Evolutionary Trees

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Trees Evolutionary Trees 13 minutes 13 marks Page 1 of 7 Q1. The diagram shows an evolutionary tree for a group of animals called primates. The names of extinct animals are printed in italics e.g. Nycticeboides. The drawings show animals that are alive today. Illustration by Lucrezia Beerli-Bieler (a) (i) How many million years ago did Karanisia first appear? ............................. millions of years ago. (1) (ii) During which geological period did the Apes and Monkeys begin to evolve? .......................................................................................................................... (1) (iii) Which group of primates alive today are the closest relatives of the Lorises? .......................................................................................................................... (1) Page 2 of 7 (b) Darwin was the first scientist to state that humans and other primates had common ancestors. Many people were against Darwin’s ideas at that time. Give two reasons why they were against his ideas. 1 ................................................................................................................................. .................................................................................................................................... 2 ................................................................................................................................. .................................................................................................................................... (2) (Total 5 marks) Q2. The diagram shows a timeline for the evolution of some dinosaurs. The mass of each dinosaur is shown in the brackets by its name. (a) Name one dinosaur which lived between 100 and 150 million years ago. ..................................................................................................................................... (1) (b) Which dinosaur did Ornitholestes evolve from? ..................................................................................................................................... (1) Page 3 of 7 (c) Apart from body size and mass, give one other difference between Lagosuchus and Alamosaurus. ..................................................................................................................................... ..................................................................................................................................... (1) (d) (i) Which dinosaur had the largest mass? ........................................................................................................................... (1) (ii) What happened to the mass of dinosaurs during evolution? ........................................................................................................................... ........................................................................................................................... (1) (e) We know about dinosaurs from their fossils. Describe one way in which fossils are formed ..................................................................................................................................... ..................................................................................................................................... (1) (f) Complete the sentence by using the correct words from the box. billion complex large million simple thousand The theory of evolution states that all species of living things have evolved from .......................................... life forms which first developed more than three .......................................... years ago. (2) (Total 8 marks) Page 4 of 7 M1. (a) (i) 40 – 42 1 (ii) Palaeocene 1 (iii) bush babies 1 (b) any two from: • religious objections • insufficient evidence allow ‘could not prove’ ignore ‘no evidence’ • mechanism of heredity not known 2 [5] M2. (a) agilisaurus / camarasaurus / ornitholestes 1 (b) eorapter allow lagosuchus 1 (c) lagusuchus (it) walks on hind limbs / two limbs / alamosaurus has longer neck / lagusuchus has back legs longer than front but alamosaurus has the reverse 1 (d) (i) alamosaurus 1 (ii) increased 1 (e) from hard parts / bones / imprints e.g. footprints / parts replaced by other materials / conditions for decay absent or example buried is neutral 1 (f) simple 1 billion 1 [8] Page 5 of 7 E1. In part (a)(i) a majority of candidates gave acceptable answers in the range 40-42, but several gave answers in the 30s. It was surprising how many candidates failed to copy the name of the period correctly in part (a) (ii). It was often difficult to decide whether the candidate was referring to Palaeocene or to Pliocene. Several candidates hedged their bets by giving a range of periods. In part (a)(iii) whilst most candidates correctly deduced the relationship, there were many who gave answers which did not come from the drawing, pandas being a popular choice. In part (b) nearly all candidates gave answers that attempted to address the question. The most common correct responses where that Darwin was unable to prove his ideas and that people had contradictory religious beliefs. Very few candidates gave answers relating to the mechanism of heredity not being known. The most common errors were suggestions that humans and primates were different. For example, primates looked too different or behaved differently. Some candidates simply suggested that people did not believe Darwin. Better candidates would support this with suggestions that it was a new idea, or that only Darwin thought he was right, or that people did not want to believe that they were related to primates. A significant proportion of candidates incorrectly suggested Darwin had no evidence; however insufficient evidence gained a mark. E2. (a) This was correctly answered by most candidates. (b) This question revealed that a large percentage of candidates had misread the timescale on the diagram. They believed that the top of the diagram represented the furthest back in time, coming towards the present day as you moved down the page. This led to many of them stating that Ornitholestes had evolved from Tyrannosaurus rather than from Eoraptor. (c) Some candidates guessed at differences that might have existed, rather than stating the differences that could be seen in the diagram. (d) In part (i) most candidates usually answered correctly, though part (ii) again revealed those candidates who had the time scale going in the wrong direction, as they stated that the mass of the dinosaurs decreased during evolution. (e) Most candidates were able to make some reference to the bones or hard parts of the animal. (f) This was generally well answered. Page 6 of 7 Page 7 of 7.
