Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles

Total Page:16

File Type:pdf, Size:1020Kb

Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles clean technologies Review A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles Carlo Cunanan, Manh-Kien Tran , Youngwoo Lee, Shinghei Kwok, Vincent Leung and Michael Fowler * Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; [email protected] (C.C.); [email protected] (M.-K.T.); [email protected] (Y.L.); [email protected] (S.K.); [email protected] (V.L.) * Correspondence: [email protected]; Tel.: +1-519-888-4567 (ext. 33415) Abstract: Greenhouse gas emissions from the freight transportation sector are a significant contributor to climate change, pollution, and negative health impacts because of the common use of heavy-duty diesel vehicles (HDVs). Governments around the world are working to transition away from diesel HDVs and to electric HDVs, to reduce emissions. Battery electric HDVs and hydrogen fuel cell HDVs are two available alternatives to diesel engines. Each diesel engine HDV, battery-electric HDV, and hydrogen fuel cell HDV powertrain has its own advantages and disadvantages. This work provides a comprehensive review to examine the working mechanism, performance metrics, and recent developments of the aforementioned HDV powertrain technologies. A detailed comparison between the three powertrain technologies, highlighting the advantages and disadvantages of each, is Citation: Cunanan, C.; Tran, M.-K.; also presented, along with future perspectives of the HDV sector. Overall, diesel engine in HDVs will Lee, Y.; Kwok, S.; Leung, V.; Fowler, remain an important technology in the short-term future due to the existing infrastructure and lower M. A Review of Heavy-Duty Vehicle costs, despite their high emissions, while battery-electric HDV technology and hydrogen fuel cell Powertrain Technologies: Diesel HDV technology will be slowly developed to eliminate their barriers, including costs, infrastructure, Engine Vehicles, Battery Electric and performance limitations, to penetrate the HDV market. Vehicles, and Hydrogen Fuel Cell Electric Vehicles. Clean Technol. 2021, Keywords: heavy-duty vehicles; diesel engine trucks; battery electric trucks; fuel cell electric trucks; 3, 474–489. https://doi.org/10.3390/ cleantechnol3020028 zero-emission vehicles Academic Editor: José-Santos López-Gutiérrez 1. Introduction Received: 24 March 2021 Increasing truck transport demand [1] and greenhouse gas emissions [2] have gar- Accepted: 25 April 2021 nered the interest of many to research alternative powertrain technologies for heavy-duty Published: 1 June 2021 vehicles (HDVs). Objectives to reduce and mitigate emissions across all sectors have been set by many governments regarding the transportation sector. Conventional HDVs dis- Publisher’s Note: MDPI stays neutral proportionately represent the on-road carbon dioxide (CO2), nitrogen oxide (NOx), and with regard to jurisdictional claims in particulate matter (PM) [3]. Medium and heavy-duty vehicles account for approximately published maps and institutional affil- 23% of the greenhouse gas (GHG) emissions in the United States [4]. HDVs also account iations. for approximately 40–60% of the NOx and PM emissions [3]. Climate change, pollution, and the resulting health impacts are some of the major concerns with the rise of these combustion emissions [5]. Therefore, the proposal for lower emission and zero-emission HDVs has been made. Copyright: © 2021 by the authors. A vehicle is classified as heavy-duty if it has a gross vehicle weight rating (GVWR) Licensee MDPI, Basel, Switzerland. greater than 26,000 lbs [6]. The GVWR is the maximum loaded weight of the vehicle, which This article is an open access article is the weight of the vehicle in addition to its payload. HDVs can be further classified distributed under the terms and into two classes, as seen in Figure1. Class 7 vehicles include transit buses, tow trucks, conditions of the Creative Commons and furniture trucks. Class 8 vehicles include semi-tractors, fire trucks, and dump trucks. Attribution (CC BY) license (https:// Class 7 vehicles have a GVWR of 26,000 lbs to 33,000 lbs, and Class 8 vehicles have a GVWR creativecommons.org/licenses/by/ of greater than 33,000 lbs. 4.0/). Clean Technol. 2021, 3, 474–489. https://doi.org/10.3390/cleantechnol3020028 https://www.mdpi.com/journal/cleantechnol Clean Technol. 2021, 3, FOR PEER REVIEW 2 Clean Technol. 