Activity of the Rhou/Wrch1 Gtpase Is Critical for Cranial Neural Crest Cell Migration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GLUTATHIONE TRANSFERASE N STRUCTURE and GENE REGULATION
GLUTATHIONE TRANSFERASE n STRUCTURE AND GENE REGULATION By Chu-Lin Xia This report is in part-fulfillment of the requirements for the degree of doctor of philosophy in the University of London University College, University of London January 1992 ProQuest Number: 10609162 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10609162 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT In the early stage of this research, amino acid residues that are essential for the activity of human pi class glutathione transferase (GST n) were identified using chemical modification with group-specific reagents. Protection from inactivation by substrates, substrate analogues and inhibitors was used as the criterion for active site specificity. The results suggested the apparent involvement of one cysteine (Cys), one lysine (Lys), one arginine (Arg), one histidine (His) or tyrosine (Tyr) or both, one aspartate (Asp) or glutamate (Glu) and tryptophan (Trp) residues in the glutathione binding site (G-site) of GSTtc. It was concluded that without the knowledge of the three-dimensional structure of GST 7i, further work in this area would not be profitable and therefore, attention was turned to the regulation of GST n gene expression. -
Download Download
Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/) -
(Gefs & Gaps) of the Rho Family
Structural and biochemical investigation of the activity, specificity and regulation of regulators (GEFs & GAPs) of the Rho family Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Mamta Jaiswal aus Indien Düsseldorf, November 2012 Aus dem Institut für Biochemie und Molekularbiologie II der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: PD. Dr. Reza Ahmadian Koreferent: Prof. Dr. Dieter Willbold Tag der mündlichen Prüfung: 23.01.2013 Eidesstattliche Erklärung Hiermit erkläre ich an Eides statt, dass ich die hier vorgelegte Dissertation eigenständig und ohne unerlaubte Hilfe angefertigt habe. Es wurden keinerlei andere Quellen und Hilfsmittel, außer den angegebenen, benutzt. Zitate aus anderen Arbeiten wurden kenntlich gemacht. Diese Dissertation wurde in der vorgelegten oder einer ähnlichen Form noch bei keiner anderen Institution eingereicht und es wurden bisher keine erfolglosen Promotionsversuche von mir unternommen. Düsseldorf, im November 2012 To my family Table of Contents Table of Contents TABLE OF CONTENTS .................................................................................................. I TABLE OF FIGURES .................................................................................................... III PUBLICATIONS ........................................................................................................... -
University of Cincinnati
UNIVERSITY OF CINCINNATI Date: 1-Oct-2010 I, Jason Matthew Puglise , hereby submit this original work as part of the requirements for the degree of: Doctor of Philosophy in Cell & Molecular Biology It is entitled: Roles of the Rac/Cdc42 effector proteins Pak and PIX in cytokinesis, ciliogenesis, and cyst formation in renal epithelial cells Student Signature: Jason Matthew Puglise This work and its defense approved by: Committee Chair: Robert Brackenbury, PhD Robert Brackenbury, PhD 11/1/2010 1,117 Roles of the Rac/Cdc42 effector proteins Pak and PIX in cytokinesis, ciliogenesis, and cyst formation in renal epithelial cells A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program of Cancer and Cell Biology of the College of Medicine by Jason M. Puglise M.Sc., Wright State University 2005 Committee Chair: Robert Brackenbury, Ph.D. ii ABSTRACT Puglise, Jason M. Ph.D., Cancer and Cell Biology Program. University of Cincinnati, 2010. Roles of the Rac/Cdc42 effector proteins Pak and PIX in cytokinesis, ciliogenesis, and cyst formation in renal epithelial cells. The p21-activated kinase 1 (Pak1) is a putative Rac/Cdc42 effector molecule and a multifunctional enzyme implicated in a wide range of cellular and biological activities. Although well-established as a regulator of cytoskeletal and microtubule dynamics, Pak1 influences centrosome behavior and plays a part in the cell cycle. We examine the role Pak1 and its binding partner Pak1-interacting exchange factor (PIX) play in centrosome dynamics and in cell cycle events in renal epithelial cells. -
