Investigating and Characterizing the Immune Response in Prostate Cancer Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Investigating and Characterizing the Immune Response in Prostate Cancer Treatment INVESTIGATING AND CHARACTERIZING THE IMMUNE RESPONSE IN PROSTATE CANCER TREATMENT Grossfeld, David J.; Reiss, Allison B.; Kasselman, Lora J.; Renna, Heather A.; Le Sueur, Amanda; Katz, Aaron E. Katz Winthrop Research Institute, Winthrop University Hospital, Mineola, New York Purpose Of Study •Prostate cancer is second leading cause of cancer deaths in men in the US •Activating the immune system and altering the tumor microenvironment as a treatment •4 Treatment Groups: total prostate cryotherapy (TC, Group 1), radical prostatectomy (RP, Group 2), focal prostate (hemiablation) cryotherapy (FC, Group 3) or stereotactic body radiation therapy via CyberKnife (SBRT, Group 4). Xu H, Hu MB, Bai PD, et al. Proinflammatory cytokines in prostate cancer development and progression promoted by high-fat diet. Biomed Res Int. 2015;2015:249741. doi:10.1155/2015/249741 How CryoablationWorks Controlled freezing of the prostate gland Leads to denaturation, disruption of blood supply, and coagulative necrosis Target temperature of -40 °C Rapid freezing, slow thawing, 2 cycles Minimally-invasive Total ablation or hemi-ablation (freezing only half of the prostate) Methods 40 patients treated as described in Groups 1-4 for histologically proven prostate adenocarcinoma. Urine and Plasma samples were analyzed at 3 time points: ◦ before PCa treatment ◦ immediately following treatment (2 ± 1 week) ◦ 3 months post-treatment. Cytokines evaluated via ELISA ◦ IL1a, IL1b, IL2, IL4, IL6, Il8, IL10, IL12, IL17A, IFN-y, TNF-a, GM-CSF Blood draw (20cc) and urine sample at each visit (screening, 1st immune assessment at 2-3 weeks, and 2nd immune assessment approximately 3 months after treatment) Results IL10 IL6 4000 1500 Total cryotherapy Total cryotherapy (7,12,21, 27, 36, 3000 (7,12,21, 27, 36, 38, 41, 43, 45) 1000 38, 41, 43, 45) 2000 Radical Prostatectomy Radical Prostatectomy (17,18,22,23,24,25,26,3 500 (17,18,22,23,24,25,26,3 1000 0,31,32) 0,31,32) Focal 0 Focal 0 Cryoablation Cryoablation (2,4,5,8,11,1 (2,4,5,8,11,1 -1000 3,14,16,37) -500 3,14,16,37) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 it it it it it it it it it it it it Cyberknife (33,35,47,48) it it it it it it it it it it it it Cyberknife (33,35,47,48) is is is is is is is is is is is is is is is is is is is is is is is is v v v v v v v v v v v v v v v v v v v v v v v v Interleukin 10 (IL10) and IL6 levels increased during visit 2 (2 weeks post-op) in the radical prostatectomy cohort, then decreased close to baseline during visit 3. IL10 Roles of IL10 and IL6 • is anti inflammatory • Limits production of pro –inflammatory cytokines (IL1a, IL6, IL12, TNFa) by acting on CD4+ T cells • Directly effect Th1 and Th2 response in lymph nodes Kevin N. Couper, Daniel G. Blount, Eleanor M. Riley. The Journal of Immunology May 1, 2008, 180 (9) 5771-5777; IL6 • aids in activation of T cells, differentiation of B cells • Levels can rise substantially in the blood in a disease state • Shown to be involved in autoimmunity in cancer and homeostatic basal regulation • link with IL-6 and tumor growth and tumor-linked inflammation • , C., Jones, S. Correction: Corrigendum: IL-6 as a keystone cytokine in health and disease. Nat Immunol18, 1271 (2017). https://doi.org/10.1038/ni1117-1271b IL1a 600 Total cryotherapy (7,12,21, 27, 36, 400 38, 41, 43, 45) Radical Prostatectomy 200 (17,18,22,23,24,25,26,3 0,31,32) 0 Focal Cryoablation (2,4,5,8,11,1 -200 3,14,16,37) 1 2 3 1 2 3 1 2 3 1 2 3 it it it it it it it it it it it it Cyberknife (33,35,47,48) is is is is is is is is is is is is v v v v v v v v v v v v IL1a changed significantly over time (P= 0.0175). In the Total cryotherapy and focal cryotherapy cohorts, IL1a levels increased post-treatment at visits 2 and 3 relative to baseline. In the Cyberknife group, IL1a levels only increased at visit 3 (3 months post- treatment), with a large positive percent change relative to baseline IFN-y 800 Total cryotherapy 600 (7,12,21, 27, 36, 38, 41, 43, 45) 400 Radical Prostatectomy 200 (17,18,22,23,24,25,26,3 0,31,32) 0 Focal -200 Cryoablation (2,4,5,8,11,1 -400 3,14,16,37) e 1 2 e 1 2 e 1 2 e 1 2 n t t n t t n t t n t t Cyberknife (33,35,47,48) li n n li n n li n n li n n e e e e e e e e e e e e s m m s m m s m m s m m a s s a s s a s s a s s b s s b s s b s s b s s e e e e e e e e s s s s s s s s s s s s s s s s a a a a a a a a e e e e e e e e n n n n n n n n u u u u u u u u m m m m m m m m im im im im im im im im Similar to IL1a, IFN-y levels rose slightly during visits 2 and 3 in Total Cryotherapy and Focal cryoablation cohorts. Additionally, the Cyberknife group demonstrated a post-treatment rise in cytokine levels in IFN-y and IL1a. To Consider: IL6 and IL1a role in Prostate Cancer IL6 • IL6 and the Jak/STAT pathway • IL6 levels in serum are raised in patients with metastatic prostate cancer • Experimental therapy using Siltuximab • Phase II clinical study showed biological, but not clinical, activity in patients that have already undergone chemotherapy IL1a • Anti-IL-1a antibody is being tested in clinical trials • Pro-inflammatory cytokine, can work in conjunction with TNF-a • IL1a and B expression has been found in multiple tumor lines Culig Z, PuhrM. Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol Cell Endocrinol. 2012;360(1-2):52–58. doi:10.1016/j.mce.2011.05.033 Conclusions • Inflammatory cytokine profile may therefore be a useful indicator of therapeutic response and prognosis. • Pre- vs. post-treatment cytokine levels differ in patients receiving SBRT, RP, TC, or FC. • IL6 and IL10 • IL1a and IFN-y • IFN-y as key player in tumor microenvironment when administering radiation treatment • We will be continuing plasma analysis with patients in the cryotherapy cohort https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668027/ Where do we Go From here? • Potential in exploring High fat Diet? TRAMP mice • Worth studying MIC-1 (Macrophage inhibitory cytokine 1), which has been found to be upregulated in Pca with poorer prognosis • Link between androgen deprivation therapy and dementia in prostate cancer patients • Continue plasma inflammatory analysis in cryotherapy cohort Xu H, Hu MB, Bai PD, et al. Proinflammatory cytokines in prostate cancer development and progression promoted by high-fat diet. Biomed Res Int. 2015;2015:249741. doi:10.1155/2015/249741 and Sfanos KS, De Marzo AM. Prostate cancer and inflammation: the evidence. Histopathology. 2012;60(1):199–215. doi:10.1111/j.1365-2559.2011.04033.x.