2021, 3 Class 7 vehicles have a GVWR of 26,000 lbs to 33,000 lbs, and Class 8 vehicles have 475a GVWR of greater than 33,000 lbs. Figure 1. Classes and applications of heavy-duty vehicles. Figure 1. Classes and applications of heavy-duty vehicles. Conventional HDVs use fossil fuels and an internal combustion engine (ICE) which produceConventional energy to HDVs power use their fossil movement fuels and [7 an]. Most internal HDVs combustion today use engine an ICE (ICE) that utilizeswhich producediesel called energy a compression-ignitionto power their movement engine [7]. due Most to itsHDVs greater today energy use an efficiency ICE that than utilizes gaso- dieselline. However,called a compression many kinds-ignition of emissions engine are due released to its greater during energy diesel efficiency combustion, than such gaso- as line. However, many kinds of emissions are released during diesel combustion, such as CO2, NOx, and PM. Lower emission strategies in HDV technology consist of increasing the COefficiency2, NOx, and or reducing PM. Lower the pollutionemission ofstrategies the conventional in HDV technology diesel truck consist [8], using of increasing alternative thefuels efficiency which produceor reducing fewer the emissions pollution [ 9of], the or usingconventional a hybrid-electric diesel truck powertrain [8], using that alterna- stores tivesome fuels of thewhich energy produce it uses fewer within emissions batteries [9], [10 or]. using These a strategies hybrid-electric work bypowertrain reducing that fuel storeconsumptions some of the or by energy reducing it uses their within tailpipe batteries emissions. [10]. These Examples strategies of lower work emission by reducing strate- fuelgies consumption include reducing or by the reducing rolling resistancetheir tailpipe of theemissions. tires, which Examples increases of lower the fuel emission savings strategiesof the vehicle include and reducing using alternativethe rolling resistance fuels such of as the compressed tires, which natural increases gas the or fuel biodiesel, sav- ingswhich of the produce vehicle fewer and using emissions alternative [11]. However, fuels such zero-emission as compressed vehicles natural require gas or biodiesel a different, whichpowertrain produce as anyfewer vehicle emissions with [11]. an ICE However, will result zero in-emiss tailpipeion emissions. vehicles require a different powertrainThe two as any types vehicle of zero-emission with an ICE will vehicles result that in tailpipe will be emissions. discussed in this review are batteryThe electrictwo types vehicles of zero (BEVs)-emission and vehicles hydrogen that fuel will cell be vehiclesdiscussed (HFCVs). in this review These are vehicles bat- terypropel electric themselves vehicles using (BEVs) electricity and hydrogen and do fuel not requirecell vehicles the use (HF ofCVs). an ICE. These BEVs vehicles and HFCVs pro- pelboth themselves convert the using chemical electricity energy and stored do not in require active materialsthe use of into an ICE. electrical BEVs energy and HFCVs within boththe electrochemicalconvert the chemical cells. Batteriesenergy stored differ in from active fuel materials cells because into electrical batteries energy have the within active thematerial electrochemical stored within cells. the Batteries system, differ while from fuel cellsfuel ce havells because the active batteries materials have continuously the active materialfed into stored the system. within BEVthe system, batteries while are oftenfuel cells composed have the of active lithium-ion materials cells continuously due to their fedhigh into energy the system. andpower BEV batteries density are [12 often–14]. composed On the other of lithium hand,-ion HFCVs cells due often to usetheir proton high energyexchange and membranepower density fuel [ cells12–14 (PEMFC)]. On the dueother to hand, their HFCVs high-power often densityuse proton and exchange cold-start membranecapabilities fuel [15 cells]. (PEMFC) due to their high-power density and cold-start capabilities [15]. Both solutions offer zero tailpipe emissions, however, their well-to-wheels (WTW) emissionsBoth solutions are still highoffer in zero many tailpipe countries emissions, because however, of fossil fueltheir energy well-to generation.-wheels (WTW) WTW emissionsemissions are are still the high emissions in many released countries from because two main of fossil stages: fuel well-to-pump,energy generation. and WTW pump- emissionsto-wheels are [16 the]. Well-to-pump emissions released emissions from aretwo the main emissions stages: well released-to-pump, from theand production pump-to- of energy and the transport of it to the consumer. Pump-to-wheels are the refueling and tailpipe emissions generated when the vehicle is being refueled and used, respectively. Therefore, if the energy to generate the electricity or hydrogen to power the vehicle was uti- Clean Technol. 2021, 3 476 lized fossil fuels, the well-to-pump emissions would be significant. However, if the sources of energy used to generate the
Recommended publications
  • Talking Tesla Elon Musk
