Bachelor Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Bachelor Thesis DEPARTMENT INFORMATION Bachelor Thesis The Striving for Credibilty in Different Language Versions of Wikipedia Written by Wolfgang Reinhold Hesse Study Programme: Library and Information Management First examiner: Prof. Dr. Ulrike Spree Second examiner: Prof. Dr. Olof Sundin Hamburg, 22 October 2016 Abstract! ii! ! Abstract(! The!present!paper!examines!differences!in!credibility!creation!between!the!English,!German,! Icelandic! and! Swedish! Wikipedia!language!versions.!An!analysis!of!policies!on!verifiability!of! content!was!conducted!to!gain!an!insight!into!the!language!communities’!theoretical!approach! to!credibility.!The!application!of!these!norms!was!evaluated!by!comparing!differences!of!usage! of!sources!and!maintenance!templates!in!a!30Earticle!sample!per!language.!Content!and!disE course!analysis!of!the!policy!and!article!talk!pages!explored!the!editor’s!concern!with!verifiabilE ity!in!the!different!language!editions.!The!study!revealed!an!overall!similar!approach!to!crediE bility! leading! to! a! predominant! use! of! academic! sources! with! slight! variances! between! the! editions.!While!the!German!Wikipedia!displays!a!more!practical!approach!in!its!policies,!the! Swedish!approach!is!characterised!by!an!emphasis!on!a!source!hierarchy.!A!source!hierarchy!is! also!implied!in!the!English!policies!but!in!consideration!of!the!subject!context.!The!biggest!inE fluence!on!the!realisation!of!the!theoretical!approach!to!generate!credibility!is!the!size!of!a! community.!The!English!Wikipedia!is!both!the!biggest!and!the!most!active!community!in!conE trast!to!the!Icelandic!Wikipedia,!which!is!the!smallest!and!least!active.!Yet,!size!is!not!the!only! factor.!The!German!and!Swedish!Wikipedias!apply!its!verifiability!norms!just!slightly!behind!the! extent!of!the!English!language!edition!to!present!knowledge!in!academic!Wikipedia!articles!as! credible!as!possible.! Keywords:! Wikipedia,! credibility,! verifiability,! language! community,! userEgenerated! content,! knowledge!representation! Kurzfassung! iii! ! Kurzfassung! Die!vorliegende!Arbeit!befasst!sich!mit!den!Unterschieden!der!Erzeugung!von!Glaubwürdigkeit! in!der!englischen,!deutschen,!isländischen!und!schwedischen!Wikipedia.!Um!einen!Einblick!in! die!theoretische!Herangehensweise!an!die!Glaubwürdigkeit!der!Sprachgemeinschaften!zu!beE kommen,! wurde! eine! Analyse! ausgewählter! Richtlinien! bezüglich! der! Nachprüfbarkeit! von! Informationen! auf! Wikipedia! durchgeführt.! Die! tatsächliche! Anwendung! dieser! Richtlinien! wurde!durch!einen!Vergleich!der!Unterschiede!in!der!Verwendung!von!Literatur!und!InstandE haltungstemplates!in!einer!30!Wikipediaartikel!je!Sprache!umfassenden!Stichprobe!evaluiert.! Durch! InhaltsE! und! Diskursanalysen! der! Diskussionsseiten! der! Richtlinien! und! Artikel! wurde! untersucht,!mit!welcher!Intensität!die!Wikipediaeditoren!der!unterschiedlichen!SprachversioE nen!eine!Nachprüfbarkeit!der!Information!erreichen!wollen.!Die!Studie!kommt!zu!dem!ErgebE nis,!dass!sich!die!Sprachversionen,!trotz!stellenweiser!Unterschiede,!in!ihrer!HerangehensweiE se!ähneln.!Die!deutsche!Wikipedia!ist!bereits!in!ihren!Richtlinien!von!einer!praxisnahen!HeranE gehensweise!geprägt,!während!die!schwedische!eine!Quellenhierarchie!hervorhebt.!Eine!solE che!Hierarchie!ist!auch!in!der!englischen!Wikipedia!enthalten,!die!jedoch!von!dem!Kontext!des! Themengebietes!abhängt.!Der!stärkste!Einfluss!auf!die!Herangehensweise,!Glaubwürdigkeit!zu! erzeugen,!ergibt!sich!aus!der!Größe!der!Community.!So!umfasst!die!englische!Wikipedia!soE wohl!die!größte!als!auch!die!aktivste!Community!im!Gegensatz!zu!der!isländischen!Wikipedia,! die!die!kleinste!und!am!wenigsten!aktive!Community!ist.!Dennoch!ist!die!Größe!der!CommuniE ty!nicht!der!einzige!Faktor!in!Bezug!auf!Glaubwürdigkeit.!Die!deutsche!und!die!schwedische! Wikipedia!wenden!ihre!Richtlinien!in!ähnlichem!Ausmaß!an!wie!die!englische!Wikipedia,!um! Wissen! in! Wikipediaartikeln! mit! akademischen! Themen! möglichst! glaubwürdig! zu! präsentieE ren.! Schlagwörter:2Wikipedia,!Glaubwürdigkeit,!Verifizierung,!Sprachgemeinschaft,!nutzergenerierE ter!Inhalt,!Wissenspräsentation! Contents! iv! ! Contents! Abstract2.................................................................................................................................2ii! Kurzfassung2..........................................................................................................................2iii! Contents2...............................................................................................................................2iv! List2of2Figures2........................................................................................................................2vi! List2of2Tables2.........................................................................................................................2vi! 1! Introduction2.....................................................................................................................21! 