United States Patent (19) 11 Patent Number: 5,869,438 Svendsen Et Al
USOO5869438A United States Patent (19) 11 Patent Number: 5,869,438 Svendsen et al. (45) Date of Patent: Feb. 9, 1999 54) LIPASE WARIANTS 52 U.S. Cl. ......................... 510/226; 435/198; 435/69.1; 435/252.3; 435/320.1; 435/196; 536/23.2; 75 Inventors: Allan Svendsen, Birkerød; Shamkant 536/23.7; 530/350; 510/392; 510/305 Anant Patkar, Lyngby; Erik Gormsen, 58 Field of Search ..................................... 435/198, 196, Virum; Jens Sigurd Okkels; Marianne 435/187-188, 69.1, 252.3, 320.1, 71.1; Thellersen, both of Frederiksberg, all of 424/94.1; 536/22.2, 23.7; 510/305, 226, Denmark 392 73 Assignee: Novo Nordisk A/S, Bagsvaerd, 56) References Cited Denmark FOREIGN PATENT DOCUMENTS 21 Appl. No.: 479,275 O305 216 A1 3/1989 European Pat. Off.. O 407 225A1 1/1991 European Pat. Off.. 22 Filed: Jun. 7, 1995 WO95/09909 4/1995 WIPO. Related U.S. Application Data Primary Examiner Robert A. Wax ASSistant Examiner Tekchand Saidha 63 Continuation-in-part of PCT/DK94/00162, Apr. 22, 1994, which is a continuation-in-part of PCT/DK95/00079, Feb. Attorney, Agent, or Firm-Steve T. Belson; Elias J. 27, 1995, which is a continuation-in-part of Ser. No. 434, Lambiris 904, May 1, 1995, abandoned, which is a continuation of Ser. No. 977,429, which is a continuation of PCT/DK91/ 57 ABSTRACT 00271, Sep. 13, 1991, abandoned. The present invention relates to lipase variants which exhibit 30 Foreign Application Priority Data improved properties, detergent compositions comprising Said lipase variants, DNA constructs coding for Said lipase Sep. -
The Role of the Rho Gtpases in Neuronal Development
Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The role of the Rho GTPases in neuronal development Eve-Ellen Govek,1,2, Sarah E. Newey,1 and Linda Van Aelst1,2,3 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA; 2Molecular and Cellular Biology Program, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA Our brain serves as a center for cognitive function and and an inactive GDP-bound state. Their activity is de- neurons within the brain relay and store information termined by the ratio of GTP to GDP in the cell and can about our surroundings and experiences. Modulation of be influenced by a number of different regulatory mol- this complex neuronal circuitry allows us to process that ecules. Guanine nucleotide exchange factors (GEFs) ac- information and respond appropriately. Proper develop- tivate GTPases by enhancing the exchange of bound ment of neurons is therefore vital to the mental health of GDP for GTP (Schmidt and Hall 2002); GTPase activat- an individual, and perturbations in their signaling or ing proteins (GAPs) act as negative regulators of GTPases morphology are likely to result in cognitive impairment. by enhancing the intrinsic rate of GTP hydrolysis of a The development of a neuron requires a series of steps GTPase (Bernards 2003; Bernards and Settleman 2004); that begins with migration from its birth place and ini- and guanine nucleotide dissociation inhibitors (GDIs) tiation of process outgrowth, and ultimately leads to dif- prevent exchange of GDP for GTP and also inhibit the ferentiation and the formation of connections that allow intrinsic GTPase activity of GTP-bound GTPases (Zalc- it to communicate with appropriate targets. -
Roles of Rho Gtpases in Intracellular Transport and Cellular Transformation
Int. J. Mol. Sci. 2013, 14, 7089-7108; doi:10.3390/ijms14047089 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Roles of Rho GTPases in Intracellular Transport and Cellular Transformation Xiaojuan Chi 1, Song Wang 2, Yifan Huang 1, Mark Stamnes 3 and Ji-Long Chen 1,2,* 1 College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: [email protected] (X.C.); [email protected] (Y.H.) 2 CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail: [email protected] 3 Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-10-6480-7300; Fax: +86-10-6480-7980. Received: 21 February 2013; in revised form: 4 March 2013 / Accepted: 12 March 2013 / Published: 28 March 2013 Abstract: Rho family GTPases belong to the Ras GTPase superfamily and transduce intracellular signals known to regulate a variety of cellular processes, including cell polarity, morphogenesis, migration, apoptosis, vesicle trafficking, viral transport and cellular transformation. The three best-characterized Rho family members are Cdc42, RhoA and Rac1. Cdc42 regulates endocytosis, the transport between the endoplasmic reticulum and Golgi apparatus, post-Golgi transport and exocytosis. Cdc42 influences trafficking through interaction with Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, leading to changes in actin dynamics. -