    Bridge to Someday Top 10 of 2017 Waiting for a new U.S. crossing PG. 10 Products that topped our list PG. 36 The Business Magazine of Canada’s Trucking Industry EVERYONE’S TALKING TESLA W 5C4. Will it be the game changer? January 2018 www.todaystrucking.com plus Yard Dogs Tools to keep your trailers rolling Sleep Well Canadian Mail Sales Product Agreement #40063170. Return postage guaranteed. Newcom Media Inc., 451 Attwell Dr., Toronto, ON M9 Researchers fascinated by fatigue Contents January 2018 | VOLUME 32, NO.1 5 Letters 7 John G. Smith 10 16 9 Rolf Lockwood 31 Mike McCarron NEWS & NOTES Dispatches 13 MacKinnon Sold Ontario fleet sold to Contrans 22 Heard on the Street 32 36 23 Logbook 24 Truck Sales 25 Pulse Survey 26 Stat Pack 27 Trending 30 Truck of the Month In Gear 44 Yard Dogs Features Keep trailers moving in the yard with 10 Bridge to Someday specialized equipment Work on the Gordie Howe International 48 Southern Stars Bridge continues, but at a slow pace By Elizabeth Bate Cabovers gaining ground in Mexico 16 Talking Tesla 51 Product Watch Elon Musk (partially) unveils his electric truck. 52 Guess the location, Will it be the game changer he promises? By John G. Smith win a hat 32 Sleep Well Good health begins with proper sleep. Researchers want to know if drivers are getting what they need. By Elizabeth Bate 36 The Top 10 Here’s the tech that topped our editor’s list in 2017 By John G. Smith Cover Image: Courtesy of Tesla For more visit www.todaystrucking.com JANUARY 2018 3 BORN TO BE Designed with decades of experience BETTER.
    [Show full text]
  • FREIGHTLINER Ecascadia the FUTURE of COMMERCE
    Insider ELECTRIC CAR Buyers Guide Buyers COMMERCIAL VEHICLES ELECTRIC TRUCK COMPLETE REVIEWS Mobile App REBATES GUIDE REBATES FREIGHTLINER eCASCADIA THE FUTURE OF COMMERCE BYD Class 6 PROTERRA Catalyst US: $9.45 CA: $11.45 EV Educational Pillars Displays for Electric Vehicle Exhibitions and Educational Events Get answers to the most common EV questions, including: • How do I charge my truck? • How far can electric trucks drive? • What incentives and rebates are available? • Are electric trucks really cheaper to operate? • How green are electric trucks? Set up throughout an event space: • Provide educational exhibits at intervals along the walking loop. • Create consistent visual appeal throughout the exhibit area. • When displayed together, the ten exhibits provide a complete introductory knowledge to owning and driving electric vehicles. Fully customizable with your logo, local pricing data and other information. Call us for more information and pricing www.electric-car-insider.com/edu-exhibits.html 619-335-7102 Buyers Guide Contents 2020 Q3 TRUCKS & VANS 8 FEATURES Tesla Semi 7 From the Editor Nikola TWO 8 Electric Crossovers Here, Trucks Coming 3 Freightliner eCascadia 9 Volvo VNR Electric 10 XOS ET-One 11 ELECTRIC VEHICLE BUYERS GUIDE Peterbilt 579EV 12 16 Commercial Electric Vehicles Freightliner eM2 13 Profiles and Specifications 6 Peterbilt 220EV 14 XOS Medium Duty 15 Lion 8 16 BYD Class 8 17 Mitsubishi Fuso eCanter 18 SEA Electric Hino 195 EV 19 34 25 BYD Class 6 20 Phoenix Zeus 500 21 Motiv Power Systems Epic 22 Cummins PowerDrive
    [Show full text]
  • Within the Industry
    GROWING GALLONS WITHIN THE INDUSTRY Propane autogas is the leading alternative fuel in world — powering more than 25 million vehicles worldwide. The U.S. propane-autogas-powered vehicle market lags in acceptance with just over 200,000 vehicles. The propane industry fleet accounts for a small, but growing, percentage of the overall population. Thanks to recent improvements in propane autogas fuel system technology, a growing number of propane marketers are choosing propane autogas rather than diesel and gasoline powered engines when they specify and purchase vehicles. The original objective of this paper was to define the status of converting the propane industry’s fleet to our fuel and identify barriers that were obstructing growth in this industry and others. In this edition, we want to share an industry status update as well as recent successes in the expansion of propane autogas. Today, more marketers are choosing propane autogas for their fleets. As this report outlines, propane autogas is providing significant overall total cost-of-ownership (TCO) savings that translates into profits for all marketers regardless of fleet size. PROPANE AUTOGAS VEHICLES of the current propane vehicles requires an investment, but that Like other transportation markets, the propane industry follows investment is paying off in many ways. Pickup trucks, manager and standard practices when specifying and purchasing class 1-8 service vehicles, bobtails, and cylinder rack trucks all are available vehicles to safely transport payload, optimize vehicle performance, from multiple brands in both dedicated and bi-fuel models. These and provide the highest possible returns for their stakeholders. options provide comparable performance to conventional fuels with Propane autogas is becoming the choice for many marketer fleets a much lower TCO and much quicker ROI.