Recommended publications
  • Titanosauriform Teeth from the Cretaceous of Japan
    “main” — 2011/2/10 — 15:59 — page 247 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 247-265 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Titanosauriform teeth from the Cretaceous of Japan HARUO SAEGUSA1 and YUKIMITSU TOMIDA2 1Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, 669-1546, Japan 2National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan Manuscript received on October 25, 2010; accepted for publication on January 7, 2011 ABSTRACT Sauropod teeth from six localities in Japan were reexamined. Basal titanosauriforms were present in Japan during the Early Cretaceous before Aptian, and there is the possibility that the Brachiosauridae may have been included. Basal titanosauriforms with peg-like teeth were present during the “mid” Cretaceous, while the Titanosauria with peg-like teeth was present during the middle of Late Cretaceous. Recent excavations of Cretaceous sauropods in Asia showed that multiple lineages of sauropods lived throughout the Cretaceous in Asia. Japanese fossil records of sauropods are conformable with this hypothesis. Key words: Sauropod, Titanosauriforms, tooth, Cretaceous, Japan. INTRODUCTION humerus from the Upper Cretaceous Miyako Group at Moshi, Iwaizumi Town, Iwate Pref. (Hasegawa et al. Although more than twenty four dinosaur fossil local- 1991), all other localities provided fossil teeth (Tomida ities have been known in Japan (Azuma and Tomida et al. 2001, Tomida and Tsumura 2006, Saegusa et al. 1998, Kobayashi et al. 2006, Saegusa et al. 2008, Ohara 2008, Azuma and Shibata 2010).
    [Show full text]
  • Determining the Largest Known Land Animal: a Critical Comparison of Differing Methods for Restoring the Volume and Mass of Extinct Animals
    ANNALS OF CARNEGIE MUSEUM VOL. 85, NUMBER 4, PP. 335–358 31 DECEMBER 2019 DETERMINING THE LARGEST KNOWN LAND ANIMAL: A CRITICAL COMPARISON OF DIFFERING METHODS FOR RESTORING THE VOLUME AND MASS OF EXTINCT ANIMALS GREGORY PAUL 3100 St. Paul Street 604, Baltimore, Maryland, 21218 [email protected] ABSTRACT Recent claims regarding what is and is not the largest known sauropod dinosaur are tested via dimensional comparisons of the most critical metrics of relative size—especially, when possible, the functional lengths of the dorsal vertebral centra and the articulated length of the combined trunk vertebrae—and analog volumetric models based on technical skeletal restorations. The Cretaceous Argentinosaurus massed 65–75 tonnes, and its dorsal vertebrae and dorsal–sacral series are much larger than those of any other described titanosaur. Specimens of Patagotitan indicate a 50–55 tonne titanosaur, and the less complete Notocolossus, Puertasaurus, and ‘Antarctosaurus’ giganteus appear to have occupied a similar size range. Paralititan weighed between 30 and 55 tonnes. The juvenile Dreadnoughtus, as well as Futalognkosaurus and Alamosaurus, were in the area of 30 tonnes, with the possibility that the last was substantially larger. Entirely analog, skillfully produced, high-anatomical-fidelity skeletal restorations and volumetric models representing a prime-lean condition are approximately as scientifically objective and accurate, as well as more realistic than, analog-digital, crudely-formed convex hull volumetric models, which are based on subjectively and often inconsistently or erroneously mounted skeletons and digitized skeletal reconstructions. The need to ensure that skeletal restorations are as anatomically correct and consistent as the data allow is stressed, which requires that researchers and illustrators be sufficiently skilled in animal and especially dinosaur anatomy, and the proce- dures and standards for achieving the best possible results are detailed.