Recommended publications
  • Interleukin (IL)17A, F and AF in Inflammation: a Study in Collageninduced Arthritis and Rheumatoid Arthritis
    bs_bs_banner Clinical and Experimental Immunology ORIGINAL ARTICLE doi:10.1111/cei.12376 Interleukin (IL)-17A, F and AF in inflammation: a study in collagen-induced arthritis and rheumatoid arthritis S. Sarkar,* S. Justa,* M. Brucks,* Summary J. Endres,† D. A. Fox,† X. Zhou,* Interleukin (IL)-17 plays a critical role in inflammation. Most studies to date F. Alnaimat,* B. Whitaker,‡ have elucidated the inflammatory role of IL-17A, often referred to as IL-17. J. C. Wheeler,‡ B. H. Jones§ and IL-17F is a member of the IL-17 family bearing 50% homology to IL-17A S. R. Bommireddy* and can also be present as heterodimer IL-17AF. This study elucidates the *Section of Rheumatology, Department of Medicine, and the Arizona Arthritis Center, distribution and contribution of IL-17A, F and AF in inflammatory arthritis. University of Arizona, Tucson, AZ, †Divison of Neutralizing antibody to IL-17A alone or IL-17F alone or in combination Rheumatology, Department of Internal Medicine, was utilized in the mouse collagen-induced arthritis (CIA) model to eluci- University of Michigan, Ann Arbor, MI, and date the contribution of each subtype in mediating inflammation. IL-17A, F ‡Biologics Research and §Immunology Discovery and AF were all increased during inflammatory arthritis. Neutralization of Research, Janssen Research and Development, IL-17A reduced the severity of arthritis, neutralization of IL-17A+IL-17F had Spring House, PA, USA the same effect as neutralizing IL-17A, while neutralization of IL-17F had no effect. Moreover, significantly higher levels of IL-17A and IL-17F were detected in peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA) in comparison to patients with osteoarthritis (OA).
    [Show full text]
  • Inflammation-Dependent IL18 Signaling Restricts Hepatocellular Carcinoma Growth by Enhancing the Accumulation and Activity of Tumor-Infiltrating Lymphocytes
    Published OnlineFirst February 18, 2016; DOI: 10.1158/0008-5472.CAN-15-1548 Cancer Tumor and Stem Cell Biology Research Inflammation-Dependent IL18 Signaling Restricts Hepatocellular Carcinoma Growth by Enhancing the Accumulation and Activity of Tumor- Infiltrating Lymphocytes Geoffrey J. Markowitz1, Pengyuan Yang1,2,3, Jing Fu3, Gregory A. Michelotti4, Rui Chen1, Jianhua Sui5, Bin Yang2, Wen-Hao Qin3, Zheng Zhang6, Fu-Sheng Wang6, Anna Mae Diehl4, Qi-Jing Li7, Hongyang Wang3, and Xiao-Fan Wang1 Abstract Chronic inflammation in liver tissue is an underlying cause of IL18R1 deletion increased tumor burden. Mechanistically, we hepatocellular carcinoma. High levels of inflammatory cytokine foundthatIL18exertedinflammation-dependent tumor-sup- IL18 in the circulation of patients with hepatocellular carcinoma pressive effects largely by promoting the differentiation, activ- correlates with poor prognosis. However, conflicting results have ity, and survival of tumor-infiltrating T cells. Finally, differences been reported for IL18 in hepatocellular carcinoma development in the expression of IL18 in tumor tissue versus nontumor and progression. In this study, we used tissue specimens from tissueweremorepredictiveofpatientoutcomethanoverall hepatocellular carcinoma patients and clinically relevant mouse tissue expression. Taken together, our findings resolve a long- models of hepatocellular carcinoma to evaluate IL18 expression standing contradiction regarding a tumor-suppressive role for and function. In a mouse model of liver fibrosis that recapitulates IL18 in established hepatocellular carcinoma and provide a a tumor-promoting microenvironment, global deletion of the mechanistic explanation for the complex relationship between IL18 receptor IL18R1 enhanced tumor growth and burden. Sim- its expression pattern and hepatocellular carcinoma prognosis. ilarly, in a carcinogen-induced model of liver tumorigenesis, Cancer Res; 76(8); 1–12.
