Downloaded from by Guestpediatrics on September Vol

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from by Guestpediatrics on September Vol AMERICAN ACADEMY OF PEDIATRICS Section on Ophthalmology AMERICAN ASSOCIATION FOR PEDIATRIC OPHTHALMOLOGY AND STRABISMUS AMERICAN ACADEMY OF OPHTHALMOLOGY Screening Examination of Premature Infants for Retinopathy of Prematurity ABSTRACT. This statement revises a previous state- tion published thus far, the sponsoring organizations ment on screening of premature infants for retinopathy of this statement suggest the following guidelines for of prematurity originally published in 1997. the United States: 1. Infants with a birth weight of less than 1500 g or ABBREVIATION. ROP, retinopathy of prematurity. with a gestational age of 28 weeks or less, as well as selected infants between 1500 and 2000 g with INTRODUCTION an unstable clinical course who are believed to be etinopathy of prematurity (ROP) is a retinal at high risk by their attending pediatrician or neo- disorder of low birth weight premature in- natologist, should have at least 2 fundus exami- Rfants potentially leading to blindness in a nations performed after pupillary dilation using small but significant percentage of those infants. The binocular indirect ophthalmoscopy to detect ROP. results of the Multicenter Trial of Cryotherapy for One examination is sufficient only if it unequivo- Retinopathy of Prematurity Cooperative Group indi- cally shows the retina to be fully vascularized cated that treatment is associated with a 41% de- bilaterally. crease in the occurrence of posterior retinal traction 2. Examination for ROP should be performed by an folds or detachments and a 19% to 24% decrease in ophthalmologist with sufficient regular experi- the incidence of blindness when evaluated 5 years 1–3 ence and knowledge in the examination of pre- later. Because of the sequential nature of the pro- term infants for ROP to identify the location and gression of ROP, the proven benefits of cryotherapy sequential retinal changes in this disorder using and, more recently, the acceptance of at least equiv- binocular indirect ophthalmoscopy. The location alent therapeutic benefit of laser therapy for the same 4–7 and sequential retinal changes, if any, should be indications, standards of practice now demand recorded using the International Classification of carefully timed retinal examinations of at-risk infants Retinopathy of Prematurity.8 by an ophthalmologist experienced in the examina- 3. The first examination should normally be per- tion of preterm infants for ROP to minimize the risk formed between 4 and 6 weeks of chronologic of visual loss by those infants. (postnatal) age or, alternatively, within the 31st to This statement outlines the principles on which a 33rd week of postconceptional or postmenstrual screening program to detect ROP in infants at risk age (gestational age at birth plus chronologic age), might be based. The goal of an effective screening whichever is later, as determined by the infant’s program must be to identify the relatively few pre- attending pediatrician or neonatologist. If using term infants who require treatment for ROP from the postconceptional age guideline, examinations among the much larger number born each year while are generally not needed in the first 4 weeks after minimizing the number of stressful examinations re- birth. The timing of the initial screening examina- quired for these sick infants. Any screening program tion may be adjusted appropriately on the basis of designed to implement an evolving standard of care other reliable data, such as local incidence and has inherent defects, such as overreferral or under- onset of ROP or the presence of other recognized referral, and cannot, by its very nature, duplicate the risk factors.8,9 The initial screening examination precision and rigor of a scientifically based clinical and subsequent examinations should be timed to trial. With that in mind and on the basis of informa- permit sufficient time for treatment, including, any extra time required for transfer to another facility for treatment, if necessary. Treatment The recommendations in this statement do not indicate an exclusive course should generally be accomplished within 72 hours of treatment or serve as a standard of medical care. Variations, taking into account individual circumstances, may be appropriate. of determination of the presence of threshold 1 PEDIATRICS (ISSN 0031 4005). Copyright © 2001 by the American Acad- ROP to minimize the risk of retinal detachment emy of Pediatrics. before treatment. Downloaded from www.aappublications.org/news by guestPEDIATRICS on September Vol. 26, 1082021 No. 3 September 2001 809 4. Scheduling of follow-up examinations at the rec- this difficulty in distinguishing between stages 2 ommendation of the examining ophthalmologist and 3 in posterior regions, infants with suspected is best determined by the findings at the first stage 3 ROP in zone I or border zone I to II with examination using the International Classification of plus disease should be examined especially care- Retinopathy of Prematurity. For example, if the ret- fully to determine if they meet the threshold cri- inal vasculature is immature and extends into teria noted above. zone II but no retinopathy is present, follow-up 7. Parents of infants with ROP should be informed examination should be planned at approximately of the nature and possible consequences of this 2- to 3-week intervals until normal vascularization disorder throughout the infant’s hospital stay, be- proceeds to zone III (ie, in the nasal periphery, ginning at the time of first diagnosis and continu- there is no retinopathy and normal vessels are ing on an ongoing basis with updates on its pro- present within 1 disk diameter of the ora serrata). gression during hospitalization. 