and Territories of Mountains (EDYTEM), Chambéry, France; * Rock Art Research Institute GAES, University of Witwatersrand, Johannesburg, South Africa. Christophe Gauchon: *Université Grenoble Alpes (UGA), Université Savoie Mont Blanc (USMB), CNRS, Environnements, Dynamics and Territories of Mountains (EDYTEM), Chambéry, France. -
Abstracts of Reports and Posters
Abstracts of Reports and Posters Amira Adaileh The Magdalenian site of Bad Kösen-Lengefeld The open air site of Bad Kösen-Lengefeld is located in Sachsen-Anhalt, Eastern Germany. It was discov- ered in the mid 1950´s in the immediate vicinity of the famous Magdalenian site of Saaleck. Since that time, archaeologists collected over 2000 lithic artifacts during systematical surveys. The technological and typological analyses of the lithic artifacts confirmed the assignment of Bad Kösen-Lengefeld to a late Magdalenian. Furthermore, the investigation of the surface collections brought forward information about the character of this camp site, the duration of its occupation and the pattern of raw material procure- ment. The fact that Bad Kösen-Lengefeld is located in a region with more than 100 Magdalenian sites fostered a comparison of the lithic inventory with other Magdalenian assemblages. Thus, allowing to spec- ify the position of the Lengefeld collection within the chorological context of the Magdalenian in Eastern Germany. Jehanne Affolter, Ludovic Mevel Raw material circulation in northern french alps and Jura during lateglacial interstadial : method, new data and paleohistoric implication Since fifteen years the study of the characterization and origin of flint resources used by Magdalenian and Azilian groups in northern French Alps and Jura have received significant research work. Diverse and well distributed spatially, some of these resources were used and disseminated throughout the late Upper Paleolithic. Which changes do we observe during the Magdalenian then for the Azilian? The results of petrographic analysis and techno-economic analysis to several archaeological sites allow us to assess dia- chronic changes in economic behavior of these people and discuss the significance of these results. -
40 Common Minerals and Their Uses
40 Common Minerals and Their Uses Aluminum Beryllium The most abundant metal element in Earth’s Used in the nuclear industry and to crust. Aluminum originates as an oxide called make light, very strong alloys used in the alumina. Bauxite ore is the main source aircraft industry. Beryllium salts are used of aluminum and must be imported from in fluorescent lamps, in X-ray tubes and as Jamaica, Guinea, Brazil, Guyana, etc. Used a deoxidizer in bronze metallurgy. Beryl is in transportation (automobiles), packaging, the gem stones emerald and aquamarine. It building/construction, electrical, machinery is used in computers, telecommunication and other uses. The U.S. was 100 percent products, aerospace and defense import reliant for its aluminum in 2012. applications, appliances and automotive and consumer electronics. Also used in medical Antimony equipment. The U.S. was 10 percent import A native element; antimony metal is reliant in 2012. extracted from stibnite ore and other minerals. Used as a hardening alloy for Chromite lead, especially storage batteries and cable The U.S. consumes about 6 percent of world sheaths; also used in bearing metal, type chromite ore production in various forms metal, solder, collapsible tubes and foil, sheet of imported materials, such as chromite ore, and pipes and semiconductor technology. chromite chemicals, chromium ferroalloys, Antimony is used as a flame retardant, in chromium metal and stainless steel. Used fireworks, and in antimony salts are used in as an alloy and in stainless and heat resisting the rubber, chemical and textile industries, steel products. Used in chemical and as well as medicine and glassmaking. -
Lascaux Cave, France Complex Hunter Gatherers at the End of the Paleolithic Dates: 47/45,000 – 20/18,000 B.P