    [Show full text]
  • Interleukin-33 Signaling Exacerbates Experimental Infectious Colitis by Enhancing Gut Permeability and Inhibiting Protective Th17 Immunity
    www.nature.com/mi ARTICLE OPEN Interleukin-33 signaling exacerbates experimental infectious colitis by enhancing gut permeability and inhibiting protective Th17 immunity Vittoria Palmieri1, Jana-Fabienne Ebel1, Nhi Ngo Thi Phuong1, Robert Klopfleisch2, Vivian Pham Vu3,4, Alexandra Adamczyk1, Julia Zöller1, Christian Riedel5, Jan Buer1, Philippe Krebs3, Wiebke Hansen1, Eva Pastille1 and Astrid M. Westendorf 1 A wide range of microbial pathogens is capable of entering the gastrointestinal tract, causing infectious diarrhea and colitis. A finely tuned balance between different cytokines is necessary to eradicate the microbial threat and to avoid infection complications. The current study identified IL-33 as a critical regulator of the immune response to the enteric pathogen Citrobacter rodentium.We observed that deficiency of the IL-33 signaling pathway attenuates bacterial-induced colitis. Conversely, boosting this pathway strongly aggravates the inflammatory response and makes the mice prone to systemic infection. Mechanistically, IL-33 mediates its detrimental effect by enhancing gut permeability and by limiting the induction of protective T helper 17 cells at the site of infection, thus impairing host defense mechanisms against the enteric pathogen. Importantly, IL-33-treated infected mice supplemented with IL-17A are able to resist the otherwise strong systemic spreading of the pathogen. These findings reveal a novel IL-33/IL-17A crosstalk that controls the pathogenesis of Citrobacter rodentium-driven infectious colitis. Manipulating the dynamics of cytokines may offer new therapeutic strategies to treat specific intestinal infections. 1234567890();,: Mucosal Immunology (2021) 14:923–936; https://doi.org/10.1038/s41385-021-00386-7 INTRODUCTION epithelial cells, and endothelial cells in response to injury6.
    [Show full text]
  • IL-17-Producing Cells in Tumor Immunity: Friends Or Foes?
    Immune Netw. 2020 Feb;20(1):e6 https://doi.org/10.4110/in.2020.20.e6 pISSN 1598-2629·eISSN 2092-6685 Review Article IL-17-Producing Cells in Tumor Immunity: Friends or Foes? Da-Sol Kuen 1,2, Byung-Seok Kim 1, Yeonseok Chung 1,2,* 1Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea 2BK21 Plus Program, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea Received: Dec 29, 2019 Revised: Jan 25, 2020 ABSTRACT Accepted: Jan 26, 2020 IL-17 is produced by RAR-related orphan receptor gamma t (RORγt)-expressing cells *Correspondence to including Th17 cells, subsets of γδT cells and innate lymphoid cells (ILCs). The biological Yeonseok Chung significance of IL-17-producing cells is well-studied in contexts of inflammation, Laboratory of Immune Regulation and BK21 Plus Program, Institute of Pharmaceutical autoimmunity and host defense against infection. While most of available studies in tumor + Sciences, Seoul National University, 1 Gwanak- immunity mainly focused on the role of T-bet-expressing cells, including cytotoxic CD8 ro, Gwanak-gu, Seoul 08826, Korea. T cells and NK cells, and their exhaustion status, the role of IL-17-producing cells remains E-mail: [email protected] poorly understood. While IL-17-producing T-cells were shown to be anti-tumorigenic in Copyright © 2020. The Korean Association of adoptive T-cell therapy settings, mice deficient in type 17 genes suggest a protumorigenic Immunologists potential of IL-17-producing cells. This review discusses the features of IL-17-producing This is an Open Access article distributed cells, of both lymphocytic and myeloid origins, as well as their suggested pro- and/or anti- under the terms of the Creative Commons tumorigenic functions in an organ-dependent context.
    [Show full text]
  • Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
    UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: [email protected]; [email protected] Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type.