5. Once an infant has been determined on first ex- 8. Responsibility for examination and follow-up of amination to be at risk for ROP, the following infants at risk for ROP must be carefully defined schedule is suggested: by each neonatal intensive care unit. Unit-specific A. Infants with ROP that may soon progress to criteria for examination for ROP should be estab- threshold ROP should be examined at least lished for each neonatal intensive care unit by weekly. These include: consultation and agreement between neonatology 1. Any infant with ROP less than threshold in and ophthalmology services. These criteria should zone I be recorded and should automatically trigger 2. Infants with ROP in zone II, including: scheduled ophthalmology examinations. If hospi- a) those with stage 3 ROP without plus tal discharge or transfer to another neonatal unit disease (defined as posterior pole dila- or hospital is contemplated before retinal matura- tion and tortuosity of the retinal vessels); tion into zone III has taken place, the availability b) those with stage 2 ROP with plus dis- of appropriate follow-up ophthalmologic exami- ease; and nation must be ensured, and specific arrangement c) those with stage 3 ROP with plus disease for that examination must be made before such not yet extensive enough to justify abla- discharge or transfer occurs. The transferring pri- tive surgery. mary physician should have the responsibility of B. Infants with less severe ROP in zone II should communicating orally and in writing what eye be examined at 2-week intervals. Those with- examinations are needed and their required tim- out ROP but with incomplete vascularization ing to the infant’s new primary physician. The in zone I should be seen at 1- to 2-week inter- new primary physician should ascertain the cur- vals until retinal vascularization has reached rent ocular examination status of the infant from zone III or until threshold conditions are the record and through communication with the reached. transferring physician so that any necessary ex- C. If the retinal vascularization is incomplete in aminations by an ophthalmologist with regular zone II but no ROP is detected, follow-up ex- experience and knowledge of the examination amination should be planned at approxi- of preterm infants for ROP can be arranged mately 2- to 3-week intervals until vasculariza- promptly at the receiving facility. If responsibility tion proceeds into zone III. for arranging follow-up after discharge is dele- D. Retinas with incomplete vascularization only gated to the parents, it must be clearly understood in zone III usually mature completely; ROP in by the parents that blindness is a possible out- zone III normally regresses (involutes) without come, that there is a critical time window to adverse consequences. However, the finding be met if treatment is to be successful, and that of normal vascularization in zone III is un- timely follow-up examination is essential to suc- usual in the initial examination of very low cessful treatment; this information should be gestational age infants. In cases in which zone transmitted to the parents orally and in writing. If III vascular maturation seems to be present on such arrangements for follow-up after transfer or initial examination of very low birth weight discharge cannot be made, the infant should not infants, this finding should be verified by at be transferred or discharged. least 1 repeat examination within 2 to 3 weeks. 6. Infants reaching threshold 1 disease (stage 3 ROP These recommendations replace the previous in zone I or II in 5 or more continuous clock hours American Academy of Pediatrics statement on or 8 cumulative clock hours [30° sectors] with plus ROP,10 are evolving, and may be modified as addi- disease [posterior retinal vessel dilation and tor- tional ROP risk factors, treatment, and long-term tuosity]) should receive ablative therapy for at outcomes are known. least 1 eye within 72 hours of diagnosis, generally before the onset of retinal detachment. Stage 3 Retinopathy of Prematurity Subcommittee, 1997–2001 ROP with vascularization in zone I or borderline Walter M. Fierson, MD, Chairperson zone I to II may appear different from purely zone Earl A. Palmer, MD II stage 3 disease in that proliferation may appear Robert A. Petersen, MD flat, only appearing to be significantly elevated Dale L.
