Chemical Recycling of Polystyrene Using Pyrolysis

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Recycling of Polystyrene Using Pyrolysis University of Pennsylvania ScholarlyCommons Department of Chemical & Biomolecular Senior Design Reports (CBE) Engineering 4-20-2018 Chemical Recycling of Polystyrene Using Pyrolysis Jade H. Bassil University of Pennsylvania, [email protected] Gabrielle Dreux University of Pennsylvania, [email protected] Gwendolyn A. Eastaugh University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cbe_sdr Part of the Biochemical and Biomolecular Engineering Commons Bassil, Jade H.; Dreux, Gabrielle; and Eastaugh, Gwendolyn A., "Chemical Recycling of Polystyrene Using Pyrolysis" (2018). Senior Design Reports (CBE). 103. https://repository.upenn.edu/cbe_sdr/103 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cbe_sdr/103 For more information, please contact [email protected]. Chemical Recycling of Polystyrene Using Pyrolysis Abstract There are significant economic and environmental benefits ot the recycling of waste plastics, especially that of polystyrene. Currently, much of polystyrene waste is sent to landfills due ot the difficulty in separation and cleaning processes, where it accumulates indefinitely. It contributes to plastic pollution and adversely affects wildlife, oceans and humans. Pyrolysis of waste polystyrene is explored in this paper as a chemical recycling method. This reaction yields useful liquid fuel products such as styrene, ethylbenzene, toluene, and methylstyrene, which can be sold to provide project revenues. Beginning with a polystyrene feed of 100 tons per day, the suggested design achieves a liquid styrene product purity of 99.9%. The plant includes a rotary- kiln reactor to carry out the pyrolysis reaction and a distillation train to isolate the liquid products. Pumps, blowers and storage equipment are also included in the design. Heat and energy are optimally integrated using heat exchangers to reduce the cost of purchased utilities. The suggested design requires a capital investment of $25.0 MM and yields a fifteen-year net present value of $5.1 MM. The internal rate of return it achieves is equal to 18.5%. The projected cash flows of this plant suggest that it will break even by 2030 on a cumulative discounted free cash flow basis. The design is recommended based on project specifications and current price projections, though investors should exercise caution with regards to the effect of realistic market prices of styrene and polystyrene on the project’s profitability measures. Disciplines Biochemical and Biomolecular Engineering | Chemical Engineering | Engineering This working paper is available at ScholarlyCommons: https://repository.upenn.edu/cbe_sdr/103 University of Pennsylvania, School of Engineering and Applied Science Department of Chemical and Biomolecular Engineering 220 South 33rd Street Philadelphia, PA 19104 April 17, 2018 Dear Dr. Daeyeon Lee and Mr. Bruce Vrana, Enclosed is a proposal for the design of a waste plastics pyrolysis process based on the research of A. Karaduman. The proposed plant uses pyrolysis to recycle polystyrene and produce its monomer styrene as the main product. The process design is based on a feedstock of 100 tons per day, with the goal of producing styrene monomer at a polymer grade purity greater than 99.9%. The plant is to be located in an industrial complex on the United States Gulf Coast where a number of styrene monomer producers are situated. Clean and sorted polystyrene is collected, densified, and brought to the facility, where the feedstock will have ample space for storage due to the large capacity required. It is then fed to a rotary kiln reactor to carry out the pyrolysis reaction. The rotating vessel attached to an auger allows for the solid residue removal. The gaseous product is cooled to produce high-pressured steam, then condensed to separate the light hydrocarbons from the desirable liquid products. The light gases are reused as fuel gas for pyrolyzer heating and any excess is sold. The liquid product mixture is separated using distillation columns to isolate styrene and other liquid products (ethylbenzene, methyl styrene and toluene) at purity levels higher than 99.9%. Seven days’ supply of products is maintained in storage tanks. Energy and heat integration is optimized to reduce operating expenses. The plant will operate for 24 hours a day, 330 days a year, with polystyrene available for $0.30 