2! Wikipedia2and2Language2Communities2.............................................................................23! 3! Literature2Review2.............................................................................................................27! 3.1! Cultural!Influence!on!Content!and!Editing!Behaviour!.........................................................!7! 3.2! Credibility!.............................................................................................................................!9! 4! Methodology2.................................................................................................................212! 5! The2Wikipedias’2Credibility2Creation2in2Theory2...............................................................214! 5.1! Policies!and!Guidelines!......................................................................................................!14! 5.1.1! Verifiability!......................................................................................................................!15! 5.1.2! Talk!Page!Discussions!Regarding!Verifiability!.................................................................!16! 5.1.3! Identifying!Reliable!Sources!............................................................................................!21! 5.1.4! Talk!Page!Discussion!Regarding!Identifying/sources!.......................................................!23! 5.2! Template!Messages!...........................................................................................................!25! 6! The2Wikipedias’2Credibility2Creation2in2Practice2.............................................................229! 6.1! Article!Pages:!Transfer!of!Expertise!...................................................................................!29! 6.2! Templates:!Urging!Policy!Compliance!................................................................................!35! 6.3! Talk!pages:!Arguing!Referencing!Issues!.............................................................................!37! 6.4! User!Pages:!Authorship!in!Wikipedia!.................................................................................!43! 6.5! The!Comparison!Group!......................................................................................................!46! 7! Conclusion2.....................................................................................................................252! 7.1! Discussion!..........................................................................................................................!52! 7.2! Restrictions!and!Future!Work!............................................................................................!54! Literature2.............................................................................................................................256! Sources2................................................................................................................................259! Contents! v! ! Appendix2A:2Sample2of2Old2Norse2Studies2Articles2..................................................................2a! English!Articles!..............................................................................................................................!a! German!Articles!............................................................................................................................!b! Icelandic!Articles!...........................................................................................................................!c! Swedish!Articles!............................................................................................................................!d! Appendix2B:2Comparison2Test2Group2......................................................................................2f! English!Articles!...............................................................................................................................!f! German!Articles!............................................................................................................................!g! Icelandic!Articles!...........................................................................................................................!h! Swedish!Articles!.............................................................................................................................!i! Appendix2C:2Comparison2Group2.............................................................................................2k! English!Articles!..............................................................................................................................!k!