Recommended publications
  • A Patient & Parent Guide to Strabismus Surgery
    A Patient & Parent Guide to Strabismus Surgery By George R. Beauchamp, M.D. Paul R. Mitchell, M.D. Table of Contents: Part I: Background Information 1. Basic Anatomy and Functions of the Extra-ocular Muscles 2. What is Strabismus? 3. What Causes Strabismus? 4. What are the Signs and Symptoms of Strabismus? 5. Why is Strabismus Surgery Performed? Part II: Making a Decision 6. What are the Options in Strabismus Treatment? 7. The Preoperative Consultation 8. Choosing Your Surgeon 9. Risks, Benefits, Limitations and Alternatives to Surgery 10. How is Strabismus Surgery Performed? 11. Timing of Surgery Part III: What to Expect Around the Time of Surgery 12. Before Surgery 13. During Surgery 14. After Surgery 15. What are the Potential Complications? 16. Myths About Strabismus Surgery Part IV: Additional Matters to Consider 17. About Children and Strabismus Surgery 18. About Adults and Strabismus Surgery 19. Why if May be Important to a Person to Have Strabismus Surgery (and How Much) Part V: A Parent’s Perspective on Strabismus Surgery 20. My Son’s Diagnosis and Treatment 21. Growing Up with Strabismus 22. Increasing Signs that Surgery Was Needed 23. Making the Decision to Proceed with Surgery 24. Explaining Eye Surgery to My Son 25. After Surgery Appendix Part I: Background Information Chapter 1: Basic Anatomy and Actions of the Extra-ocular Muscles The muscles that move the eye are called the extra-ocular muscles. There are six of them on each eye. They work together in pairs—complementary (or yoke) muscles pulling the eyes in the same direction(s), and opposites (or antagonists) pulling the eyes in opposite directions.
    [Show full text]
  • Pediatric Ophthalmology/Strabismus 2017-2019
    Academy MOC Essentials® Practicing Ophthalmologists Curriculum 2017–2019 Pediatric Ophthalmology/Strabismus *** Pediatric Ophthalmology/Strabismus 2 © AAO 2017-2019 Practicing Ophthalmologists Curriculum Disclaimer and Limitation of Liability As a service to its members and American Board of Ophthalmology (ABO) diplomates, the American Academy of Ophthalmology has developed the Practicing Ophthalmologists Curriculum (POC) as a tool for members to prepare for the Maintenance of Certification (MOC) -related examinations. The Academy provides this material for educational purposes only. The POC should not be deemed inclusive of all proper methods of care or exclusive of other methods of care reasonably directed at obtaining the best results. The physician must make the ultimate judgment about the propriety of the care of a particular patient in light of all the circumstances presented by that patient. The Academy specifically disclaims any and all liability for injury or other damages of any kind, from negligence or otherwise, for any and all claims that may arise out of the use of any information contained herein. References to certain drugs, instruments, and other products in the POC are made for illustrative purposes only and are not intended to constitute an endorsement of such. Such material may include information on applications that are not considered community standard, that reflect indications not included in approved FDA labeling, or that are approved for use only in restricted research settings. The FDA has stated that it is the responsibility of the physician to determine the FDA status of each drug or device he or she wishes to use, and to use them with appropriate patient consent in compliance with applicable law.
    [Show full text]
  • Pediatric Cataracts: a Retrospective Study of 12 Years (2004
    Pediatric Cataracts: A Retrospective Study of 12 Years (2004 - 2016) Cataratas em Idade Pediátrica: Estudo Retrospetivo de 12 ARTIGO ORIGINAL Anos (2004 - 2016) Jorge MOREIRA1, Isabel RIBEIRO1, Ágata MOTA1, Rita GONÇALVES1, Pedro COELHO1, Tiago MAIO1, Paula TENEDÓRIO1 Acta Med Port 2017 Mar;30(3):169-174 ▪ https://doi.org/10.20344/amp.8223 ABSTRACT Introduction: Cataracts are a major cause of preventable childhood blindness. Visual prognosis of these patients depends on a prompt therapeutic approach. Understanding pediatric cataracts epidemiology is of great importance for the implementation of programs of primary prevention and early diagnosis. Material and Methods: We reviewed the clinical cases of pediatric cataracts diagnosed in the last 12 years at Hospital Pedro Hispano, in Porto. Results: We identified 42 cases of pediatric cataracts with an equal gender distribution. The mean age at diagnosis was 6 years and 64.3% of patients had bilateral disease. Decreased visual acuity was the commonest presenting sign (36.8%) followed by leucocoria (26.3%). The etiology was unknown in 59.5% of cases and there was a slight predominance of nuclear type cataract (32.5%). Cataract was associated with systemic diseases in 23.8% of cases and with ocular abnormalities in 33.3% of cases. 47.6% of patients were treated surgically. Postoperative complications occurred in 35% of cases and posterior capsular opacification was the most common (25%). Discussion: The report of 42 cases is probably the result of the low prevalence of cataracts in this age. Although the limitations of our study include small sample size, the profile of children with cataracts in our hospital has characteristics relatively similar to those described in the literature.