    [Show full text]
  • Reassessment of Aeolosaurus Maximus, a Titanosaur Dinosaur from the Late Cretaceous of Southeastern Brazil
    Historical Biology An International Journal of Paleobiology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ghbi20 Reassessment of Aeolosaurus maximus, a titanosaur dinosaur from the Late Cretaceous of Southeastern Brazil Julian C. G. Silva Junior, Agustín G. Martinelli, Fabiano V. Iori, Thiago S. Marinho, E. Martín Hechenleitner & Max C. Langer To cite this article: Julian C. G. Silva Junior, Agustín G. Martinelli, Fabiano V. Iori, Thiago S. Marinho, E. Martín Hechenleitner & Max C. Langer (2021): Reassessment of Aeolosaurus maximus, a titanosaur dinosaur from the Late Cretaceous of Southeastern Brazil, Historical Biology, DOI: 10.1080/08912963.2021.1920016 To link to this article: https://doi.org/10.1080/08912963.2021.1920016 Published online: 29 Apr 2021. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 HISTORICAL BIOLOGY https://doi.org/10.1080/08912963.2021.1920016 ARTICLE Reassessment of Aeolosaurus maximus, a titanosaur dinosaur from the Late Cretaceous of Southeastern Brazil Julian C. G. Silva Junior a,b, Agustín G. Martinelli b,c, Fabiano V. Iorid,e, Thiago S. Marinho b,f, E. Martín Hechenleitner g,h and Max C. Langer a aLaboratório de Paleontologia de Ribeirão Preto, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil; bCentro de Pesquisas Paleontológicas “Llewellyn Ivor Price”, Universidade Federal do Triângulo Mineiro, Uberaba, Peirópolis, Minas Gerais, Brazil; cCONICET-Sección Paleontología De Vertebrados, Museo Argentino De Ciencias Naturales ‘Bernardino Rivadavia’, Buenos Aires, Argentina; dMuseu de Paleontologia Pedro Candolo, Estação Cultura, Praça Farmacêutico Bruno Garisto, Uchoa, São Paulo, Brazil; eMuseu de Paleontologia Prof.
    [Show full text]
  • The Evolution of Sauropod Locomotion
    eight The Evolution of Sauropod Locomotion MORPHOLOGICAL DIVERSITY OF A SECONDARILY QUADRUPEDAL RADIATION Matthew T. Carrano Sauropod dinosaur locomotion, fruitful but also have tended to become canal- like that of many extinct groups, has his- ized. In this regard, the words of paleontologist torically been interpreted in light of potential W. C. Coombs (1975:23) remain particularly apt, modern analogues. As these analogies—along as much for their still-relevant summary of the with our understanding of them—have shifted, status quo in sauropod locomotor research as perspectives on sauropod locomotion have fol- for their warning to future workers: lowed. Thus early paleontologists focused on the “whalelike” aspects of these presumably aquatic It is a subtle trap, the ease with which an entire reptilian suborder can have its habits and habi- taxa (e.g., Osborn 1898), reluctantly relinquish- tat preferences deduced by comparison not ing such ideas as further discoveries began to with all proboscideans, not with the family characterize sauropod anatomy as more terres- Elephantidae, not with a particular genus or trial. Although this debate continued for over a even a single species, but by comparison with century, the essentially terrestrial nature of certain populations of a single subspecies. Deciding that a particular modern animal is sauropod limb design was recognized by the most like sauropods is no guarantee of solving early 1900s (Hatcher 1903; Riggs 1903). Aside the problem of sauropod behavior. from a few poorly received attempts (e.g., Hay 1908; Tornier 1909), comparisons have usually Similarly, modern analogues play a limited been made between sauropods and terrestrial role in illuminating the evolution of sauropod mammals, rather than reptiles.
    [Show full text]
  • Osteological, Myological, and Biomechanical Investigations of the Sauropod Dinosaur
    Osteological, myological, and biomechanical investigations of the sauropod dinosaur Dreadnoughtus schrani and molecular paleontological investigation of the marine crocodile Thoracosaurus neocesariensis A Thesis Submitted to the Faculty of Drexel University by Kristyn K. Voegele in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2016 © Copyright 2016 Kristyn K. Voegele. All Rights Reserved. ii Dedication To those with dreams and those that help them achieve dreams iii Acknowledgements This project would not be possible without the support, assistance, and guidance of just about everyone I have had interacted with in the last five years. I am grateful for all of your time, effort, patience, and support. First, I would like to thank Drexel University, the College of Arts and Sciences, the Department of Biology, the Academy of Natural Sciences, the Department of Biodiversity, Earth, and Environmental Science, and all the faculty and staff that made my graduate education possible. At Drexel I have been fortunate to have the opportunity to learn from world-class scientists about research, teaching, and everything in between. I appreciate the resources and support provided to me over my graduate career to turn me into a capable scientist. I am also thankful to the organizations that have financially supported my research. Without the financial support from a National Science Foundation Graduate Research Fellowship (DGE Award #1002809) and a Paul Bond Scholarship from the Delaware Valley Paleontological Society much of my research would have been unaffordable. I am thankful to these institutions for helping me expand my area of focus and training in my field of study during my graduate career.