Recommended publications
  • Improving Wikimedia Projects Content Through Collaborations Waray Wikipedia Experience, 2014 - 2017
    Improving Wikimedia Projects Content through Collaborations Waray Wikipedia Experience, 2014 - 2017 Harvey Fiji • Michael Glen U. Ong Jojit F. Ballesteros • Bel B. Ballesteros ESEAP Conference 2018 • 5 – 6 May 2018 • Bali, Indonesia In 8 November 2013, typhoon Haiyan devastated the Eastern Visayas region of the Philippines when it made landfall in Guiuan, Eastern Samar and Tolosa, Leyte. The typhoon affected about 16 million individuals in the Philippines and Tacloban City in Leyte was one of [1] the worst affected areas. Philippines Eastern Visayas Eastern Visayas, specifically the provinces of Biliran, Leyte, Northern Samar, Samar and Eastern Samar, is home for the Waray speakers in the Philippines. [3] [2] Outline of the Presentation I. Background of Waray Wikipedia II. Collaborations made by Sinirangan Bisaya Wikimedia Community III. Problems encountered IV. Lessons learned V. Future plans References Photo Credits I. Background of Waray Wikipedia (https://war.wikipedia.org) Proposed on or about June 23, 2005 and created on or about September 24, 2005 Deployed lsjbot from Feb 2013 to Nov 2015 creating 1,143,071 Waray articles about flora and fauna As of 24 April 2018, it has a total of 1,262,945 articles created by lsjbot (90.5%) and by humans (9.5%) As of 31 March 2018, it has 401 views per hour Sinirangan Bisaya (Eastern Visayas) Wikimedia Community is the (offline) community that continuously improves Waray Wikipedia and related Wikimedia projects I. Background of Waray Wikipedia (https://war.wikipedia.org) II. Collaborations made by Sinirangan Bisaya Wikimedia Community A. Collaborations with private* and national government** Introductory letter organizations Series of meetings and communications B.
    [Show full text]
  • Modeling Popularity and Reliability of Sources in Multilingual Wikipedia
    information Article Modeling Popularity and Reliability of Sources in Multilingual Wikipedia Włodzimierz Lewoniewski * , Krzysztof W˛ecel and Witold Abramowicz Department of Information Systems, Pozna´nUniversity of Economics and Business, 61-875 Pozna´n,Poland; [email protected] (K.W.); [email protected] (W.A.) * Correspondence: [email protected] Received: 31 March 2020; Accepted: 7 May 2020; Published: 13 May 2020 Abstract: One of the most important factors impacting quality of content in Wikipedia is presence of reliable sources. By following references, readers can verify facts or find more details about described topic. A Wikipedia article can be edited independently in any of over 300 languages, even by anonymous users, therefore information about the same topic may be inconsistent. This also applies to use of references in different language versions of a particular article, so the same statement can have different sources. In this paper we analyzed over 40 million articles from the 55 most developed language versions of Wikipedia to extract information about over 200 million references and find the most popular and reliable sources. We presented 10 models for the assessment of the popularity and reliability of the sources based on analysis of meta information about the references in Wikipedia articles, page views and authors of the articles. Using DBpedia and Wikidata we automatically identified the alignment of the sources to a specific domain. Additionally, we analyzed the changes of popularity and reliability in time and identified growth leaders in each of the considered months. The results can be used for quality improvements of the content in different languages versions of Wikipedia.