    [Show full text]
  • Pediatric Glaucoma
    CLINICAL STRATEGIES Pediatric Glaucoma Advice on diagnosing and managing a rare but potentially devastating group of diseases. BY SHARON F. FREEDMAN, MD hildhood glaucomas are infrequently encoun- try between the corneas of the infant’s eyes. Rapid corneal tered by many eye care providers and can there- stretching may lead to breaks in Descemet’s membrane fore be challenging to diagnose. Because this het- called Haab’s striae, which will leave permanent scars Cerogeneous group of diseases can cause a rapid (Figure 1). Oftentimes, the affected infant is photophobic loss of vision or even blindness, however, the timely recog- (Figure 2) and may have tearing that the clinician must dis- nition and optimal treatment of pediatric glaucoma is criti- tinguish from nasolacrimal duct obstruction.1,2 cal. Fortunately, ophthalmologists often have at their dis- Newborns with healthy eyes have a corneal diameter of posal the tools needed to diagnose and begin to manage approximately 9.5 to 10.0 mm. A corneal diameter of these children. Usually, the ideal care of patients with pedi- greater than 12.0 mm in any infant younger than 1 year is atric glaucoma involves the efforts of more than one oph- therefore suspicious for glaucoma.3 The IOP usually thalmologist, unless a pediatric glaucoma specialist is locat- ranges from 10 to 15 mm Hg in newborns, whereas the ed near the child’s home. IOP in children of school age resembles that of adults. Most children with glaucoma will have an IOP that is BACKGROUND higher than 22 mm Hg. The most common form of pediatric glaucoma, primary Although infants and children under the age of 2 often congenital glaucoma, occurs in approximately one in present with signs and symptoms related to rapid ocular 10,000 individuals.1 As with adult forms of the disease, expansion under high IOP, older children without an acute- pediatric glaucoma may be primary or secondary.
    [Show full text]
  • AAPOS – SPOSI Joint Meeting, Jaipur, India, Preliminary Program – Subject to Changes
    AAPOS – SPOSI Joint Meeting, Jaipur, India, Preliminary Program – Subject to changes Friday, December 2, 2016 9:00 AM – 9:05 AM Opening Remarks & Welcome Room A and Room B Sean P. Donahue, MD, PhD 9:05 AM – 10:35 AM Childhood Visual Impairment: Detection, Assessment, and Rehabilitation Room A and Room B 9:05 AM – 9:41 AM Blindness and Prevention of Visual Impairment in Children 9:05 AM – 9:06 AM Introduction Sherwin J. Isenberg, MD 9:06 AM – 9:24 AM Childhood Blindness World Wide: Current Status Clare Gilbert, MB ChB, FRCOphth, MD, MSc 9:24 AM – 9:32 AM The NGO’s Role in Treating and Preventing Blindness Marilyn T. Miller, MD Victoria Sheffield, President and CEO, International Eye Foundation 9:32 AM – 9:38 AM Epidemiology of Eye Disease in Children Birth to 3 in a Tertiary Eye Center in India P. Vijayalakshmi, MS, DO 9:38 AM – 9:41 AM Question and Answer Session 9:41 AM – 10:06 AM Early Detection and Assessment of Visual Impairment in Children 9:41 AM – 9:42 AM Introduction Linda Lawrence, MD 9:42 AM – 9:57 AM How the Pediatric Ophthalmologist Diagnoses CVI and Why? Gordon Dutton, MD, FRCS Ed (hon), FRCOphth 9:57 AM – 10:03 AM Early Detection Should Lead to Early Intervention; Rural Initiatives Kalpana Narendran, MBBS, DO, DNB 10:03 AM – 10:06 AM Question and Answer Session 10:06 AM – 10:35 AM Rehabilitation for Children with Visual Impairment 10:06 AM – 10:07 AM Introduction Albert Biglan, MD 10:07 AM – 10:17 AM Interventions from the Ophthalmologist’s Perspective Lea Hyvärinen, MD, PhD 10:17 AM – 10:25 AM Interventions from the Rehabilitation
    [Show full text]
  • Abnormal Red Reflex: Etiologies in a Pediatric Ophthalmology Population
    CPJXXX10.1177/0009922820916892Clinical PediatricsLin et al 916892research-article2020 Article Clinical Pediatrics 2020, Vol. 59(8) 760 –765 Abnormal Red Reflex: Etiologies in a © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions Pediatric Ophthalmology Population DOI:https://doi.org/10.1177/0009922820916892 10.1177/0009922820916892 journals.sagepub.com/home/cpj Sophie Y. Lin, BA1 , Kimberly G. Yen, MD1,2, Huirong Zhu, PhD2, Alexis Moisiuc, BS2, and Madhuri Chilakapati, MD1,2 Abstract Children who present with an abnormal red reflex (ARR) are often referred to ophthalmology due to concern for retinoblastoma. However, an ARR can indicate a wide variety of pathologies, all of which have the