Wrap.Warwick.Ac.Uk/61984
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contact Patterns and Their Implied Basic Reproductive Numbers: an Illustration for Varicella-Zoster Virus
Epidemiol. Infect. (2009), 137, 48–57. f 2008 Cambridge University Press doi:10.1017/S0950268808000563 Printed in the United Kingdom Contact patterns and their implied basic reproductive numbers: an illustration for varicella-zoster virus T. VAN EFFELTERRE1*, Z. SHKEDY1,M.AERTS1, G. MOLENBERGHS1, 2 2,3 P. VAN DAMME AND P. BEUTELS 1 Hasselt University, Center for Statistics, Biostatistics, Diepenbeek, Belgium 2 University of Antwerp, Epidemiology and Social Medicine, Center for Evaluation of Vaccination, Antwerp, Belgium 3 National Centre for Immunization Research and Surveillance, University of Sydney, Australia (Accepted 25 February 2008; first published online 9 May 2008) SUMMARY The WAIFW matrix (Who Acquires Infection From Whom) is a central parameter in modelling the spread of infectious diseases. The calculation of the basic reproductive number (R0) depends on the assumptions made about the transmission within and between age groups through the structure of the WAIFW matrix and different structures might lead to different estimates for R0 and hence different estimates for the minimal immunization coverage needed for the elimination of the infection in the population. In this paper, we estimate R0 for varicella in Belgium. The force of infection is estimated from seroprevalence data using fractional polynomials and we show how the estimate of R0 is heavily influenced by the structure of the WAIFW matrix. INTRODUCTION and social factors affecting the transmission rate be- tween an infective of age ak and a susceptible of age a An essential assumption in modelling the spread of [1, 2]. For the discrete case with a population divided infectious diseases is that the force of infection, which into a finite number, say n, of age groups, Anderson & is the probability for a susceptible to acquire the May [3] introduced the WAIFW (Who Acquires infection, varies over time as a function of the level of Infection From Whom) matrix in which the ij th entry infectivity in the population [1]. -
Population Behavioural Dynamics Can Mediate the Persistence
medRxiv preprint doi: https://doi.org/10.1101/2021.05.03.21256551; this version posted May 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 1 Population behavioural dynamics can mediate the 2 persistence of emerging infectious diseases 1;∗ 1 1 2 3 Kathyrn R Fair , Vadim A Karatayev , Madhur Anand , Chris T Bauch 4 1 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1 5 2 Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada, N2L 6 3G1 7 *[email protected] 8 Abstract 9 The critical community size (CCS) is the minimum closed population size in which a 10 pathogen can persist indefinitely. Below this threshold, stochastic extinction eventu- 11 ally causes pathogen extinction. Here we use a simulation model to explore behaviour- 12 mediated persistence: a novel mechanism by which the population response to the pathogen 13 determines the CCS. We model severe coronavirus 2 (SARS-CoV-2) transmission and 14 non-pharmaceutical interventions (NPIs) in a population where both individuals and gov- 15 ernment authorities restrict transmission more strongly when SARS-CoV-2 case numbers 16 are higher. This results in a coupled human-environment feedback between disease dy- 17 namics and population behaviour. In a parameter regime corresponding to a moderate 18 population response, this feedback allows SARS-CoV-2 to avoid extinction in the trough 19 of pandemic waves. -
Supplementary Information Methods Supplement
1 SUPPLEMENTARY INFORMATION 2 METHODS SUPPLEMENT 3 4 Description of Model Structure 5 A frequency-dependent SIRS-type metapopulation model was used to explore the effect of enhanced 6 shielding with three population categories being modelled: 7 8 Vulnerable population (Nv) - Those who have risk factors that place them at elevated risk of 9 developing severe disease if infected with COVID-19 and so would remain shielded whilst the 10 rest of the population is gradually released from lockdown. 11 Shielders population (Ns) - Those who have contact with the vulnerable population and include 12 carers, certain care workers and healthcare workers. It is expected that they would also 13 continue some shielding whilst the rest of the population is released from lockdown. 