    [Show full text]
  • Włodzimierz Lewoniewski Metoda Porównywania I Wzbogacania
    Włodzimierz Lewoniewski Metoda porównywania i wzbogacania informacji w wielojęzycznych serwisach wiki na podstawie analizy ich jakości The method of comparing and enriching informa- on in mullingual wikis based on the analysis of their quality Praca doktorska Promotor: Prof. dr hab. Witold Abramowicz Promotor pomocniczy: dr Krzysztof Węcel Pracę przyjęto dnia: podpis Promotora Kierunek: Specjalność: Poznań 2018 Spis treści 1 Wstęp 1 1.1 Motywacja .................................... 1 1.2 Cel badawczy i teza pracy ............................. 6 1.3 Źródła informacji i metody badawcze ....................... 8 1.4 Struktura rozprawy ................................ 10 2 Jakość danych i informacji 12 2.1 Wprowadzenie .................................. 12 2.2 Jakość danych ................................... 13 2.3 Jakość informacji ................................. 15 2.4 Podsumowanie .................................. 19 3 Serwisy wiki oraz semantyczne bazy wiedzy 20 3.1 Wprowadzenie .................................. 20 3.2 Serwisy wiki .................................... 21 3.3 Wikipedia jako przykład serwisu wiki ....................... 24 3.4 Infoboksy ..................................... 25 3.5 DBpedia ...................................... 27 3.6 Podsumowanie .................................. 28 4 Metody określenia jakości artykułów Wikipedii 29 4.1 Wprowadzenie .................................. 29 4.2 Wymiary jakości serwisów wiki .......................... 30 4.3 Problemy jakości Wikipedii ............................ 31 4.4
    [Show full text]
  • Amplifying the Impact of Open Access: Wikipedia and the Diffusion of Science
    (forthcoming in the Journal of the Association for Information Science and Technology) Amplifying the Impact of Open Access: Wikipedia and the Diffusion of Science Misha Teplitskiy Grace Lu Eamon Duede Dept. of Sociology and KnowledgeLab Computation Institute and KnowledgeLab University of Chicago KnowledgeLab University of Chicago [email protected] University of Chicago [email protected] (773) 834-4787 [email protected] (773) 834-4787 5735 South Ellis Avenue (773) 834-4787 5735 South Ellis Avenue Chicago, Illinois 60637 5735 South Ellis Avenue Chicago, Illinois 60637 Chicago, Illinois 60637 Abstract With the rise of Wikipedia as a first-stop source for scientific knowledge, it is important to compare its representation of that knowledge to that of the academic literature. Here we identify the 250 most heavi- ly used journals in each of 26 research fields (4,721 journals, 19.4M articles in total) indexed by the Scopus database, and test whether topic, academic status, and accessibility make articles from these journals more or less likely to be referenced on Wikipedia. We find that a journal’s academic status (im- pact factor) and accessibility (open access policy) both strongly increase the probability of its being ref- erenced on Wikipedia. Controlling for field and impact factor, the odds that an open access journal is referenced on the English Wikipedia are 47% higher compared to paywall journals. One of the implica- tions of this study is that a major consequence of open access policies is to significantly amplify the dif- fusion of science, through an intermediary like Wikipedia, to a broad audience. Word count: 7894 Introduction Wikipedia, one of the most visited websites in the world1, has become a destination for information of all kinds, including information about science (Heilman & West, 2015; Laurent & Vickers, 2009; Okoli, Mehdi, Mesgari, Nielsen, & Lanamäki, 2014; Spoerri, 2007).
    [Show full text]
  • Language-Agnostic Relation Extraction from Abstracts in Wikis
    information Article Language-Agnostic Relation Extraction from Abstracts in Wikis Nicolas Heist, Sven Hertling and Heiko Paulheim * ID Data and Web Science Group, University of Mannheim, Mannheim 68131, Germany; [email protected] (N.H.); [email protected] (S.H.) * Correspondence: [email protected] Received: 5 February 2018; Accepted: 28 March 2018; Published: 29 March 2018 Abstract: Large-scale knowledge graphs, such as DBpedia, Wikidata, or YAGO, can be enhanced by relation extraction from text, using the data in the knowledge graph as training data, i.e., using distant supervision. While most existing approaches use language-specific methods (usually for English), we present a language-agnostic approach that exploits background knowledge from the graph instead of language-specific techniques and builds machine learning models only from language-independent features. We demonstrate the extraction of relations from Wikipedia abstracts, using the twelve largest language editions of Wikipedia. From those, we can extract 1.6 M new relations in DBpedia at a level of precision of 95%, using a RandomForest classifier trained only on language-independent features. We furthermore investigate the similarity of models for different languages and show an exemplary geographical breakdown of the information extracted. In a second series of experiments, we show how the approach can be transferred to DBkWik, a knowledge graph extracted from thousands of Wikis. We discuss the challenges and first results of extracting relations from a larger set of Wikis, using a less formalized knowledge graph. Keywords: relation extraction; knowledge graphs; Wikipedia; DBpedia; DBkWik; Wiki farms 1. Introduction Large-scale knowledge graphs, such as DBpedia [1], Freebase [2], Wikidata [3], or YAGO [4], are usually built using heuristic extraction methods, by exploiting crowd-sourcing processes, or both [5].