per pound and styrene valued at $1.00 per pound. The proposed design requires an investment of $25.0 MM to meet the processing goal of 100 tons per day of polystyrene, and yields an investor’s rate of return (IRR) of 18.5%. We recommend investing in this process while remaining wary of the market prices of polystyrene and styrene. Sincerely, ___________________ ___________________ ___________________ Jade Bassil Gabrielle Dreux Gwendolyn Eastaugh Recycling of Polystyrene Using Pyrolysis 2 Recycling of Polystyrene Using Pyrolysis Chemical Recycling of Polystyrene Using Pyrolysis Jade Bassil | Gabrielle Dreux | Gwendolyn Eastaugh Project submitted to Dr. Daeyeon Lee and Prof. Bruce Vrana. Project proposed by Matthew Targett. Department of Chemical and Biomolecular Engineering School of Engineering and Applied Science University of Pennsylvania April 18, 2017 3 Recycling of Polystyrene Using Pyrolysis Table of Contents Section 1. Abstract 7 Section 2. Introduction and Objective-Time Chart 8 i. Introduction 8 ii. Objective-Time Chart 10 Section 3. Innovation Map 11 Section 4. Market and Competitive Assessment 12 Section 5. Customer Requirements 14 Section 6. CTQ Variables – Product Requirements 14 Section 7. Product Concepts 14 Section 8. Superior Product Concepts 14 Section 9. Competitive (Patent) Analysis 14 Section 10. Preliminary Process Synthesis 15 i. Polystyrene Assumptions 15 ii. Alternative Recycling Methods 17 iii. Type of Pyrolyzer 18 iv. Determination of Products 19 v. Utilization of Fuel Gas 20 vi. Separation Process 21 Section 11. Assembly of Database 23 Section 12. PFD and Material Balances 25 Section 13. Process Descriptions 30 i. Process Overview 30 ii. Section 000-Feed 30 iii. Section 100-Core Pyrolysis Process 31 iv. Section 200-Separation 33 Section 14. Energy Balance and Utility Requirements 36 i. Energy Integration Method 36 ii. Heat Integration Method 37 iii. Utilities 38 Section 15. Equipment List and Unit Descriptions 40 i. Reactor Vessel 40 4 Recycling of Polystyrene Using Pyrolysis ii. Pumps and Blower 41 iii. Heat exchangers 46 iv. Distillation Columns 48 v. Storage Tanks 52 Section 16. Specification Sheets 54 Section 17. Equipment Cost Summary 68 Section 18. Fixed Capital Investment Summary 71 Section 19. Operating Cost – Cost Of Manufacture 73 i. Variable costs 73 ii. Fixed costs 74 Section 20. Profitability Analysis 76 i. Profitability Measures 76 a. Fixed and Variable Costs 81 b. Sales 85 c. Capital costs 88 Section 21. Other Important Considerations 91 i. Safety and Health Considerations 91 ii. Environmental Impact 91 Section 22. Conclusions and Recommendations 93 Section 23. Acknowledgments 94 Section 24. Bibliography 95 Section 25. Appendix 97 A. Calculations 97 a) Bucket Elevators 97 b) Silos 97 c) Screw Feeders 97 d) Kiln 98 e) Blower 98 f) Heat Exchangers 99 g) Pumps 100 h) Electric Motors 100 i) Storage Tanks 101 j) Distillation Columns 101 B. Tables and Figures 103 5 Recycling of Polystyrene Using Pyrolysis C. MSDS Sheets 105 D. Aspen Report 110 a) Block Report 110 b) Streams Report 180 6 Recycling of Polystyrene Using Pyrolysis Section 1. Abstract There are significant economic and environmental benefits to the recycling of waste plastics, especially that of polystyrene. Currently, much of polystyrene waste is sent to landfills due to the difficulty in separation and cleaning processes, where it accumulates indefinitely. It contributes to plastic pollution and adversely affects wildlife, oceans and humans. Pyrolysis of waste polystyrene is explored in this paper as a chemical recycling method. This reaction yields useful liquid fuel products such as styrene, ethylbenzene, toluene, and methylstyrene, which can be sold to provide project revenues. Beginning with a polystyrene feed of 100 tons per day, the suggested design achieves a liquid styrene product purity of 99.9%. The plant includes a rotary- kiln reactor to carry out the pyrolysis reaction and a distillation train to isolate the liquid products. Pumps, blowers and storage equipment are also included in the design. Heat and energy are optimally integrated using heat exchangers to reduce the cost of purchased utilities. The suggested design requires a capital investment of $25.0 MM and yields a fifteen-year net present value of $5.1 MM. The internal rate of return it achieves is equal to 18.5%. The projected cash flows of this plant suggest that it will break even by 2030 on a cumulative discounted free cash flow basis. The design is recommended based on project specifications and current price projections, though investors should exercise caution with regards to the effect of realistic market prices of styrene and polystyrene on the project’s profitability measures. 7 Recycling of Polystyrene Using Pyrolysis Section 2. Introduction and Objective-Time Chart i. Introduction The growing use of plastics in modern society has created significant sustainability concerns. Plastics, although valuable for their inherent strength and durability, pose complications regarding their disposal as are non-degradable and thus accumulate in the environment indefinitely. Only ten percent