14 General population (Ng). The population that are not vulnerable or shielders. 15 16 For the baseline scenario, a population structure of 20% vulnerable, 20% shielders and 60% general 17 was used (Table M1). A total infectious fraction of 0.0001 (split equally across the population) was 18 used as the initial conditions to seed infection. Model parameters were chosen to best describe the 19 transmission dynamics of COVID-19 in the UK using current assumptions (as of publication) regarding 20 the values of key epidemiological parameters (Table M2). 21 22 The SIRS model assumes that the number of new infections in a sub-population is a function of the 23 fraction of the sub-population that is susceptible (SX), the fraction of the sub-population that is 24 infectious (IX) and the rate of infectious transmission between the two sub-populations (βX). -
Population Behavioural Dynamics Can Mediate the Persistence of Emerging Infectious Diseases
1 Supplementary information - Population behavioural dynamics can mediate the persistence of emerging infectious diseases Kathyrn R Fair1;∗, Vadim A Karatayev1, Madhur Anand1, Chris T Bauch2 1 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1 2 Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada, N2L 3G1 *[email protected] 2 Supplementary methods Within the model, individuals states are updated based on the following events: 1. Exposure: fS; ·} individuals are exposed to SARS-CoV-2 with probability λ(t), shifting to fE; ·}. 2. Onset of infectious period: fE; ·} individuals become pre-symptomatic and infectious with probability (1 − π)α, shifting to fP; ·}. Alternatively, they become asymptomatic and infectious (with probability πα), shifting to fA; ·}. 3. Onset of symptoms: fP; ·} individuals become symptomatic with probability σ, shifting to fI; ·}. 4. Testing: fI;Ug individuals are tested with probability τI shifting to fI;Kg. 5. Removal: fI; ·} and fA; ·} individuals cease to be infectious with probability ρ, shifting to fR; ·}. With probability m = 0:0066 [1], individuals transitioning from the symptomatic and infec- tious state (fI; ·}) to the removed (i.e. no longer infectious) state are assigned as COVID-19 deaths. Individuals who have died due to COVID-19 do not factor into subsequent birth and non-COVID-19 death calculations. At the onset of infectiousness, newly infected individuals have a probability s = 0:2 of being assigned as super-spreaders [2]. We differentiate between super-spreaders and non-super-spreaders using subscripts (s and ns respectively), such that we have Ps, Pns, As, Ans, Is, Ins. Super-spreaders have their probability of infecting others increased by a factor of (1 − s)=s. -
The Basic Reproduction Number of an Infectious Disease in a Stable Population: the Impact of Population Growth Rate on the Eradication Threshold
Math. Model. Nat. Phenom. Vol. 3, No. 7, 2008, pp. 194-228 The Basic Reproduction Number of an Infectious Disease in a Stable Population: The Impact of Population Growth Rate on the Eradication Threshold H. Inabaa1 and H. Nishiurab a Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan b Theoretical Epidemiology, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 7, 3584 CL, Utrecht, The Netherlands Abstract. Although age-related heterogeneity of infection has been addressed in various epidemic models assuming a demographically stationary population, only a few studies have explicitly dealt with age-speci¯c patterns of transmission in growing or decreasing population. To discuss the threshold principle realistically, the present study investigates an age-duration- structured SIR epidemic model assuming a stable host population, as the ¯rst scheme to account for the non-stationality of the host population. The basic reproduction number R0 is derived using the next generation operator, permitting discussions over the well-known invasion principles. The condition of endemic steady state is also characterized by using the e®ective next generation operator. Subsequently, estimators of R0 are o®ered which can explicitly account for non-zero population growth rate. Critical coverages of vaccination are also shown, highlighting the threshold condition for a population with varying size. When quantifying R0 using the force of infection estimated from serological data, it should be remembered that the estimate increases as the population growth rate decreases. On the contrary, given the same R0, critical coverage of vaccination in a growing population would be higher than that of decreasing population. -