    [Show full text]
  • Defending Democracy & Kristin Skare Orgeret Nordicom-Information
    Defending Defending Oslo 8–11 August 2013 Democracy The 2013 NordMedia conference in Oslo marked the 40 years that had passed since the very first Nordic media conference. To acknowledge this 40-year anniversary, it made sense to have a conference theme that dealt with a major and important topic: Defending Democracy. Nordic Defending and Global Diversities in Media and Journalism. Focusing on the rela- tionship between journalism, other media practices and democracy, the plenary sessions raised questions such as: Democracy & Edited by What roles do media and journalism play in democratization • Kristin Skare Orgeret processes and what roles should they play? Nordic and Global Diversities How does the increasingly complex and omnipresent media in Media and Journalism • Hornmoen Harald field affect conditions for freedom of speech? This special issue contains the keynote speeches of Natalie Fenton, Stephen Ward and Ib Bondebjerg. A number of the conference papers have been revised and edited to become articles. Together, the articles presented should give the reader an idea of the breadth and depth of Edited by current Nordic scholarship in the area. Harald Hornmoen & Kristin Skare Orgeret SPECIAL ISSUE Nordicom Review | Volume 35 | August 2014 Nordicom-Information | Volume 36 | Number 2 | August 2014 Nordicom-Information Nordicom Review University of Gothenburg 2014 issue Special Box 713, SE 405 30 Göteborg, Sweden Telephone +46 31 786 00 00 (op.) | Fax +46 31 786 46 55 www.nordicom.gu.se | E-mail: [email protected] SPECIAL ISSUE Nordicom Review | Volume 35 | August 2014 Nordicom-Information | Volume 36 | Number 2 | August 2014 Nordicom Review Journal from the Nordic Information Centre for Media and Communication Research Editor NORDICOM invites media researchers to contri- Ulla Carlsson bute scientific articles, reviews, and debates.
    [Show full text]
  • A Complete, Longitudinal and Multi-Language Dataset of the Wikipedia Link Networks
    WikiLinkGraphs: A Complete, Longitudinal and Multi-Language Dataset of the Wikipedia Link Networks Cristian Consonni David Laniado Alberto Montresor DISI, University of Trento Eurecat, Centre Tecnologic` de Catalunya DISI, University of Trento [email protected] [email protected] [email protected] Abstract and result in a huge conceptual network. According to Wiki- pedia policies2 (Wikipedia contributors 2018e), when a con- Wikipedia articles contain multiple links connecting a sub- cept is relevant within an article, the article should include a ject to other pages of the encyclopedia. In Wikipedia par- link to the page corresponding to such concept (Borra et al. lance, these links are called internal links or wikilinks. We present a complete dataset of the network of internal Wiki- 2015). Therefore, the network between articles may be seen pedia links for the 9 largest language editions. The dataset as a giant mind map, emerging from the links established by contains yearly snapshots of the network and spans 17 years, the community. Such graph is not static but is continuously from the creation of Wikipedia in 2001 to March 1st, 2018. growing and evolving, reflecting the endless collaborative While previous work has mostly focused on the complete hy- process behind it. perlink graph which includes also links automatically gener- The English Wikipedia includes over 163 million con- ated by templates, we parsed each revision of each article to nections between its articles. This huge graph has been track links appearing in the main text. In this way we obtained exploited for many purposes, from natural language pro- a cleaner network, discarding more than half of the links and cessing (Yeh et al.