    [Show full text]
  • Modified Laminar Bone in Ampelosaurus Atacis and Other Titanosaurs (Sauropoda): Implications for Life History and Physiology
    Modified Laminar Bone in Ampelosaurus atacis and Other Titanosaurs (Sauropoda): Implications for Life History and Physiology Nicole Klein1*, P. Martin Sander1, Koen Stein1, Jean Le Loeuff2, Jose L. Carballido3, Eric Buffetaut4 1 Steinmann Institute of Paleontology, University of Bonn, Bonn, Germany, 2 Muse´e des Dinosaures, Espe´raza, France, 3 Museo Paleontologico Egidio Feruglio, Trelew, Argentina, 4 Centre National de la Recherche Scientifique, Paris, France Abstract Background: Long bone histology of the most derived Sauropoda, the Titanosauria suggests that titanosaurian long bone histology differs from the uniform bone histology of basal Sauropoda. Here we describe the long bone histology of the titanosaur Ampelosaurus atacis and compare it to that of basal neosauropods and other titanosaurs to clarify if a special titanosaur bone histology exists. Methodology/Principal Findings: Ampelosaurus retains the laminar vascular organization of basal Sauropoda, but throughout most of cortical growth, the scaffolding of the fibrolamellar bone, which usually is laid down as matrix of woven bone, is laid down as parallel-fibered or lamellar bone matrix instead. The remodeling process by secondary osteons is very extensive and overruns the periosteal bone deposition before skeletal maturity is reached. Thus, no EFS is identifiable. Compared to the atypical bone histology of Ampelosaurus, the large titanosaur Alamosaurus shows typical laminar fibrolamellar bone. The titanosaurs Phuwiangosaurus, Lirainosaurus, and Magyarosaurus, although differing in certain features, all show this same low amount or absence of woven bone from the scaffolding of the fibrolamellar bone, indicating a clear reduction in growth rate resulting in a higher bone tissue organization. To describe the peculiar primary cortical bone tissue of Phuwiangosaurus, Ampelosaurus, Lirainosaurus, and Magyarosaurus, we here introduce a new term, ‘‘modified laminar bone’’ (MLB).
    [Show full text]
  • Long Bone Histology of Basalmost and Derived Sauropodomorpha: the Convergence of Fibrolamellar Bone and the Evolution of Giantism and Nanism
    Long bone histology of basalmost and derived Sauropodomorpha: the convergence of fibrolamellar bone and the evolution of giantism and nanism Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Koen Hendrik Willy Stein aus Antwerpen, Belgien Bonn November, 2010 2 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Prof. Dr. P. Martin Sander 2. Prof. Dr. Thomas Martin Tag der Promotion: 17/03/2011 Erscheinungsjahr: 2011 3 Erklärung Hiermit erkläre ich an eides statt, dass ich für meine Promotion keine anderen als die angegebenen Hilfsmittel benutzt habe, und dass die inhaltlich und wörtlich aus anderen Werken entnommenen Stellen und Zitate als solche gekennzeichnet sind. Koen Stein 4 Bottomless wonders spring from simple rules that are repeated without end Benoit Mandelbrot 1985 Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky 1973 5 Preface My first contact with bone histology was in 2005 during my MSc studies in Palaeobiology in Bristol. I did not have a clue how much potential this field of research really has. In fact, back then I thought it was a bit boring, mostly based on ignorance. Strangely enough, most subjects I initially find boring (my geology diploma thesis involved brachiopods and multivariate statistics), as soon as I discover its possibilities, I end up studying with much enthousiasm and fascination. Three years (and a couple of months) is a short time to study all the bone histological sections that Martin Sander, Nicole Klein and I collected.