Recommended publications
  • Progress and Opportunities for Self-Immolative Polymers" (2019)
    Western University Scholarship@Western Chemistry Publications Chemistry Department 2019 Triggering depolymerization: Progress and opportunities for self- immolative polymers Rebecca Yardley Western University Amir Rabiee Kenaree Western University Elizabeth Gillies Western University, [email protected] Follow this and additional works at: https://ir.lib.uwo.ca/chempub Part of the Chemistry Commons Citation of this paper: Yardley, Rebecca; Rabiee Kenaree, Amir; and Gillies, Elizabeth, "Triggering depolymerization: Progress and opportunities for self-immolative polymers" (2019). Chemistry Publications. 127. https://ir.lib.uwo.ca/chempub/127 Triggering depolymerization: Progress and opportunities for self- immolative polymers Rebecca E. Yardley,† Amir Rabiee Kenaree,† and Elizabeth R. Gillies*†‡ † Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond St., London, Ontario, Canada N6A 5B7. ‡ Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario, Canada N6A 5B9. *Author to whom correspondence should be addressed: [email protected] Table of contents graphic Abstract Polymers that depolymerize end-to-end upon cleavage of their backbones or end-caps, often referred to as “self-immolative” polymers (SIPs), have garnered significant interest in recent years. 1 They can be distinguished from other degradable and stimuli-responsive polymers by their ability to provide amplified responses to stimuli, as a single bond cleavage event is translated into the release of many small molecules through a cascade of reactions. Here, the synthesis and properties of the major classes of SIPs including poly(benzyl carbamate)s, poly(benzyl carbonate)s, polyphthalaldehydes, polyglyoxylates, polyglyoxylamides, poly(olefin sulfone)s, and poly(benzyl ether)s are presented.
    [Show full text]
  • Comments on the Depolymerization of Polycarbonates Derived from Epoxides and Carbon Dioxide: a Mini Review
    3RO\PHU'HJUDGDWLRQDQG6WDELOLW\ ² Contents lists available at ScienceDirect Polymer Degradation and Stability journal homepage: www.elsevier.com/locate/polydegstab Comments on the depolymerization of polycarbonates derived from epoxides and carbon dioxide: A mini review ∗ Donald J. Darensbourg Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States ARTICLE INFO ABSTRACT Keywords: There are in general few examples where polymers can be effectively recycled to their monomers. If this si- Depolymerization tuation exists, the recycling of these monomers to polymeric materials which possess identical properties and Carbon dioxide applications of their virgin monomer derived counterparts is possible. In this brief review we have examined the Epoxides degradation of polycarbonates derived from carbon dioxide and epoxides to provide either their thermo- Degradation dynamically more stable product, the corresponding cyclic five-membered carbonate, or in special instances Recyclable their return to starting monomers. A mechanistic understanding of these pathways allows for the synthesis of polymers that will favor the latter pathway. 1. Introduction polymer carbonate chain end by epoxide and subsequent ring-opening by anionic carbonate [17]. The living polymerization process is gen- The depolymerization of polymeric materials to selectively produce erally quenched by the addition of acidic methanol resulting in a hy- their corresponding monomers is highly desirable, nevertheless gen- droxyl end group. The chain growth process is explicitly described in erally not likely. Recently, it has been demonstrated for various poly- Scheme 3, where the free polymer chain has been shown to rapidly carbonates produced via the coupling of CO2 and epoxides that this is undergo depolymerization via a backbiting process.