    [Show full text]
  • Fuel Properties Comparison
    Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb.
    [Show full text]
  • Accelerating Electric Vehicle Adoption: a Vision for Minnesota
    Accelerating Electric Vehicle Adoption: A Vision for Minnesota Minnesota Department of Transportation Minnesota Pollution Control Agency 2019 Great Plains Institute 2 Acknowledgements Authors Fran Crotty, Minnesota Pollution Control Agency Brendan Jordan, Great Plains Institute, Drive Electric Minnesota Dane McFarlane, Great Plains Institute Tim Sexton, Minnesota Department of Transportation Siri Simons, Minnesota Department of Transportation Data Analysis Anne Claflin, Minnesota Pollution Control Agency Anne Jackson, Minnesota Pollution Control Agency Dorian Kvale, Minnesota Pollution Control Agency Amanda Jarrett Smith, Minnesota Pollution Control Agency Contributors Katelyn Bocklund, Great Plains Institute Matthew Blackler, ZEF Energy Larry Herke, State of Minnesota Office of Enterprise Sustainability Pat Jones, Metro Transit Jukka Kukkonen, Plug-in Connect Diana McKeown, Great Plains Institute Sophia Parr, Duluth Transit Authority Rebecca Place, Minnesota Pollution Control Agency Lisa Thurstin, American Lung Association in Minnesota, Twin Cities Clean Cities Coalition Andrew Twite, Fresh Energy Denise Wilson, Minnesota Pollution Control Agency Photographer Will Dunder, Great Plains Institute Layout & Graphics Siri Simons, Minnesota Department of Transportation Accelerating Electric Vehicle Adoption: A Vision for Minnesota 3 Table of Contents 2 Acknowledgements 4 Executive Summary 6 Introduction 7 Collaboration Advances EVs 8 EV Basics 12 What are the Benefits of Electric Vehicles in Minnesota? 18 What are the Challenges? 20 Strategies to Advance Electric Vehicles 31 Utility Electric Vehicle Programs 32 Looking to the Future 35 Appendices 35 Appendix A 35 Appendix B 36 Appendix C 37 Appendix D 39 Appendix E 40 Appendix F 41 Appendix G 42 Appendix H 43 Appendix I 4 Executive Summary A STATEWIDE VISION FOR ELECTRIC VEHICLES The goal is admittedly ambitious.
    [Show full text]
  • Duty Hybrid Electric Truck
    Cranfield University JONG-KYU PARK MODELLING AND CONTROL OF A LIGHT- DUTY HYBRID ELECTRIC TRUCK School of Engineering MSc by research Thesis Cranfield University SCHOOL OF ENGINEERING MSc by Research THESIS Academic Year 2005-2006 JONG-KYU PARK MODELLING AND CONTROL OF A LIGHT- DUTY HYBRID ELECTRIC TRUCK Supervisor: Professor N.D. Vaughan September 2006 This thesis is submitted in partial fulfilment of the requirements for the degree of MSc by Research © Cranfield University, 2006. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. ABSTRACT This study is concentrated on modelling and developing the controller for the light-duty hybrid electric truck. The hybrid electric vehicle has advantages in fuel economy. However, there have been relatively few studies on commercial HEVs, whilst a considerable number of studies on the hybrid electric system have been conducted in the field of passenger cars. So the current status and the methodologies to develop the LD hybrid electric truck model have been studied through the literature review. The modelling process used in this study is divided into three major stages. The first stage is to determine the structure of the hybrid electric truck and define the hardware. The second is the component modelling using the AMESim simulation tool to develop a forward facing model. In order to complete the component modelling, the information and data were collected from various sources including references and ADVISOR. The third stage is concerned with the controller which was written in Simulink. This was run in a co-simulation with the AMESim vehicle model.