potential to develop amblyopia and irreversible vision loss. In this retrospective cohort study, we demonstrate that children who presented with an ARR had a mean age of 22.0 ± 32.5 months and were more frequently referred by their pediatricians (74.5%). The majority of these patients (61.8%) had a normal examination on further evaluation, followed by refractive error (20.4%). Amblyopia was diagnosed in 83.9% of patients with refractive error, with a mean age of 50.3 ± 49.2 months. Because many ARR-associated pathologies require time-sensitive treatment to prevent vision loss, proper screening is critical for diagnosis. Pediatricians play a key role in screening, so education on more common ARR pathologies can better facilitate referrals and improve outcomes. Keywords abnormal red reflex, leukocoria, screening Introduction to any ocular condition that limits visual stimulation to the eye so if amblyopia is not treated early, vision loss Eliciting the red reflex is a useful clinical test used by can be irreversible.
    [Show full text]
  • Update on Orthokeratology in Managing Progressive Myopia in Children: Efficacy, Mechanisms, and Concerns
    Review Article Update on Orthokeratology in Managing Progressive Myopia in Children: Efficacy, Mechanisms, and Concerns Xintong Li, MD; Ilana B. Friedman, MD; Norman B. Medow, MD; Cheng Zhang, MD ABSTRACT INTRODUCTION Myopia is an important public health issue, and high my- Myopia, commonly known as near-sightedness, opia may lead to severe complications if left untreated. is a spherical refractive error that causes light to fo- Orthokeratology lenses, worn overnight to reshape the cus in front of the retina, resulting in blurry distance cornea, are one of many recent modalities used to slow vision while preserving clearer near vision. It is due down the progression of myopia in children. This treat- to axial lengthening of the globe or increased refrac- ment has been proven successful, as evidenced by de- tive power of the eye. Epidemiologic studies of this creased spherical refractive error and axial length relative condition are complicated by age, ethnicity, and the to the control at interval follow-up ranging from 6 months degree of spherical refractive error needed to label an to 5 years. In this systematic review, the authors collected eye as myopic, and its prevalence ranges from 33% published controlled studies that analyzed the efficacy in whites to approximately 90% in East Asians. In of orthokeratology lens wear and calculated longitudi- addition to increasing functional impairment of nal relative changes in axial length, revealing a weighted the patient, myopia increases the risk of subretinal average of -45.1% change in
    [Show full text]
  • Retinopathy of Prematurity
    INVITED COMMENTARY Retinopathy of Prematurity Alice L. Bashinsky Retinopathy of prematurity (ROP) is a vasoproliferative 90% experience spontaneous regression, and between retinal disorder unique to premature infants. As premature 1,100 and 1,500 develop disease severe enough to require births increase in many areas of the world, ROP has become medical treatment [7]. The Cryotherapy for Retinopathy of a leading cause of childhood blindness. A better understand- Prematurity (CRYO-ROP) Cooperative Group determined ing of the pathogenesis of ROP, adherence to strict screening that ROP occurred in 66% of infants with a birth weight of guidelines, and evolution of treatment options have reduced 1,250 g or less and in 82% of infants with a birth weight of the number of sight-threatening complications from ROP. less than 1,000 g [3]. Despite appropriate medical interven- tions, 400 to 600 infants each year in the United States become legally blind from ROP [7]. etinopathy of prematurity (ROP) is a disorder of reti- Gestational age and birth weight, the two greatest risk Rnal blood vessel development in low birth weight pre- factors for ROP, are inversely correlated with the develop- term infants and is the second leading cause of childhood ment of ROP. Specifically, smaller babies and those born at blindness in the United States behind cortical visual impair- an earlier gestational age are at higher risk. Between 1986 ment [1]. ROP is a complex disease process initiated in part and 2013, the birth weight and gestational age of infants by a lack of complete retinal vascularization in premature enrolled in ROP studies in the United States decreased, infants.