Lascaux Cave, France Complex Hunter Gatherers at the End of the Paleolithic Dates: 47/45,000 – 20/18,000 b.p. (Epipaleolithic=20/18,000-10,000 bp) Industries include microliths and bone tools—not found in previous periods Raw materials were exchanged over long distances in this period Wide range of materials, other than flint, come into use: bone tools, stone vessels, ochre, shells Some probably for ritual purposes In contrast to early modern humans (and Neanderthals): Size of teeth reduced Size of jaw reduced Muscularity diminishes Less skeletal trauma Increased longevity Cro-Magnon cranium Upper Paleolithic Artwork Cave Art Includes spectacular images of animals and abstract forms and, rarely, humans Mobiliary Art These portable art objects include Venus figurines Body Ornamentation: Pierced shells, pierced animal teeth, and bone beads were most likely work as necklaces or attached to clothing Horse, Cosquer Cave, France Penquin or Auk, Cosquer Cave, France Bear Bison ‘Venus’ figurines Dolni Vestonice Lespugue Willendorf . Appear around 25,000 bp, Europe . Carved in ivory, wood, stone, modeled in clay . Breasts, hips, buttocks, thighs, usually large . Head, arms, hands, legs & feet are only schematic . Some are pregnant, others are not 4.48.jpg Dwellings Huts with bone frameworks Floors with inlaid stone Stone-lined pits for hearths Tailored clothing Long-distance trade Blade technique Long, parallel-sided flakes are struck off the edges of a specially prepared core Blades: long flake, twice as punch long as wide • Sharp parallel edges • Removed from core like peeling carrot (sort of) • Blades provide “blank” or form, which may then be shaped into different tools: . -
A Review on Historical Earth Pigments Used in India's Wall Paintings
heritage Review A Review on Historical Earth Pigments Used in India’s Wall Paintings Anjali Sharma 1 and Manager Rajdeo Singh 2,* 1 Department of Conservation, National Museum Institute, Janpath, New Delhi 110011, India; [email protected] 2 National Research Laboratory for the Conservation of Cultural Property, Aliganj, Lucknow 226024, India * Correspondence: [email protected] Abstract: Iron-containing earth minerals of various hues were the earliest pigments of the prehistoric artists who dwelled in caves. Being a prominent part of human expression through art, nature- derived pigments have been used in continuum through ages until now. Studies reveal that the primitive artist stored or used his pigments as color cakes made out of skin or reeds. Although records to help understand the technical details of Indian painting in the early periodare scanty, there is a certain amount of material from which some idea may be gained regarding the methods used by the artists to obtain their results. Considering Indian wall paintings, the most widely used earth pigments include red, yellow, and green ochres, making it fairly easy for the modern era scientific conservators and researchers to study them. The present knowledge on material sources given in the literature is limited and deficient as of now, hence the present work attempts to elucidate the range of earth pigments encountered in Indian wall paintings and the scientific studies and characterization by analytical techniques that form the knowledge background on the topic. Studies leadingto well-founded knowledge on pigments can contribute towards the safeguarding of Indian cultural heritage as well as spread awareness among conservators, restorers, and scholars. -
Prolific Pigmentfinal4.19.20 Copy
Proliic pigment Create your own unique color! Summary: Throughout history, people have used pigment to express them- selves. How do you make a pigment and what could you use it for? What kind of paint can you create using pigments found at home? Guiding Questions: What are pigments? Where do pigments come from? What could you use pigments for? Experience Goals: • Explore how pigments are made and used. • Make your own pigment and turn it into paint. Supplies: • Pigment Info Sheet • Fresh or Freeze-dried Blueberries (pigment material) • Water (binding material) • Coloring sheet (page 5) • Paintbrush and paint cup • Mortar and Pestle (or another grinding tool, like a bowl and large spoon) • A space you can get messy in! 1. Steps: 1. Explore Pigments a. Explore the Pigment Info Sheet to learn about pigment and how it is used. b. Think about what could create pigment in your home. Is there anything in your kitchen? How about colorful plants outside? c. We will use blueberries to make our color! You can ind the recipe in Step 3. What other colors could you create? What would you paint with them? 2. Make Your Pigment a. Gather your pigment material. Usually a pigment used in painting will be powdered, but can also be in juice form. Crushed up freeze dried fruits like blueberries make for an excellent pigment powder! b. Grind or mash up your pigment material. If using fresh blueberries, mash them then strain out the juice using a kitchen strainer. With frozen or freeze dried blueberries, use a mortar and pestle (or similar items like a bowl and large spoon) to grind them into a ine powder. -
Technological Features of the Chalcolithic Pottery from Târpești (Neamț County, Eastern Romania)