    [Show full text]
  • Decrease in Mucosal IL17A, IFN and IL10 Expressions in Active Crohn's
    nutrients Article Decrease in Mucosal IL17A, IFNγ and IL10 Expressions in Active Crohn’s Disease Patients Treated with High-Dose Vitamin D Alone or Combined with Infliximab Mia Bendix 1,*, Anders Dige 1, Søren Peter Jørgensen 1, Jens Frederik Dahlerup 1 , Bo Martin Bibby 2, Bent Deleuran 3,4 and Jørgen Agnholt 1 1 Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200 Aarhus, Denmark; [email protected] (A.D.); [email protected] (S.P.J.); [email protected] (J.F.D.); [email protected] (J.A.) 2 Department of Public Health—Department of Biostatistics, Aarhus University, 8000 Aarhus, Denmark; [email protected] 3 Department of Rheumatology, Aarhus University Hospital, 8200 Aarhus, Denmark; [email protected] 4 Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark * Correspondence: [email protected] Received: 5 November 2020; Accepted: 26 November 2020; Published: 30 November 2020 Abstract: Background: Vitamin D treatment may reduce Crohn’s disease (CD) activity by modulating the mucosal immune function. We investigated if high-dose vitamin D +/ infliximab modulated − the mucosal cytokine expression in active CD. Methods: Forty CD patients were randomized into: infliximab + vitamin D; infliximab + placebo-vitamin D; placebo-infliximab + vitamin D or placebo-infliximab + placebo-vitamin D. Infliximab (5 mg/kg) and placebo-infliximab were administered at weeks 0, 2 and 6. Oral vitamin D was administered as bolus 200,000 international units (IU) per week 0 followed by 20,000 IU/day for 7 weeks or placebo. Endoscopy with biopsies was performed at weeks 0 and 7 where endoscopic activity was measured and mucosal mRNA cytokine expression was examined.
    [Show full text]
  • Il1f10 (NM 153077) Mouse Tagged ORF Clone – MR223925 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MR223925 Il1f10 (NM_153077) Mouse Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Il1f10 (NM_153077) Mouse Tagged ORF Clone Tag: Myc-DDK Symbol: Il1f10 Synonyms: MGC130267; MGC130268 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >MR223925 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGTGCTCCCTTCCCATGGCAAGATACTACATAATCAAGGATGCACATCAAAAGGCTTTGTACACACGGA ATGGCCAGCTCCTGCTGGGAGACCCTGATTCAGACAATTATAGTCCAGAGAAGGTCTGTATCCTTCCTAA CCGAGGCCTAGACCGCTCCAAGGTCCCCATCTTCCTGGGGATGCAGGGAGGAAGTTGCTGCCTGGCGTGT GTAAAGACAAGAGAGGGACCTCTCCTGCAGCTGGAGGATGTGAACATCGAGGACCTATACAAGGGAGGTG AACAAACCACCCGTTTCACCTTTTTCCAGAGAAGCTTGGGATCTGCCTTCAGGCTTGAGGCTGCTGCCTG CCCTGGCTGGTTTCTCTGTGGCCCAGCTGAGCCCCAGCAGCCAGTGCAGCTCACCAAAGAGAGTGAACCC TCCACCCATACTGAATTCTACTTTGAGATGAGTCGG ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA Protein Sequence: >MR223925 protein sequence Red=Cloning site Green=Tags(s) MCSLPMARYYIIKDAHQKALYTRNGQLLLGDPDSDNYSPEKVCILPNRGLDRSKVPIFLGMQGGSCCLAC VKTREGPLLQLEDVNIEDLYKGGEQTTRFTFFQRSLGSAFRLEAAACPGWFLCGPAEPQQPVQLTKESEP STHTEFYFEMSR TRTRPLEQKLISEEDLAANDILDYKDDDDKV Restriction Sites: SgfI-MluI This product is to
    [Show full text]
  • IL1F10 Monoclonal Antibody
    Product Datasheet IL1F10 Monoclonal Antibody Catalog No: #42049 Orders: [email protected] Description Support: [email protected] Product Name IL1F10 Monoclonal Antibody Host Species Mouse Clonality Monoclonal Purification protein G purifed Applications IHC Species Reactivity Hu Specificity specific for Human IL1F10 denatured and native forms Immunogen Type protein Immunogen Description Recombinant Human IL1F10 protein Target Name IL1F10 Other Names IL-1F10, Family of interleukin 1-theta, FIL1 theta Interleukin-1 HY2, IL-1HY2, Interleukin-1 theta, IL-1 theta Interleukin-38, IL-38 Accession No. Swiss-Prot#: Q8WWZ1 Concentration 1.0mg/mL Formulation Preservative: 0.03% Proclin 300 Constituents: 50% Glycerol, 0.01M PBS, PH 7.4 Storage Store at -20°C Application Details Immunohistochemistry: 1:20 - 1:200 Images Immunohistochemical analysis of paraffin-embedded Human Colon cancer tissue using #42049 at dilution of 1:200. Address: 8400 Baltimore Ave. Suite 302 College Park MD 20740 USA http://www.sabbiotech.com 1 Immunohistochemical analysis of paraffin-embedded Human live cancer tissue using #42049 at dilution of 1:200. Immunohistochemical analysis of paraffin-embedded Human spleen tissue using #42049 at dilution of 1:200. Background Cytokine with immunomodulatory activity. Alone, does not induce cytokine production, but reduces IL22 and IL17A production by T-cells in response to heat-killed Candida albicans. Reduces IL36G-induced production of IL8 by peripheral blood mononuclear cells. Increases IL6 production by dendritic cells stimulated by bacterial lipopolysaccharides (LPS). Ligand for IL-36R/IL1RL2. References "IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist." van de Veerdonk F.L., Stoeckman A.K., Wu G., Boeckermann A.N., Azam T., Netea M.G., Joosten L.A., van der Meer J.W., Hao R., Kalabokis V., Dinarello C.A.