Modeling Infectious Disease Dynamics in the Complex Landscape of Global Health Hans Heesterbeek Et Al
RESEARCH ◥ REVIEW SUMMARY linear systems in which infections evolve and spread and where key events can be governed by unpredictable pathogen biology or human EPIDEMIOLOGY behavior. In this Review, we start with an ex- amination of real-time outbreak response using the West African Ebola epidemic as an Modeling infectious disease dynamics example. Here, the challenges range from un- ◥ derreporting of cases and in the complex landscape of ON OUR WEB SITE deaths, and missing infor- Read the full article mation on the impact of at http://dx.doi. control measures to under- global health org/10.1126/ standing human responses. science.aaa4339 The possibility of future .................................................. Hans Heesterbeek,* Roy M. Anderson, Viggo Andreasen, Shweta Bansal, zoonoses tests our ability Daniela De Angelis, Chris Dye, Ken T. D. Eames, W. John Edmunds, to detect anomalous outbreaks and to esti- Simon D. W. Frost, Sebastian Funk, T. Deirdre Hollingsworth, Thomas House, mate human-to-human transmissibility against Valerie Isham, Petra Klepac, Justin Lessler, James O. Lloyd-Smith, C. Jessica E. Metcalf, a backdrop of ongoing zoonotic spillover while Denis Mollison, Lorenzo Pellis, Juliet R. C. Pulliam, Mick G. Roberts, also assessing the risk of more dangerous Cecile Viboud, Isaac Newton Institute IDD Collaboration strains evolving. Increased understanding of the dynamics of infections in food webs and BACKGROUND: Despitemanynotablesuc- lenges for prevention and control. Faced with ecosystems where host and nonhost species cesses in prevention and control, infectious this complexity, mathematical models offer interact is key. Simultaneous multispecies diseases remain an enormous threat to human valuable tools for understanding epidemio- infections are increasingly recognized as a and animal health. -
Who Acquires Infection from Whom and How? Disentangling Multi-Host and Multi- Mode Transmission Dynamics in the 'Elimination
Downloaded from http://rstb.royalsocietypublishing.org/ on March 22, 2017 Who acquires infection from whom and how? Disentangling multi-host and multi- rstb.royalsocietypublishing.org mode transmission dynamics in the ‘elimination’ era Review Joanne P. Webster1, Anna Borlase1 and James W. Rudge2,3 1 Cite this article: Webster JP, Borlase A, Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases, Royal Veterinary College, University of London, Hatfield AL9 7TA, UK Rudge JW. 2017 Who acquires infection from 2Communicable Diseases Policy Research Group, London School of Hygiene and Tropical Medicine, whom and how? Disentangling multi-host and Keppel Street, London WC1E 7HT, UK multi-mode transmission dynamics in the 3Faculty of Public Health, Mahidol University, 420/1 Rajavithi Road, Bangkok 10400, Thailand ‘elimination’ era. Phil. Trans. R. Soc. B 372: JPW, 0000-0001-8616-4919 20160091. http://dx.doi.org/10.1098/rstb.2016.0091 Multi-host infectious agents challenge our abilities to understand, predict and manage disease dynamics. Within this, many infectious agents are also able to use, simultaneously or sequentially, multiple modes of transmission. Accepted: 25 August 2016 Furthermore, the relative importance of different host species and modes can itself be dynamic, with potential for switches and shifts in host range and/ One contribution of 16 to a theme issue or transmission mode in response to changing selective pressures, such as ‘Opening the black box: re-examining the those imposed by disease control interventions. The epidemiology of such multi-host, multi-mode infectious agents thereby can involve a multi-faceted ecology and evolution of parasite transmission’. -
Extinction Thresholds in Host–Parasite Dynamics