    [Show full text]
  • Complete Issue
    Culture Unbound: Journal of Current Cultural Research Thematic Section: Changing Orders of Knowledge? Encyclopedias in Transition Edited by Jutta Haider & Olof Sundin Extraction from Volume 6, 2014 Linköping University Electronic Press Culture Unbound: ISSN 2000-1525 (online) URL: http://www.cultureunbound.ep.liu.se/ © 2014 The Authors. Culture Unbound, Extraction from Volume 6, 2014 Thematic Section: Changing Orders of Knowledge? Encyclopedias in Transition Jutta Haider & Olof Sundin Introduction: Changing Orders of Knowledge? Encyclopaedias in Transition ................................ 475 Katharine Schopflin What do we Think an Encyclopaedia is? ........................................................................................... 483 Seth Rudy Knowledge and the Systematic Reader: The Past and Present of Encyclopedic Reading .............................................................................................................................................. 505 Siv Frøydis Berg & Tore Rem Knowledge for Sale: Norwegian Encyclopaedias in the Marketplace .............................................. 527 Vanessa Aliniaina Rasoamampianina Reviewing Encyclopaedia Authority .................................................................................................. 547 Ulrike Spree How readers Shape the Content of an Encyclopedia: A Case Study Comparing the German Meyers Konversationslexikon (1885-1890) with Wikipedia (2002-2013) ........................... 569 Kim Osman The Free Encyclopaedia that Anyone can Edit: The
    [Show full text]
  • Wikimatrix: Mining 135M Parallel Sentences
    Under review as a conference paper at ICLR 2020 WIKIMATRIX:MINING 135M PARALLEL SENTENCES IN 1620 LANGUAGE PAIRS FROM WIKIPEDIA Anonymous authors Paper under double-blind review ABSTRACT We present an approach based on multilingual sentence embeddings to automat- ically extract parallel sentences from the content of Wikipedia articles in 85 lan- guages, including several dialects or low-resource languages. We do not limit the extraction process to alignments with English, but systematically consider all pos- sible language pairs. In total, we are able to extract 135M parallel sentences for 1620 different language pairs, out of which only 34M are aligned with English. This corpus of parallel sentences is freely available.1 To get an indication on the quality of the extracted bitexts, we train neural MT baseline systems on the mined data only for 1886 languages pairs, and evaluate them on the TED corpus, achieving strong BLEU scores for many language pairs. The WikiMatrix bitexts seem to be particularly interesting to train MT systems between distant languages without the need to pivot through English. 1 INTRODUCTION Most of the current approaches in Natural Language Processing (NLP) are data-driven. The size of the resources used for training is often the primary concern, but the quality and a large variety of topics may be equally important. Monolingual texts are usually available in huge amounts for many topics and languages. However, multilingual resources, typically sentences in two languages which are mutual translations, are more limited, in particular when the two languages do not involve English. An important source of parallel texts are international organizations like the European Parliament (Koehn, 2005) or the United Nations (Ziemski et al., 2016).
    [Show full text]
  • The Future of the Past
    THE FUTURE OF THE PAST A CASE STUDY ON THE REPRESENTATION OF THE HOLOCAUST ON WIKIPEDIA 2002-2014 Rudolf den Hartogh Master Thesis Global History and International Relations Erasmus University Rotterdam The future of the past A case study on the representation of the Holocaust on Wikipedia Rudolf den Hartogh Master Thesis Global History and International Relations Erasmus School of History, Culture and Communication (ESHCC) Erasmus University Rotterdam July 2014 Supervisor: prof. dr. Kees Ribbens Co-reader: dr. Robbert-Jan Adriaansen Cover page images: 1. Wikipedia-logo_inverse.png (2007) of the Wikipedia user Nohat (concept by Wikipedian Paulussmagnus). Digital image. Retrieved from: http://commons.wikimedia.org (2-12-2013). 2. Holocaust-Victim.jpg (2013) Photographer unknown. Digital image. Retrieved from: http://www.myinterestingfacts.com/ (2-12-2013). 4 This thesis is dedicated to the loving memory of my grandmother, Maagje den Hartogh-Bos, who sadly passed away before she was able to see this thesis completed. 5 Abstract Since its creation in 2001, Wikipedia, ‘the online free encyclopedia that anyone can edit’, has increasingly become a subject of debate among historians due to its radical departure from traditional history scholarship. The medium democratized the field of knowledge production to an extent that has not been experienced before and it was the incredible popularity of the medium that triggered historians to raise questions about the quality of the online reference work and implications for the historian’s craft. However, despite a vast body of research devoted to the digital encyclopedia, no consensus has yet been reached in these debates due to a general lack of empirical research.