Evaluating the Therapeutic Potential of the Pak1 and Tbk1 Kinases in Pancreatic Ductal Adenocarcinoma
EVALUATING THE THERAPEUTIC POTENTIAL OF THE PAK1 AND TBK1 KINASES IN PANCREATIC DUCTAL ADENOCARCINOMA Nicole Marie Baker A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology Chapel Hill 2016 Approved by: Channing J. Der Adrienne D. Cox Lee M. Graves Gary L. Johnson M. Ben Major © 2016 Nicole Marie Baker ALL RIGHTS RESERVED ii ABSTRACT Nicole Marie Baker: Evaluating the therapeutic potential of the PAK1 and TBK1 kinases in pancreatic ductal adenocarcinoma (Under the direction of Channing J. Der) Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal cancer characterized by a high frequency (>95%) of activating mutations in the KRAS oncogene, which is a well-validated driver of PDAC growth. However, to date, no successful anti-KRAS therapies have been developed. Inhibitors targeting components of KRAS downstream signaling pathways, when used as monotherapy or in combination, have been ineffective for long-term treatment of KRAS -mutant cancers. Decidedly, the most studied and most targeted KRAS effector pathways have been the RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade and the PI3K-AKT-mTOR lipid kinase pathway. The apparent lack of success exhibited by inhibitors of these pathways is due, in part, to an underestimation of the importance of other effectors in KRAS-dependent cancer growth. Additionally, compensatory mechanisms reprogram these signaling networks to overcome the action of inhibitors of the ERK MAPK and PI3K pathways. Consequently, the central hypothesis of my dissertation research is that a better understanding of the role of less studied KRAS effector signaling pathways may lead to more effective therapeutic strategies to block KRAS effector signaling and PDAC growth. -
ROLE of BRAIN SOLUBLE EPOXIDE HYDROLASE in CARDIOVASCULAR FUNCTION by KATHLEEN WALWORTH SELLERS a DISSERTATION PRESENTED TO
ROLE OF BRAIN SOLUBLE EPOXIDE HYDROLASE IN CARDIOVASCULAR FUNCTION By KATHLEEN WALWORTH SELLERS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2004 Copyright 2004 by Kathleen Walworth Sellers This work is dedicated to my family, who has taught me to embrace life with love, perseverance, and grace. ACKNOWLEDGMENTS I could not have completed this work without the assistance from many colleagues and friends. First and foremost, I would like to thank my mentor, Dr. Mohan Raizada, who has consistently supported and encouraged me these last several years. It was by chance that I worked in his research group before starting my graduate program, and I could not have found a better group with which to work. Dr. Raizada’s excitement and fervor for new ideas have helped shape my appreciation for scientific research and the pursuit of knowledge. I also want to acknowledge all of the members of the Raizada research group, past and present. I am fortunate to work in such a friendly and intellectually-stimulating environment. Specifically, I want to thank Drs. Beverly Falcon and Matthew Huentelman, the two graduate students in our research group who both helped me tremendously. In addition, I would like to thank Drs. Carlos Diez, Cheng-wen Sun, Jorge Vazquez, Shereeni Veerasingham and Hong Yang for all of their intellectual guidance. I greatly acknowledge the members of my committee, Drs. Michael Katovich, Gerard Shaw, Colin Sumners and Charles Wood. Each has provided me with unique experience and expertise to further my research and career. -
Rho Gtpases of the Rhobtb Subfamily and Tumorigenesis1