    [Show full text]
  • May 2021 Newsletter
    May 2021 Newsletter Utah Clean Cities Announces Drive Electric Utah A partnership of the U.S. Department of Energy Clean Cities Programs recently won over $1.8 million in DOE funding to significantly advance electric vehicle (EV) adoption in states across the nation. Learn more about what this statewide Drive Electric Utah project is doing: DRIVE ELECTRIC UTAH WEBSITE PRESS RELEASE Working Together for a Cleaner Utah Utah is making tremendous progress on advancing smart mobility solutions to help protect the environment and improve air quality across the state. In both the public and private sectors, Utahns are coming together in the spirit of collaboration to help build a cleaner, more sustainable energy future by investing in Read full article! forward-thinking strategies and technologies. T a m m i e B o s t i c k Executive Director Utah Clean Cities Utah Clean Cities, PERC and Utah Stakeholders discuss how propane is being used by Utah fleets. Learn how propane could be used in your organization and the benefits to making the switch to a clean fuel. Additional Speakers: Chris Hussey Ed Dumire Steve Whaley T a m m i e B o s t i c k PERC Director of Autogas Executive Director Vice President Business Business Development Business Development Utah Clean Cities Development - Lancer Energy Manger – Western Region Frank Austin Mark Rich Tom Clark Transportation Coordinator - Executive Director- Fleet Manager - Zion Rocky Mountain Propane National Park Uintah School District Association Upcoming Webinars MAY 4, 2021 ON DEMAND ELECTRIC TRUCK
    [Show full text]
  • A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines
    energies Review A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines T. M. Yunus Khan 1,2 1 Research Center for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia; [email protected] 2 Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia Received: 1 August 2020; Accepted: 24 August 2020; Published: 26 August 2020 Abstract: The ever-increasing demand for transport is sustained by internal combustion (IC) engines. The demand for transport energy is large and continuously increasing across the globe. Though there are few alternative options emerging that may eliminate the IC engine, they are in a developing stage, meaning the burden of transportation has to be borne by IC engines until at least the near future. Hence, IC engines continue to be the prime mechanism to sustain transportation in general. However, the scarcity of fossil fuels and its rising prices have forced nations to look for alternate fuels. Biodiesel has been emerged as the replacement of diesel as fuel for diesel engines. The use of biodiesel in the existing diesel engine is not that efficient when it is compared with diesel run engine. Therefore, the biodiesel engine must be suitably improved in its design and developments pertaining to the intake manifold, fuel injection system, combustion chamber and exhaust manifold to get the maximum power output, improved brake thermal efficiency with reduced fuel consumption and exhaust emissions that are compatible with international standards. This paper reviews the efforts put by different researchers in modifying the engine components and systems to develop a diesel engine run on biodiesel for better performance, progressive combustion and improved emissions.
    [Show full text]
  • And Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2
    DOT HS 812 194 February 2016 Commercial Medium- and Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2 This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its content or use thereof. If trade or manufacturers’ names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Suggested APA Format Citation: Reinhart, T. E. (2016, February). Commercial medium- and heavy-duty truck fuel efficiency technology study – Report #2. (Report No. DOT HS 812 194). Washington, DC: National Highway Traffic Safety Administration. TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 812 194 4. Title and Subtitle 5. Report Date Commercial Medium- and Heavy-Duty Truck Fuel Efficiency February 2016 Technology Study – Report #2 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Thomas E. Reinhart, Institute Engineer SwRI Project No. 03.17869 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Southwest Research Institute 6220 Culebra Rd. 11. Contract or Grant No. San Antonio, TX 78238 GS-23F-0006M/DTNH22- 12-F-00428 12. Sponsoring Agency Name and Address 13.