    [Show full text]
  • Robots.Txt: an Ethnographic Investigation of Automated Software Agents in User-Generated Content Platforms
    robots.txt: An Ethnographic Investigation of Automated Software Agents in User-Generated Content Platforms By Richard Stuart Geiger II A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy In Information Management and Systems and the Designated Emphasis in New Media in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jenna Burrell, Chair Professor Coye Cheshire Professor Paul Duguid Professor Eric Paulos Fall 2015 robots.txt: An Ethnographic Investigation of Automated Software Agents in User-Generated Content Platforms © 2015 by Richard Stuart Geiger II Freely licensed under the Creative Commons Attribution-ShareAlike 4.0 License (License text at https://creativecommons.org/licenses/by-sa/4.0/) Abstract robots.txt: An Ethnographic Investigation of Automated Software Agents in User-Generated Content Platforms by Richard Stuart Geiger II Doctor of Philosophy in Information Management and Systems with a Designated Emphasis in New Media University of California, Berkeley Professor Jenna Burrell, Chair This dissertation investigates the roles of automated software agents in two user-generated content platforms: Wikipedia and Twitter. I analyze ‘bots’ as an emergent form of sociotechnical governance, raising many issues about how code intersects with community. My research took an ethnographic approach to understanding how participation and governance operates in these two sites, including participant-observation in everyday use of the sites and in developing ‘bots’ that were delegated work. I also took a historical and case studies approach, exploring the development of bots in Wikipedia and Twitter. This dissertation represents an approach I term algorithms-in-the-making, which extends the lessons of scholars in the field of science and technology studies to this novel domain.
    [Show full text]
  • Avaliação Da Qualidade Da Wikipédia Enquanto Fonte De Informação Em Saúde
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Avaliação da qualidade da Wikipédia enquanto fonte de informação em saúde Luís Couto Mestrado Integrado em Engenharia Informática e Computação Orientador: Carla Teixeira Lopes Co-orientador: Gil Domingues Julho de 2021 Avaliação da qualidade da Wikipédia enquanto fonte de informação em saúde Luís Couto Mestrado Integrado em Engenharia Informática e Computação Julho de 2021 Abstract Wikipedia is an online, free, multi-idiom, and collaborative encyclopedia. Nowadays, it is one of the largest sources of online knowledge, often appearing at the top of the results of the major search engines. There, it is possible to find information from different areas, from technology to philosophy, including health. As a health-related data source, it is one of the most used sources of information, used not only by the general public but also by professionals. The reason for such a broad public is that, apart from the content of the articles, it includes external links for additional data sources as well. Despite being a top-rated resource, the open nature of Wikipedia contributions, where there are no curators, raises safety concerns, specifically in the health context, as such data is used for decision- making. There are, however, many discrepancies among the Wikipedia versions for all available idioms. These differences can be an obstacle to people’s equal access to information. Thus, it is crucial to evaluate the information and compare the various idioms in this regard. In the first stage, the quality of health-related Wikipedia articles across different languages was compared. Specifically, in articles available in languages with over one hundred million speakers, and also in Catalan, Greek, Italian, Korean, Turkish, Perse, and Hebrew, for its historical tradition.
    [Show full text]