    [Show full text]
  • Completeness of the Dinosaur Fossil Record: Disentangling Geological and Anthropogenic Biases
    COMPLETENESS OF THE DINOSAUR FOSSIL RECORD: DISENTANGLING GEOLOGICAL AND ANTHROPOGENIC BIASES by DANIEL DAVID CASHMORE A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY September 2019 School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Non-avian dinosaurs were a highly successful clade of terrestrial tetrapods that dominated Mesozoic ecosystems. Their public and scientific popularity makes them one of most intensely researched and understood fossil groups. Key to our understanding of their evolutionary history are interpretations of their changing diversity through geological time. However, spatiotemporal changes in fossil specimen completeness, diagnostic quality, and sampling availabil- ity can bias our understanding of a group’s fossil record. Methods quantifying the level of skeletal and phylogenetic information available for a fossil group have previously been used to assess potential bias. In this thesis, these meth- ods are used to critically assess the saurischian dinosaur fossil record, includ- ing an examination of changes in specimen completeness through research time.
    [Show full text]
  • Environmental and Geological Controls on the Diversity and Distribution of the Sauropodomorpha
    1 ENVIRONMENTAL AND GEOLOGICAL CONTROLS ON THE DIVERSITY AND DISTRIBUTION OF THE SAUROPODOMORPHA PHILIP DAVID MANNION UNIVERSITY COLLEGE LONDON PHD IN PALAEOBIOLOGY 2 I, Philip David Mannion, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 3 ACKNOWLEDGMENTS I would like to express my greatest thanks to my two thesis supervisors, Paul Upchurch (UCL) and Paul M. Barrett (NHM, London). They have helped me throughout my PhD, offering me advice and assistance whenever it was requested and have always made themselves available to me. Their well designed project has also meant that my PhD has run extremely smoothly, with little or no problems during the three years. NERC and UCL are also thanked for risking money on me. Richard J. Butler (Bayerische Staatssammlung für Paläontologie und Geologie) has also helped me enormously over the course of my PhD – patiently explaining to me (several times) how to implement various statistical tests and use GIS, and in general providing extremely useful advice. I would also like to acknowledge the help and advice of (and useful discussions with) Roger B. J. Benson (University of Cambridge), Jon Bielby (Institute of Zoology, London), Chris Carbone (Institute of Zoology, London), Matthew T. Carrano (Smithsonian Institution), Chris McManus (UCL) and Alistair J. McGowan (Museum für Naturkunde), as well as thank my two thesis examiners, Susan E. Evans (UCL) and Oliver W. M. Rauhut (Bayerische
    [Show full text]
  • Brachiosaurus (Dinosauria:(Dinosauria: Saursauropoda)Opoda) Frfromom the Upper Jurassic Morrison Formation of Oklahoma
    PaleoBios 24(2):13–21,24(2):13–21, SepSeptembertember 115,5, 20020044 © 2004 University of California Museum of Paleontology First occurrence of Brachiosaurus (Dinosauria:(Dinosauria: Sauropoda)Sauropoda) frfromom the Upper Jurassic Morrison Formation of Oklahoma MATTHEW F. BONNAN1 and MATHEW J. WEDEL2 1Department of Biological Sciences, Western Illinois University, Macomb, IL 61455; (309) 298-2155, [email protected]. 2University of California Museum of Paleontology, 1101 Valley Life Sciences Building, University of California, Berkeley CA 94720-4780; [email protected]. The giant sauropod Brachiosaurus is one of thethe rarestrarest sauropodssauropods fromfrom thethe UpperUpper Jurassic of NorthNorth AmerAmerica.ica. The genus has previously been reported from Colorado, Utah, and Wyoming. OMNH 01138 is a sauropod metacarpal of unusual proportions from the Upper Jurassic Morrison Formation of Oklahoma. The bone is longer and more slender than the metacarpals of diplodocids and Camarasaurus, and is mostmost similar in size and proportionsproportions toto thethe elongate metacarpals of Brachiosaurus. This is the fi rst report ofBrachiosaurus fromfrom Oklahoma. INTRODUCTION Berlin, Germany; KUVP, University of Kansas Museum of Brachiosaurus Riggs 19031903 is one of thethe mostmost familiar and Vertebrate Paleontology, Lawrence, Kansas; MNN TIG, Mu- distinctive dinosaurs, and a century after its initial descrip- sée National du Niger; NMNH, National Museum of Natural tion it remains the largest sauropod known from reasonably History, Washington, D.C.; OMNH, Oklahoma Museum complete remains. Brachiosaurus altithorax Riggs 11903903 wwasas of Natural History, Norman, Oklahoma; ZPAL, Institute of fi rst described on the basis of a partial skeleton from the Paleobiology, Polish Academy of Sciences, Warsaw, Poland. Upper Jurassic Morrison Formation of Colorado, USA.