Mediterranean Archaeology and Archaeometry Vol. 19, No 3, (2019), pp. 93-104 Open Access. Online & Print. www.maajournal.com DOI: 10.5281/zenodo.3541108 TECHNOLOGICAL FEATURES OF THE CHALCOLITHIC POTTERY FROM TÂRPEȘTI (NEAMȚ COUNTY, EASTERN ROMANIA) Florica Mățău*1, Ovidiu Chișcan2, Mitică Pintilei3, Daniel Garvăn4, Alexandru Stancu2 1Interdisciplinary Research Institute, Science Department-ARHEOINVEST Platform, Alexandru Ioan Cuza University of Iasi, Lascăr Catargi, no. 54, 700107, Iasi, Romania 2Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Carol I, no. 11, 700506, Iasi, Romania 3Department of Geology, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, Carol I, no. 11, 700506, Iasi, Romania 4Buzău County Museum, Castanilor, no. 1, 120248, Buzău, Romania Received: 11/10/2019 Accepted: 14/11/2019 *Corresponding author: [email protected] ABSTRACT The technological parameters of representative pottery samples attributed to Precucuteni (5050-4600 cal BC) and Cucuteni (4600-3500 cal BC) cultures identified at Târpești (Neamț County, Eastern Romania) were determined using a complex archaeometric approach. The site is located in the north-eastern part of the present-day Romania occupying a small plateau situated in a hilly region. In order to evaluate the raw materials and the firing process we have used optical microscopy (OM), X-ray powder diffraction (XRPD) and magnetic measurements. Further on, the XRPD data were statistically treated using hierarchical cluster analysis (HCA) taking into account position and peak intensity, the Euclidian distance as metric and the average linkage method as a linkage basis for gaining a more refined estimation of the mineralogical transformations induced by the firing process and for defining homogenous group of samples. -
Bataille on Lascaux and the Origins of Art
Bataille on Lascaux and the Origins of Art Richard White Creighton University Bataille’s book Lacaux has not received much scholarly attention. This essay attempts to fill in a gap in the literature by explicating Bataille’s scholarship on Lascaux to his body of writing as a whole—an exercise that, arguably, demonstrates the significance of the book and, consequently, the shortsightedness of its neglect by critics who have not traditionally grasped the relevance of the text for illuminating Bataille’s theory of art and transgression. Bataille’s major work on the Lascaux cave paintings, Prehistoric Paint- ing: Lascaux or the Birth of Art, was originally published as the first volume in a series called “The Great Centuries of Painting.”1 It is an impressive book with color photographs and supporting documents, and in his text, Bataille deals conscientiously with the existing state of prehistoric studies and scholarly accounts of Lascaux. But in spite of this—or rather because of it—Lascaux the book has received very little attention from prehistoric scholars, art historians or even Bataille enthusiasts.2 For one thing, the format of this work seems to undermine the power of transgression which is the subject as well as the driving force behind most of Bataille’s writings. The very context of a multi-volume series on great art and artists suggests an uncritical perception of art as a universal which remains the same from Lascaux to Manet.3 In Lascaux, as opposed to most of his other writings, Bataille offers his own contribution to an existing historical controversy, and he is constrained in advance by the terms of this debate. -
Analysis of Pigments and Structural Materials on Roman Terracotta
ANALYSIS OF PIGMENTS AND STRUCTURAL MATERIALS ON ROMAN TERRACOTTA APPLICATION NOTE RAMAN-015 (US) Author: A.J.R.Bauer, Ph.D. Abstract This application note documents a pigment analysis on a decorative mirror plaque from late Roman times performed with a TSI ChemLogix EZRaman-NP. Sample Description The spectral and ID data in this application note is based on Raman analysis of the pigments in a sample of Roman pottery, 100 to 300 AD, found in Jerusalem. It is in the collection of an anonymous private collector. The terracotta disk has been decorated with a sun design Figure 1. Roman terracotta piece, likely and has a central circular hole that is partially occupied by a an architectural mirror. fragment of glass. It is unclear whether the odd shape of the glass is original or reflects a breakage or loss (presumably in antiquity). The interior circle nearest the glass insert has a raised rim. Around the interior edge (over the glass), there is a layer of white material, possibly plaster. It is unclear whether this is original. Around the interior circle are molded triangles with dots at the peaks that create a sunburst design. These are painted red and in between each are a black dot and a red stripe. The outside edge is slightly irregular as is the essentially flat back. The back has fingerprints from the artist who pressed the clay into a mold to create the front. There is one small hole that originally went through the piece near one of the black painted dots. It is now blocked with clay. -