    [Show full text]
  • Depolymerization of Waste Plastics to Monomers and Chemicals Using A
    Depolymerization of Waste Plastics to Monomers and Chemicals Using a Hydrosilylation Strategy Facilitated by Brookhart’s Iridium(III) Catalyst Louis Monsigny, Jean-Claude Berthet, Thibault Cantat To cite this version: Louis Monsigny, Jean-Claude Berthet, Thibault Cantat. Depolymerization of Waste Plastics to Monomers and Chemicals Using a Hydrosilylation Strategy Facilitated by Brookhart’s Iridium(III) Catalyst. ACS Sustainable Chemistry & Engineering, American Chemical Society, 2018, 6, pp.10481- 10488. 10.1021/acssuschemeng.8b01842. cea-01826077 HAL Id: cea-01826077 https://hal-cea.archives-ouvertes.fr/cea-01826077 Submitted on 30 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Depolymerization of Waste Plastics to Monomers and Chemicals Using a Hydrosilylation Strategy Facilitated by Brookhart’s Iridium(III) Catalyst Louis Monsigny, † Jean-Claude Berthet, † and Thibault Cantat*† NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France. Corresponding author: [email protected] KEYWORDS: Hydrosilylation, Depolymerization, Polyesters, Polycarbonates, Plastic waste, Iridium, Catalysis. ABSTRACT: Plastic waste management is a major concern. While the societal demand for sustainability is growing, landfilling and incineration of waste plastics remain the norm and methods able to efficiently recycle these materials are desirable.
    [Show full text]
  • Natural Depolymerization of Waste Poly(Ethylene Terephthalate) by Neutral Hydrolysis in Marine Water Dorin Stanica‑Ezeanu* & Danuta Matei
    www.nature.com/scientificreports OPEN Natural depolymerization of waste poly(ethylene terephthalate) by neutral hydrolysis in marine water Dorin Stanica‑Ezeanu* & Danuta Matei Polyethylene terephthalate (PET) is one of the most widely used materials for food packaging and fshing nets. After use it become waste and, due to poor collection, most will be found foating in marine waters. This paper presents the results of a study of PET depolymerization by hydrolysis. We observed that marine water is a perfect reactant because it contains a multitude of metal ions that act as catalysts. A frst‑order kinetic model was developed and experimental data ftted to it. An activation energy of 73.5 kJ/mole and a pre‑exponential factor of 5.33 × 107 h–1 were obtained. Considering that the global ocean is a huge batch reactor operating under isothermal conditions, the solution of the mathematical model shows that in tropical regions only 72 years is needed for total and only 4.5 years for 50% PET conversion. Global food consumption increases day by day and, in the same manner, greater amounts of plastic packaging are released in the environment with a massive impact on the living world, especially on marine life. Te impact of waste plastic on the marine environment, taking into consideration the efects on marine life and the fnancial losses in tourism and the fshing industry represents over $13 billion per year1. Industrial development has produced an exponential increase in plastic production reaching 311 million metric tons (MT) in 2014, and the forecast is that this will be doubled by 2035 and almost increased fourfold by 20502.
    [Show full text]
  • Modifying the Depolymerization of Sacrifical Polymers for Electronic Devices
    MODIFYING THE DEPOLYMERIZATION OF SACRIFICAL POLYMERS FOR ELECTRONIC DEVICES A Dissertation Presented to The Academic Faculty by Oluwadamilola Phillips In Partial Fulfillment of the Requirements for the Degree Doctorate of Philosophy in the School of Chemical and Biomolecular Engineering Georgia Institute of Technology December 2018 COPYRIGHT © 2018 BY OLUWADAMILOLA PHILLIPS MODIFYING THE DEPOLYMERIZATION OF SACRIFICIAL POLYMERS FOR ELECTRONIC DEVICES Approved by: Dr. Paul A. Kohl, Advisor Dr. Elsa Reichmanis School of Chemical and Biomolecular School of Chemical and Biomolecular Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Ryan Lively Dr. Karl I. Jacob School of Chemical and Biomolecular School of Materials Science and Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Martin Maldovan School of Chemical and Biomolecular Engineering Georgia Institute of Technology Date Approved: July 3, 2018 This PhD dissertation is dedicated to my hero and father, Kola Sanyaolu Phillips ACKNOWLEDGEMENTS There are many people who I need to thank for allowing me to fulfill one of my dreams of pursuing a PhD in chemical engineering. First, I’d like to thank my advisor Dr. Paul Kohl for accepting me as graduate student in his group. I have a great deal of respect and admiration for the depth of knowledge and creativity in your approach to research. I have learned a tremendous amount from you, and I thank you for having a great sense of humor. My graduate study experience has been truly enjoyable and it is thanks to you. Hopefully I have expanded your horizon on all the types of delicious jello that one could make.