    [Show full text]
  • View Preprint
    The Chinese colossus: an evaluation of the phylogeny of Ruyangosaurus giganteus and its ​ ​ implications for titanosaur evolution 1 2 Nima Sassani *,​ Gunnar Tyler Bivens ​ ​ 1 28361​ Millwood Rd., Trabuco Canyon, California, USA 2 302​ E Paradise Ln., Phoenix, Arizona, USA *Email address: [email protected] ​ PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2988v1 | CC BY 4.0 Open Access | rec: 23 May 2017, publ: 23 May 2017 Abstract: For many years the precise taxonomy of Titanosauria has been a puzzle, and even ​ today only certain segments of this vast clade are well-understood. The phylogenetic positions of many titanosaurs are murky, though specimens often still await rigorous analysis. One of the largest examples is the massive Chinese titanosaur Ruyangosaurus giganteus – though largely ​ ​ ​ ​ incomplete, the holotype is distinct enough to indicate strong phylogenetic affinities with a specific subgroup of titanosaurs. A review of previous literature on Ruyangosaurus, referred ​ ​ tentatively to Andesauridae, shows that this classification is based on three weak, non-diagnostic characters. Ruyangosaurus differs from taxa traditionally included in Andesauridae in at least 20 ​ ​ characters of the torso, femur, and tibia. Several plesiomorphies of Ruyangosaurus are extremely ​ ​ rare in titanosauria except for the clade Lognkosauria and its close relatives. The vertebra initially described as a posterior cervical is most likely an anterior dorsal, with a strong resemblance to that of Puertasaurus. The posterior dorsal of Ruyangosaurus shares ​ ​ ​ ​ synapomorphies with Mendozasaurus and Dreadnoughtus. The femur clusters close to the ​ ​ ​ ​ femora of Malawisaurus, Traukutitan, and Pitekunsaurus. Ruyangosaurus is here recovered as a ​ ​ ​ ​ ​ ​ ​ ​ lognkosaurian, with significant implications for the distribution and evolution of that group and the paleobiology of Mid-Cretaceous China.
    [Show full text]
  • An Articulated Cervical Series of Alamosaurus Sanjuanensis Gilmore
    Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 An articulated cervical series of Alamosaurus sanjuanensis Gilmore, 1922 (Dinosauria, Sauropoda) from Texas: new perspective on the relationships of North America's last giant sauropod Ronald S. Tykoski & Anthony R. Fiorillo To cite this article: Ronald S. Tykoski & Anthony R. Fiorillo (2016): An articulated cervical series of Alamosaurus sanjuanensis Gilmore, 1922 (Dinosauria, Sauropoda) from Texas: new perspective on the relationships of North America's last giant sauropod, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2016.1183150 To link to this article: http://dx.doi.org/10.1080/14772019.2016.1183150 © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group View supplementary material Published online: 01 Jun 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Download by: [99.104.10.73] Date: 01 June 2016, At: 19:29 Journal of Systematic Palaeontology, 2016 http://dx.doi.org/10.1080/14772019.2016.1183150 An articulated cervical series of Alamosaurus sanjuanensis Gilmore, 1922 (Dinosauria, Sauropoda) from Texas: new perspective on the relationships of North America’s last giant sauropod Ronald S. Tykoski* and Anthony R. Fiorillo Research & Collections Division, Perot Museum of Nature and Science, 2201 N. Field Street, Dallas, Texas, 75201, USA (Received 2 September 2015; accepted 15 March 2016) The sauropod dinosaur Alamosaurus sanjuanensis Gilmore, 1922 has been known from Maastrichtian deposits of south- western North America for nearly a century.
    [Show full text]