    [Show full text]
  • Procedures for the Evaluation of the Visual System by Pediatricians Sean P
    CLINICAL REPORT Guidance for the Clinician in Rendering Pediatric Care Procedures for the Evaluation of the Visual System by Pediatricians Sean P. Donahue, MD, PhD, FAAP, Cynthia N Baker, MD, FAAP, COMMITTEE ON PRACTICE AND AMBULATORY MEDICINE, SECTION ON OPHTHALMOLOGY, AMERICAN ASSOCIATION OF CERTIFIED ORTHOPTISTS, AMERICAN ASSOCIATION FOR PEDIATRIC OPHTHALMOLOGY AND STRABISMUS, AMERICAN ACADEMY OF OPHTHALMOLOGY Vision screening is crucial for the detection of visual and systemic disorders. It abstract should begin in the newborn nursery and continue throughout childhood. This clinical report provides details regarding methods for pediatricians to use for screening. This clinical report supplements the combined policy statement from the American Academy of Pediatrics (AAP), American Association for Pediatric Ophthalmology and Strabismus, American Academy of Ophthalmology, and American Association of Certified Orthoptists titled “Visual System Assessment in Infants, Children, and Young Adults by Pediatricians.”1 The clinical report and accompanying policy statement supplant the 2012 policy statement “Instrument-Based Pediatric Vision Screening,”2 the 2003 policy statement “Eye Examination in Infants, Children, and Young Adults by Pediatricians,”3 and the 2008 AAP policy statement “Red Reflex Examination in Neonates Infants and Children.”4 The policy statement This document is copyrighted and is property of the American articulates the screening criteria and screening methods, and the clinical Academy of Pediatrics and its Board of Directors. All authors have filed report explains the various evaluation procedures that are available for conflict of interest statements with the American Academy of Pediatrics. Any conflicts have been resolved through a process use by the pediatrician or primary care physician. approved by the Board of Directors.
    [Show full text]
  • Management of Retinopathy of Prematurity in a Neonatal Unit
    [Downloaded free from http://www.jcnonweb.com on Thursday, October 31, 2019, IP: 181.64.200.181] Review Article Management of Retinopathy of Prematurity in a Neonatal Unit: Current Approach Hussain Parappil1,2, Anant Pai3, Nazla Abdelmonem Mahmoud1, Mohammad Ayman AlKhateeb1,2, Hilal Al Rifai1,2, Maha Mohammed El Shafei3 1 Department of Neonatology, Retinopathy of prematurity (ROP) is a blinding morbidity affecting preterm Women’s Wellness and infants. It currently represents the leading preventable cause of childhood blindness Research Centre, Hamad Medical Corporation, worldwide. Most data indicate an increasing incidence of ROP disease in both 2Department of Pediatrics, industrialized countries and in the developing world. There are neither symptoms Abstract Weill Cornell Medical of ROP nor can a specific visual behavior in a preterm infant herald a concern for College, 3Department of ROP. Hence, an effective screening is essential for prompt diagnosis of ROP. The Ophthalmology, Hamad available evidence suggests that the majority of premature infants who go blind Medical Corporation, Doha, from ROP do so due to screening failure. Timely screening of premature infants at Qatar risk is as important as early treatment in the management of ROP. The screening protocol at each neonatal intensive care unit (NICU) should be evidence‑based, should be based on preferences of neonatologists, ophthalmologists, and NICU nurses. All at‑risk infants should be identified and receive adequate dilated retinal examinations at appropriate times. Appropriate screening and follow‑up guidelines and timely treatment protocols need to be implemented in every NICU by pediatricians and ophthalmologists to reduce the ROP‑related blindness in the community.