Acta Pharmacol Sin 2008 Mar; 29 (3): 285–295 Invited review Rho GTPases of the RhoBTB subfamily and tumorigenesis1 Jessica BERTHOLD2, Kristína SCHENKOVÁ2, Francisco RIVERO2,3,4 2Centers for Biochemistry and Molecular Medicine, University of Cologne, Cologne, Germany; 3The Hull York Medical School, University of Hull, Hull HU6 7RX, UK Key words Abstract Rho guanosine triphosphatase; RhoBTB; RhoBTB proteins constitute a subfamily of atypical members within the Rho fa- DBC2; cullin; neoplasm mily of small guanosine triphosphatases (GTPases). Their most salient feature 1This work was supported by grants from the is their domain architecture: a GTPase domain (in most cases, non-functional) Center for Molecular Medicine Cologne, the is followed by a proline-rich region, a tandem of 2 broad-complex, tramtrack, Deutsche Forschungsgemeinschaft, and the bric à brac (BTB) domains, and a conserved C-terminal region. In humans, Köln Fortune Program of the Medical Faculty, University of Cologne. the RhoBTB subfamily consists of 3 isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. Orthologs are present in several other eukaryotes, such as Drosophi- 4 Correspondence to Dr Francisco RIVERO. la and Dictyostelium, but have been lost in plants and fungi. Interest in RhoBTB Phn 49-221-478-6987. Fax 49-221-478-6979. arose when RHOBTB2 was identified as the gene homozygously deleted in E-mail [email protected] breast cancer samples and was proposed as a candidate tumor suppressor gene, a property that has been extended to RHOBTB1. The functions of RhoBTB pro- Received 2007-11-17 Accepted 2007-12-16 teins have not been defined yet, but may be related to the roles of BTB domains in the recruitment of cullin3, a component of a family of ubiquitin ligases. -
Novel 2,7-Diazaspiro[4,4]Nonane Derivatives to Inhibit Mouse and Human Osteoclast Activities and Prevent Bone Loss in Ovariectom
Novel 2,7-Diazaspiro[4,4]nonane Derivatives to Inhibit Mouse and Human Osteoclast Activities and Prevent Bone Loss in Ovariectomized Mice without Affecting Bone Formation Lucile Mounier, Anne Morel, Yann Ferrandez, Jukka Morko, Jukka Vääräniemi, Marine Gilardone, Didier Roche, Jacqueline Cherfils, Anne Blangy To cite this version: Lucile Mounier, Anne Morel, Yann Ferrandez, Jukka Morko, Jukka Vääräniemi, et al.. Novel 2,7- Diazaspiro[4,4]nonane Derivatives to Inhibit Mouse and Human Osteoclast Activities and Prevent Bone Loss in Ovariectomized Mice without Affecting Bone Formation. Journal of Medicinal Chemistry, American Chemical Society, 2020, 10.1021/acs.jmedchem.0c01201. hal-03006787 HAL Id: hal-03006787 https://hal.archives-ouvertes.fr/hal-03006787 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Novel 2,7-Diazaspiro[4,4]nonane derivatives to inhibit mouse and human osteoclast activities and to prevent bone loss in ovariectomized mice without affecting bone formation. Lucile Mounier†, Anne Morel†, Yann Ferrandez‡, Jukka Morko∥, Jukka Vääräniemi∥, Marine Gilardone⊥, Didier Roche⊥, Jacqueline Cherfils‡, Anne Blangy†,* † Centre de Recherche de Biologie Cellulaire de Montpellier, CRBM, Univ Montpellier, CNRS, 34000 Montpellier, France. -
The Development of Cisplatin Resistance in Neuroblastoma Is
Cancer Letters 364 (2015) 142–155 Contents lists available at ScienceDirect Cancer Letters journal homepage: www.elsevier.com/locate/canlet Original Articles The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro Olga Piskareva a,b,*, Harry Harvey a,b, John Nolan a,b, Ross Conlon a,b, Leah Alcock a, Patrick Buckley c, Paul Dowling d,e, Michael Henry e, Finbarr O’Sullivan e, Isabella Bray a,b, Raymond L. Stallings a,b a Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland b Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin 12, Ireland c Molecular Pathology Laboratory, Beaumont Hospital, Dublin 9, Ireland d Department of Biology, The National University of Ireland Maynooth, Maynooth, County Kildare, Ireland e National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland ARTICLE INFO ABSTRACT Article history: Neuroblastoma is a challenging childhood malignancy, with a very high percentage of patients relaps- Received 18 February 2015 ing following acquisition of drug resistance, thereby necessitating the identification of mechanisms of Received in revised form 10 April 2015 drug resistance as well as new biological targets contributing to the aggressive pathogenicity of the disease. Accepted 4 May 2015 In order to investigate the molecular pathways that are involved with drug resistance in neuroblas- toma, we have developed and characterised cisplatin resistant sublines SK-N-ASCis24, KellyCis83 and CHP- Keywords: 212Cis100, integrating data of cell behaviour, cytotoxicity, genomic alterations and modulation of protein Neuroblastoma expression. All three cisplatin resistant cell lines demonstrated cross resistance to temozolomide, etoposide Proteomics Cisplatin and irinotecan, all of which are drugs in re-initiation therapy.