    [Show full text]
  • 14. Diesel Fuel Standard and Compliance Program
    California’s Diesel Fuel Program November 29, 2018 1 Oil & Gas and GHG Mitigation Branch California Air Resources Board (CARB) 2 California Diesel Fuel Requirements ´ASTM D975, Standard Specification for Diesel Fuel Oils (enforced by the California Department of Agriculture’s Division of Measurement Standards) ´The California Diesel Fuel Regulations ´13 CCR 2281, Sulfur Content of Diesel Fuel ´13 CCR 2282, Aromatic Hydrocarbon Content of Diesel Fuel ´13 CCR 2293, et seq., Commercialization of Alternative Diesel Fuel 3 ASTM D975 - 2018, Standard Specification for Diesel Fuel Oils, Grade No. 2-D, S15 ´Flash Point, minimum, 52 °C (126 °F) ´Kinematic Viscosity at 40 °C, 1.9 - 4.1 mm2/s ´Cetane Number, minimum, 40 ´Cetane Index, minimum, or Aromaticity, maximum, 40 or 35 percent by volume ´Lubricity, High-Frequency Reciprocating Rig (HFRR), at 60 °C, maximum, 520 microns ´Conductivity, minimum, 25 pS/m (10-12 ohm-1m-1) 4 13 CCR 2281, Sulfur Content of Diesel Fuel ´Sulfur content maximum of 15 ppmw (mg/kg) ´Applicable to every gallon of vehicular and non-vehicular diesel fuel sold or supplied in California ´Enforced at all points of storage and distribution in California, from production or importation to dispensing 13 CCR 2282, Aromatic Content of 5 Diesel Fuel ´Aromatic hydrocarbon (AHC) content maximum of 10 percent by volume, or ´Certified emission-equivalent formulation established by engine emission testing, or ´Designated equivalent limits: ´AHC content, maximum, 21.0 percent by weight ´Polycyclic aromatic hydrocarbon (PAH) content,
    [Show full text]
  • The Mercedes-Benz Truck Range
    The Mercedes-Benz Truck range The big star in At Mercedes-Benz we are dedicated to providing each and every one of our customers with innovative and comprehensive solutions for total transport efficiency. We call this continued drive RoadEfficiency. So what does RoadEfficiency mean for you and your business? Low total costs Greater safety Maximised use Everything we do aims to deliver low Always ahead of the curve in truck Mercedes-Benz Uptime ensures maximum total costs for our customers, from the innovation, Mercedes-Benz Trucks now availability of your vehicles at all times. outset and throughout a truck’s life. offer the latest in safety systems. It is a ground-breaking service product, › Innovative, market leading fuel-saving › Active Brake Assist 4 with pedestrian based on real-time monitoring of your technology – our 2nd generation safety – this technology is unrivalled vehicles, significantly increasing the engines and powertrain can achieve by any other truck manufacturer. efficiency of your fleet. Uptime builds up to 6% fuel savings. upon the telematics and connectivity- based innovations we’ve been offering › Low repair and maintenance costs with Fleetboard for over 15 years. › Competitive finance options › High residual values Contents Everything we do is driven by our total commitment to deliver RoadEfficiency to each and every one of our customers. Low total costs + greater safety + maximised use For more information on any of our models, to find your nearest Dealer or to download a brochure, please visit: Efficiency is the sum of the details Visit mercedes-benz.com/roadefficiency for more details mbtrucks.co.uk Atego The Atego is a winner on all fronts, offering the attributes to suit your tasks whatever the application.
    [Show full text]
  • Fleet Efficiencies and Upgrades
    INNOVATIVE Fleet Efficiencies and Upgrades As a top three provider of LTL freight service in components as carmakers ramp up production. North America and the owner of one of the largest We’re also exploring the promise of electric SWITCHING TO road fleets in Europe, XPO has the responsibility vehicles in our own fleet, particularly as a zero- PREMIUM DIESEL to take an industry-leading role in innovation and emission alternative to diesel for urban deliveries sustainability. We continue to focus on reducing in areas where tailpipe exhaust rules are growing In 2021, XPO is switching our carbon footprint as well as to improving the stricter. XPO’s first electric truck is expected to to 100% premium diesel. overall efficiency of all resources we consume. enter service in 2021 in the US and represents a Higher in cetane — valuable pilot to advance our understanding of With operations spanning North America and how and where to best use electric vehicles. analogous to octane Europe, XPO has the scale to experiment locally, in gasoline — premium and expand industry-leading improvements In the past year, XPO continued to roll out diesel can burn cleaner, continuously. Ongoing initiatives include innovations guided by the understanding that lubricate better and run modernizing and upgrading our tractors, trailers decisions we take today will impact our business and facilities, deploying cleaner fuels such as for years to come: more smoothly. premium diesel, natural gas, biogas and electricity, where practical, and deepening our use of data ■ Europe. In 2020, XPO’s European fleet benefited On the road, this and software analytics to improve the efficiency of from significant upgrades and investment, translates into fuel routing, loading and handling.
    [Show full text]