    [Show full text]
  • And Strabismus Second Edition Springer Science+Business Media, LLC Pediatric Ophthalmology and Strabismus Second Edition
    The following tables can be used as a guideline in planning Strabismus surgery. These numbers have been derived from Marshall Parks, with modifications from the surgical experience of Kenneth W. Wright. The numbers are only a guide and should be modified as necessary. BINOCULAR SURGERY Esotropia MROU LR OU ET Recession ET Resection* 1S~ 3.0mm 1S~ 3.Smm 20~ 3.Smm 20~ 4.Smm 2S~ 4.0mm 2S~ S.Smm 30~ 4.Smm 30~ 6.0mm 3S~ S.Omm 3S~ 6.Smm 40~ S.Smm 40~ 7.0mm so~ 6.0mm so~ 8.0mm 60~ 6.Smm 70~ 7.0mm * When a lateral rectus resection is clone for residual esotropia after large medial rectus recession (6.00 mm or larger), these numbers should be lowered. Exotropia LR OU MROU XT Recession XT Resection 1S~ 4.0mm 1S~ 3.0mm 20~ S.Omm 20~ 4.0mm 2S~ 6.0mm 2S~ S.Omm 30~ 7.0mm 30~ S.Smm 3S~ 7.Smm 3S~ 6.0mm 40~ 8.0mm 40~ 6.Smm so~ 9.0mm MONOCULARSURGERY Esotropia Exotropia MR LR LR MR ET Recession Resection XT Resection Resection 1S~ 3.0 mm ............... 3.S mm 1S~ 4.0 mm ................ 3.0 mm 20~ 3.S mm ............... 4.0 mm 20~ S.O mm ................ 4.0 mm 2S~ 4.0 mm ............... S.O mm 2S~ 6.0 mm ................ 4.S mm 30~ 4.S mm ............... S.S mm 30~ 6.S mm ................ S.O mm 3S~ S.O mm ............... 6.0 mm 3S~ 7.0 mm ................ S.S mm 40~ S.S mm ..............
    [Show full text]
  • Pediatric Ophthalmology 2018 Winds of Change in the Windy City
    Pediatric Ophthalmology 2018 Winds of Change in the Windy City Program Directors Jonathan M Holmes MD and Scott A Larson MD In conjunction with the American Association for Pediatric Ophthalmology and Strabismus and the American Academy of Pediatrics McCormick Place Chicago, Illniois Saturday, Oct. 27, 2018 Presented by: The American Academy of Ophthalmology Pediatric Ophthalmology Subspecialty Day Advisory Committee Staff 2018 Planning Group Daniel S Durrie MD Melanie R Rafaty CMP DES, Director, Jonathan M Holmes MD Associate Secretary Scientific Meetings Program Director Julia A Haller MD Ann L’Estrange, Subspecialty Day Manager Scott A Larson MD Michael S Lee MD Carolyn Little, Presenter Coordinator Program Director Francis S Mah MD Debra Rosencrance CMP CAE, Vice President, Meetings & Exhibits Erick D Bothun MD R Michael Siatkowski MD Kuldev Singh MD MPH Patricia Heinicke Jr, Copy Editor Yasmin S Bradfield MD Mark Ong, Designer Michael F Chiang MD Maria M Aaron MD Gina Comaduran, Cover Designer Nils K Mungan MD Secretary for Annual Meeting Serena X Wang MD Tammy L Yanovitch MD ©2018 American Academy of Ophthalmology. All rights reserved. No portion may be reproduced without express written consent of the American Academy of Ophthalmology. ii Planning Group 2018 Subspecialty Day | Pediatric Ophthalmology 2018 Pediatric Ophthalmology Subspecialty Day Planning Group On behalf of the American Academy of Ophthalmology, the American Association for Pediatric Ophthalmology and Strabismus (AAPOS), and the American Academy of Pediatrics (AAP),
    [Show full text]