    [Show full text]
  • Polytetrafluoroethylene: Synthesis and Characterization of the Original Extreme Polymer
    Polytetrafluoroethylene: Synthesis and Characterization of the Original Extreme Polymer Gerard J. Putsa, Philip Crousea and Bruno M. Amedurib* aDepartment of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa. b Ingenierie et Architectures Macromoléculaires, Institut Charles Gerhardt, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France. Correspondence to: Bruno Ameduri (E-mail: [email protected]) 1 ABSTRACT This review aims to be a comprehensive, authoritative, and critical review of general interest to the chemistry community (both academia and industry) as it contains an extensive overview of all published data on the homopolymerization of tetrafluoroethylene (TFE), detailing the TFE homopolymerization process and the resulting chemical and physical properties. Several reviews and encyclopedia chapters on the properties and applications of fluoropolymers in general have been published, including various reviews that extensively report copolymers of TFE (listed below). Despite this, a thorough review of the specific methods of synthesis of the homopolymer, and the relationships between synthesis conditions and the physico-chemical properties of the material prepared, has not been available. This review intends to fill that gap. As known, PTFE and its marginally modified derivatives comprise some 6065 % of the total international fluoropolymer market with a global increase of ca. 7 % per annum of its production. Numerous companies, such as Asahi Glass, Solvay Specialty Polymers, Daikin, DuPont/Chemours, Juhua, 3F and 3M/Dyneon, etc., produce TFE homopolymers. Such polymers, both high molecular-mass materials and waxes, are chemically inert, hydrophobic, and exhibit an excellent thermal stability as well as an exceptionally low co-efficient of friction. These polymers find use in applications ranging from coatings and lubrication to pyrotechnics, and an extensive industry (electronic, aerospace, wires and cables, as well as textiles) has been built around them.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,908,917 Kawakami Et Al
    USOO.5908917A United States Patent (19) 11 Patent Number: 5,908,917 Kawakami et al. (45) Date of Patent: Jun. 1, 1999 54). POLYGLYCOLIC ACID SHEET AND 6-256481 9/1994 Japan. PRODUCTION PROCESS THEREOF OTHER PUBLICATIONS 75 Inventors: Yukichika Kawakami; Nobuo Sato; D.K. Gilding et al (1979) Polymer, vol. 20, pp. 1459–1463. Mitsuru Hoshino; Toshitaka European Search Report for Application No. 97302906.9 Kouyama, all of Fukushima; Zenya dated Sep. 4, 1997. Shiiki, Chiba, all of Japan Primary Examiner Duc Truong 73 Assignee: Kureha Kagaku Kogyo K.K., Tokyo, Attorney, Agent, or Firm-Dinsmore & Shohl LLP Japan 57 ABSTRACT 21 Appl. No.: 08/844,409 The invention provides a polyglycolic acid sheet obtainable by melt-extruding a thermoplastic resin material into a sheet 22 Filed: Apr. 18, 1997 in a temperature range of from the melting point, Tm of the 30 Foreign Application Priority Data polymer to 255 C., wherein the thermoplastic resin material comprises polyglycolic acid having a repeating unit repre Apr. 30, 1996 JP Japan .................................... 8-134218 Apr. 8, 1997 JP Japan ... 9-105161 sented by the following formula (1): (51) Int. Cl." ..................................................... C08G 63/08 (1) 52 U.S. Cl. .......................... 528/354; 528/425; 528/503; O-CH-C 525/419, 525/420; 521/79; 264/46.1; 264/46.2; 264/75; 264/77; 264/160; 264/239 O 58 Field of Search ..................................... 528/354, 425, 528/503; 264/46.1, 46.2, 75, 77, 160, 239; and the following physical properties: 521/79; 525/419, 420 (a) the melt viscosity, m as measured at a temperature of (the melting point, Tm of the polymer+20° C.) and a 56) References Cited shear rate of 100/sec being 500-100,000 Pa.s; U.S.