The Microbiology of Lascaux Cave F
Microbiology (2010), 156, 644–652 DOI 10.1099/mic.0.036160-0 Mini-Review The microbiology of Lascaux Cave F. Bastian,1 V. Jurado,2 A. Nova´kova´,3 C. Alabouvette1 and C. Saiz-Jimenez2 Correspondence 1UMR INRA-Universite´ de Bourgogne, Microbiologie du Sol et de l’Environment, BP 86510, 21065 C. Saiz-Jimenez Dijon Cedex, France [email protected] 2Instituto de Recursos Naturales y Agrobiologia, CSIC, Apartado 1052, 41080 Sevilla, Spain 3Institute of Soil Biology, Na Sa´dka´ch 7, 37005 Cˇ eske´ Budeˇjovice, Czech Republic Lascaux Cave (Montignac, France) contains paintings from the Upper Paleolithic period. Shortly after its discovery in 1940, the cave was seriously disturbed by major destructive interventions. In 1963, the cave was closed due to algal growth on the walls. In 2001, the ceiling, walls and sediments were colonized by the fungus Fusarium solani. Later, black stains, probably of fungal origin, appeared on the walls. Biocide treatments, including quaternary ammonium derivatives, were extensively applied for a few years, and have been in use again since January 2008. The microbial communities in Lascaux Cave were shown to be composed of human-pathogenic bacteria and entomopathogenic fungi, the former as a result of the biocide selection. The data show that fungi play an important role in the cave, and arthropods contribute to the dispersion of conidia. A careful study on the fungal ecology is needed in order to complete the cave food web and to control the black stains threatening the Paleolithic paintings. Introduction determination as Bracteacoccus minor, a member of the Chlorophyta (Lefe´vre, 1974). -
Geological Society of America Special Papers
Downloaded from specialpapers.gsapubs.org on October 1, 2010 Geological Society of America Special Papers Mining and Metallurgy in Ancient Perú Georg Petersen G. and William E. Brooks Geological Society of America Special Papers 2010;467;xvii-90 doi: 10.1130/2010.2467 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Special Papers Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2010 Geological Society of America Downloaded from specialpapers.gsapubs.org on October 1, 2010 Mining and Metallurgy in Ancient Perú by Georg Petersen G. -
Evaluación De Las Capacidades Cognitivas De Homo Neanderthalensis E Implicaciones En La Transición Paleolítico Medio-Paleotíco Superior En Eurasia
UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE GEOGRAFÍA E HISTORIA DEPARTAMENTO DE PREHISTORIA TESIS DOCTORAL Evaluación de las capacidades cognitivas de Homo Neanderthalensis e implicaciones en la transición Paleolítico Medio-Paleotíco Superior en Eurasia MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Carlos Burguete Prieto DIRECTOR José Yravedra Sainz de Terreros Madrid Ed. electrónica 2019 © Carlos Burguete Prieto, 2018 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE GEOGRAFÍA E HISTORIA Departamento de Prehistoria EVALUACIÓN DE LAS CAPACIDADES COGNITIVAS DE HOMO NEANDERTHALENSIS E IMPLICACIONES EN LA TRANSICIÓN PALEOLÍTICO MEDIO – PALEOLÍTICO SUPERIOR EN EURASIA MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Carlos Burguete Prieto Bajo la dirección del doctor José Yravedra Sainz de Terreros MADRID, 2018 ©Carlos Burguete Prieto, 2018 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE GEOGRAFÍA E HISTORIA Departamento de Prehistoria EVALUACIÓN DE LAS CAPACIDADES COGNITIVAS DE HOMO NEANDERTHALENSIS E IMPLICACIONES EN LA TRANSICIÓN PALEOLÍTICO MEDIO – PALEOLÍTICO SUPERIOR EN EURASIA TESIS DOCTORAL Presentada por Carlos Burguete Prieto Dirigida Por Dr. José Yravedra Sainz De Terreros MADRID, 2018 A Álvaro, mi hermano. AGRADECIMIENTOS (en orden alfabético): A Abel Amón por facilitarme documentación gráfica de difícil acceso referente a varios sitios arqueológicos de Rusia y Cáucaso. A Eva Barriocanal (Servicio de depósito del Museo Arqueológico de Bilbao) por su amable atención y disposición a permitirme analizar piezas procedentes del abrigo de Axlor. A Francesco d’Errico (Université de Bordeaux) por compartir sus opiniones y facilitarme información sobre piezas procedentes de la Grotte de Peyrere, Francia. A Luis de Miguel (Director del Museo Arqueológico de Murcia) por facilitarme amablemente el acceso a los restos humanos hallados en la Sima de las Palomas, Murcia.