    [Show full text]
  • Potential Impacts of Interleukin-17A Promoter Polymorphisms on the EGFR Mutation Status and Progression of Non-Small Cell Lung Cancer in Taiwan
    G C A T T A C G G C A T genes Article Potential Impacts of Interleukin-17A Promoter Polymorphisms on the EGFR Mutation Status and Progression of Non-Small Cell Lung Cancer in Taiwan Kai-Ling Lee 1,2, Tsung-Ching Lai 3, Yao-Chen Wang 4,5 , Pei-Chun Shih 6, Yi-Chieh Yang 1,7, Thomas Chang-Yao Tsao 4,5, Tu-Chen Liu 8, Yu-Ching Wen 9,10, Lun-Ching Chang 11 , Shun-Fa Yang 12,13,* and Ming-Hsien Chien 1,14,15,16,* 1 Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; [email protected] (K.-L.L.); rafi[email protected] (Y.-C.Y.) 2 Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan 3 Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; [email protected] 4 School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; [email protected] (Y.-C.W.); [email protected] (T.C.-Y.T.) 5 Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan 6 Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; [email protected] 7 Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 433, Taiwan 8 Department of Chest Medicine, Cheng-Ching General Hospital, Taichung 40764, Taiwan; [email protected] 9 Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Citation: Lee, K.-L.; Lai, T.-C.; Wang, [email protected] Y.-C.; Shih, P.-C.; Yang, Y.-C.; Tsao, 10 Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, T.C.-Y.; Liu, T.-C.; Wen, Y.-C.; Chang, Taipei 11031, Taiwan L.-C.; Yang, S.-F.; et al.
    [Show full text]
  • Crystal Structures of Interleukin 17A and Its Complex with IL-17 Receptor A
    ARTICLE Received 1 Nov 2012 | Accepted 12 Apr 2013 | Published 21 May 2013 DOI: 10.1038/ncomms2880 Crystal structures of interleukin 17A and its complex with IL-17 receptor A Shenping Liu1, Xi Song1, Boris A. Chrunyk1, Suman Shanker1, Lise R. Hoth1, Eric S. Marr1 & Matthew C. Griffor1 The constituent polypeptides of the interleukin-17 family form six different homodimeric cytokines (IL-17A–F) and the heterodimeric IL-17A/F. Their interactions with IL-17 receptors A–E (IL-17RA–E) mediate host defenses while also contributing to inflammatory and auto- immune responses. IL-17A and IL-17F both preferentially engage a receptor complex con- taining one molecule of IL-17RA and one molecule of IL-17RC. More generally, IL-17RA appears to be a shared receptor that pairs with other members of its family to allow signaling of different IL-17 cytokines. Here we report crystal structures of homodimeric IL-17A and its complex with IL-17RA. Binding to IL-17RA at one side of the IL-17A molecule induces a conformational change in the second, symmetry-related receptor site of IL-17A. This change favors, and is sufficient to account for, the selection of a different receptor polypeptide to complete the cytokine-receptor complex. The structural results are supported by biophysical studies with IL-17A variants produced by site-directed mutagenesis. 1 Structural Biology and Biophysics Group, Pfizer Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, USA. Correspondence and requests for materials should be addressed to S. L. (email: shenping.liu@pfizer.com). NATURE COMMUNICATIONS | 4:1888 | DOI: 10.1038/ncomms2880 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited.