    [Show full text]
  • Current Status of Methods Used in Degradation of Polymers: a Review
    MATEC Web of Conferences 144, 02023 (2018) https://doi.org/10.1051/matecconf/201814402023 RiMES 2017 Current Status of Methods Used In Degradation of Polymers: A Review Aishwarya Kulkarni1 and Harshini Dasari1 1Department of Chemical Engineering, Manipal Institute of Technology, Manipal, Manipal Academy of Higher Education, India. Abstract. Degradation of different polymers now a day is the most crucial thing to carry out. It possesses threats to human health as well as to the environment. Different polymers like PVA, PVC, and PP with high density and low density are one of the most consumed by population and also their degradation is a bit difficult. For this many people have started working on effective methods of degradation of these polymers. This can be done by thermal degradation and pyrolysis which requires high temperature, bio degradation using starch, bacteria etc and photo degradation. Traditional gravimetric and respirometric techniques are the methods currently used in testing. They fit readily for degradable polymeric materials usually. Also they are well suited for biodegradable components with polymer blends. But the recent polymer generation is comparatively resistant to bio degradation of polymers hence they cannot be used here. The polymer matrices are readily present in the plasticizers boosting the strength of polymeric material hence in addition; there is the mechanism of degradation. The information on various methods discussed in this review is planned to illustrate a best fit of methods for those who are interested in testing the degradation of polymers under different environmental conditions and selection of appropriate technique for specific combination of mixture of polymer and catalysts which helps to degrade the polymeric material.
    [Show full text]
  • Factual Document for the Office of Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers
    Factual Document for the Office of Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers Chair – Phillip F. Britt, Oak Ridge National Laboratory Co-Chair – Geoffrey W. Coates, Cornell University Co-Chair – Karen I. Winey, University of Pennsylvania Amit K. Naskar, Tomonori Saito, and Zili Wu, Oak Ridge National Laboratory with contributions from Eugene Chen, Colorado State University Logan Kearney, Oak Ridge National Max Delferro, Argonne National Laboratory Laboratory William Dichtel, Northwestern University Jonathan P. Mathews, Pennsylvania State University Ben Elling, Northwestern University Maureen McCann, Purdue University Christopher J. Ellison, University of Minnesota Robin D. Rogers, University of Alabama Thomas H Epps, III, University of Delaware Aaron Sadow, Ames Laboratory Jeannette Garcia, IBM Research Susannah Scott, University of California– Santa Barbara Felipe Polo Garzon, Oak Ridge National Laboratory Chunshan Song, Pennsylvania State University Zhibin Guan, University of California– Irvine Brent Sumerlin, University of Florida Marc Hillmyer, University of Minnesota Robert Waymouth, Stanford University George Huber, University of Wisconsin Jinwen Zhang, Washington State University Cynthia Jenks, Argonne National Laboratory April 2019 Table of Contents List of Figures .............................................................................................................................................. v List of Abbreviations, Acronyms, and Initialisms ................................................................................
    [Show full text]
  • Chemical Recycling of Plastics
    Chemical recycling of plastics Muhammad Saad Qureshi Anja Oasmaa 22.04.2020 29/04/2020 VTT – beyond the obvious 1 Interdisciplinary Industrial solutions thought developed by leadership 100 teams since 1942 1000+ of research and World class innovation projects research labs incl. Fortune 500 and facilities partners VTT is a visionary research, development and innovation partner. We drive sustainable growth and tackle the Doctoral level biggest global challenges of our time and turn Cutting-edge teams, 80% of them into growth opportunities. We go beyond technologies from employees with the obvious to help the society and companies space to university to grow through technological innovations. VTT microbiology degrees is at the sweet spot where innovation and under one roof business come together. www.vttresearch.com 29/04/2020 VTT – beyond the obvious 2 Questions I expect to answer from this presentation . Q1. From the packaging point of view, how chemical recycling will change the recycling of plastic in the future? . Q2. Is it more eco friendly than the recycling of plastics at the moment? How? . Q3. What advantages this new method has? . Q4. How does this chemical recycled end material differ from the “traditionally” recycled plastics? . Q5. How does the end material (granulates?) differ from each other between these two methods? 29/04/2020 VTT – beyond the obvious 3 Plastic waste management has many fronts… • At VTT we are aware of the challenges Waste Design for EOL statistics recyclability involved in this problem. • We believe that for true circular economy, Complexity of Pre- Recycling waste treatment technology the whole plastic recycling value chain needs active research and innovative solutions Products Upgrading Standardisation Legis- Markets lations 29.4.2020 VTT – beyond the obvious 4 Contents .