    [Show full text]
  • Deficiency in Interleukin-18 Ameliorated Glial Activation And
    Deciency in interleukin-18 ameliorated glial activation and neuroinammation after traumatic brain injury in mice Wenwen Dong China Medical University Linlin Wang China Medical University Ziyuan Chen China Medical University Xiangshen Guo China Medical University Pengfei Wang China Medical University Hao Cheng China Medical University Fuyuan Zhang China Medical University Bei Yang China Medical University Shuaibo Wang China Medical University Ruiqun Qi China Medical University Jiawen Wang Guizhou Medical University Dawei Guan China Medical University Rui Zhao ( [email protected] ) China Medical University https://orcid.org/0000-0003-4867-2503 Research Keywords: Traumatic brain injury (TBI), Interleukin-18 (IL-18), Neuroinammation, Microglia, Astrocyte, Cytokine, Chemokine Page 1/29 Posted Date: February 25th, 2020 DOI: https://doi.org/10.21203/rs.2.24449/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/29 Abstract Background: Neuroinammation is recognized as one of the main pathological mechanisms of secondary injury caused by traumatic brain injury (TBI). It has been reported that interleukin (IL)-18 is expressed in glial cells and involved in the regulation of neuroinammation. Further studies have revealed that IL-18 expression is upregulated and may contribute to pathogenesis in the later phases of TBI; however, the mechanism underlying the effect of IL-18 on TBI remains unclear. Our present study assessed the roles of IL-18 in inammatory and neurodegenerative pathology in mice subjected to TBI. Methods: A controlled cortical impact (CCI) injury model was conducted to mimic TBI, and brains were collected at 3 and 7 days post TBI (dpi).
    [Show full text]
  • Increased IL17A, IFNG, and FOXP3 Transcripts in Moderate-Severe Psoriasis: a Major Influence Exerted by IL17A in Disease Severity
    Hindawi Publishing Corporation Mediators of Inflammation Volume 2016, Article ID 4395276, 8 pages http://dx.doi.org/10.1155/2016/4395276 Research Article Increased IL17A, IFNG, and FOXP3 Transcripts in Moderate-Severe Psoriasis: A Major Influence Exerted by IL17A in Disease Severity Priscilla Stela Santana de Oliveira,1 Michelly Cristiny Pereira,1 Simão Kalebe Silva de Paula,1 Emerson Vasconcelos Andrade Lima,2 Mariana Modesto de Andrade Lima,2 Rodrigo Gomes de Arruda,3 Wagner Luís Mendes de Oliveira,1 Ângela Luzia Branco Pinto Duarte,2 Ivan da Rocha Pitta,1 Moacyr Jesus Melo Barreto Rêgo,1 and Maira Galdino da Rocha Pitta1 1 Laboratorio´ de Imunomodulac¸ao˜ e Novas Abordagens Terapeuticasˆ (LINAT), Nucleo´ de Pesquisa em Inovac¸ao˜ Terapeuticaˆ Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil 2Hospital das Cl´ınicas,UniversidadeFederaldePernambuco(UFPE),Recife,PE,Brazil 3Faculdade Nova Roma, Recife, PE, Brazil Correspondence should be addressed to Maira Galdino da Rocha Pitta; [email protected] Received 19 July 2016; Revised 11 October 2016; Accepted 26 October 2016 Academic Editor: Yu Sun Copyright © 2016 Priscilla Stela Santana de Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Psoriasis is a chronic and recurrent dermatitis, mediated by keratinocytes and T cells. Several proinflammatory cytokines contribute to formation and maintenance of psoriatic plaque. The Th1/Th17 pathways and some of IL-1 family members were involved in psoriasis pathogenesis and could contribute to disease activity.
    [Show full text]