    [Show full text]
  • Thermal and Mechanical Properties of Polystyrene Modified with Esters
    J Therm Anal Calorim (2015) 121:235–243 DOI 10.1007/s10973-015-4547-7 Thermal and mechanical properties of polystyrene modified with esters derivatives of 3-phenylprop-2-en-1-ol Marta Worzakowska Received: 14 September 2014 / Accepted: 6 February 2015 / Published online: 3 March 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The thermal and mechanical properties of utilized as plastics, latex paints, coating, synthetic rubbers polystyrene (PS) modified with esters derivatives of and styrene alkyd coatings, for food-contact packing 3-phenylprop-2-en-1-ol were investigated. The influence of polymers, in electronics and building materials, as material the content of esters on the glass transition temperature, for the formation of toys, cups, office supplies, etc. [1–3]. dynamic mechanical properties, flexural properties, hard- On the contrary, styrene easily copolymerizes with differ- ness and thermal stability of PS has been examined. It was ent monomers such as acrylonitrile, methacrylamide, di- found that the PS/ester compositions were characterized by vinylbenzene, butadiene, maleic anhydride, vinyl chloride, lower stiffness, lower values of Tg, lower hardness, lower esters of organic acids, e.g., acrylates or methacrylates, stress at break, lower thermal stability and higher values of unsaturated polyesters or others creating polymeric mate- tg delta height and strain at break as compared to pure PS. rials with unique properties suitable for many industrial The obtained results proved that esters derivatives of applications [4–14]. 3-phenylprop-2-en-1-ol can find their place as an envi- In order to improve the processing, performance and ronmentally friendly, external plasticizers of PS.
    [Show full text]
  • Plastic Waste Depolymerization As a Source of Energetic Heating Oils
    E3S Web of Conferences 14 , 02044 (2017) DOI: 10.1051/ e3sconf/20171402044 Energy and Fuels 2016 Plastic waste depolymerization as a source of energetic heating oils Marta Wołosiewicz-Głąb1,*, Paulina Pięta1 , Sebastian Sas2, Łukasz Grabowski1 1 AGH - University of Science and Technology, Faculty of Mining and Geoengineering, Department of Environmental Engineering and Mineral Processing, 30 A. Mickiewicz Ave., 30-059 Cracow, Poland 2AGH - University of Science and Technology, Faculty of Mining and Geoengineering, Department of Underground Mining, 30 A. Mickiewicz Ave., 30-059 Cracow, Poland Abstract. In the past years there has been an increase in production and consumption of plastics, which are widely used in many areas of life. Waste generated from this material are a challenge for the whole of society, regardless of awareness of sustainable development and its technological progress. Still the method of disposal of plastic waste are focused mainly on their storage and incineration, not using energy contained there. In this paper technology for plastic waste depolymerization with characteristics of fuel oil resulting in the process, as an alternative to traditional energy carriers such as: coal, fine coal or coke used in households will be presented. Oil has a high calorific value and no doubt could replace traditional solutions which use conventional energy sources. Furthermore, the fuel resulting from this process is sulfur-free and chemically pure. The paper presents the installation for plastics waste depolymerization used in selected Polish Institute of Plastics Processing, along with the ability to use the main thermocatalytic transformation product. 1 Plastic waste’s market analysis Over the last several years we have seen a steady increase in the production of plastics in the world, while in Europe, their production is stable and has remained at about 58 million Mg (Fig.
    [Show full text]