Ann. Zool. Fennici 40: 115–130 ISSN 0003-455X Helsinki 30 April 2003 © Finnish Zoological and Botanical Publishing Board 2003 Extinction thresholds in host–parasite dynamics Anne Deredec & Franck Courchamp* Ecologie, Systématique & Evolution, UMR CNRS 8079, Université Paris-Sud XI, Bâtiment 362, F-91405 Orsay Cedex, France (*e-mail: [email protected]) Received 13 Jan. 2003, revised version received 5 Feb. 2003, accepted 22 Feb. 2003 Deredec, A. & Courchamp, F. 2003: Extinction thresholds in host–parasite dynamics. — Ann. Zool. Fennici 40: 115–130. In this paper, we review the main thresholds that can infl uence the population dynamics of host–parasite relationships. We start by considering the thresholds that have infl u- enced the conceptualisation of theoretical epidemiology. The most common threshold involving parasites is the host population invasion threshold, but persistence and infec- tion thresholds are also important. We recap how the existence of the invasion thresh- old is linked to the nature of the transmission term in theoretical studies. We examine some of the main thresholds that can affect host population dynamics including the Allee effect and then relate these to parasite thresholds, as a way to assess the dynamic consequences of the interplay between host and parasite thresholds on the fi nal out- come of the system. We propose that overlooking the existence of parasite and host thresholds can have important detrimental consequences in major domains of applied ecology, including in epidemiology, conservation biology and biological control. Introduction the infection would not spread and would dis- appear, and the few infected hosts would die, The interplay between parasite species and their leaving a remaining healthy and uninfected host hosts constitutes a biological process that is both population. -
Should We Expect Population Thresholds for Wildlife Disease?
ARTICLE IN PRESS TREE 519 Review TRENDS in Ecology and Evolution Vol.xx No.xx Monthxxxx Should we expect population thresholds for wildlife disease? James O. Lloyd-Smith1,2, Paul C. Cross1,3, Cheryl J. Briggs4, Matt Daugherty4, Wayne M. Getz1,5, John Latto4, Maria S. Sanchez1, Adam B. Smith6 and Andrea Swei4 1Department of Environmental Science, Policy and Management, University of California at Berkeley, Berkeley, CA 94720-3114, USA 2Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720-3200, USA 3Northern Rocky Mountain Science Center, United States Geological Survey, 229 A.J.M. Johnson Hall, Bozeman, MT 59717, USA 4Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720-3140, USA 5Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, 0002 South Africa 6Energy and Resources Group, University of California at Berkeley, Berkeley, CA 94720, USA Host population thresholds for the invasion or persist- expected, demographic stochasticity makes them difficult ence of infectious disease are core concepts of disease to measure under field conditions. We discuss how con- ecology and underlie disease control policies based on ventional theories underlying population thresholds culling and vaccination. However, empirical evidence for neglect many factors relevant to natural populations these thresholds in wildlife populations has been such as seasonal births or compensatory reproduction, sparse, although recent studies have begun to address raising doubts about the general applicability of standard this gap. Here, we review the theoretical bases and threshold concepts in wildlife disease systems. These empirical evidence for disease thresholds in wildlife. We findings call into question the wisdom of centering control see that, by their nature, these thresholds are rarely policies on threshold targets and open important avenues abrupt and always difficult to measure, and important for future research. -
Generating a Simulation-Based Contacts Matrix for Disease Transmission Modeling at Special Settings
Generating a Simulation-Based Contacts Matrix for Disease Transmission Modeling at Special Settings Mahdi M. Najafabadi a*, Ali Asgary a, Mohammadali Tofighi a, and Ghassem Tofighi b Author Affiliations: a Advanced Disaster, Emergency and Rapid Response Simulation (ADERSIM), York University, Toronto, Canada; b School of Applied Computing, Sheridan College, Toronto, Canada Abstract Since a significant amount of disease transmission occurs through human-to-human or social contact, understanding who interacts with whom in time and space is essential for disease transmission modeling, prediction, and assessment of prevention strategies in different environments and special settings. Thus, measuring contact mixing patterns, often in the form of a contacts matrix, has been a key component of heterogeneous disease transmission modeling research. Several data collection techniques estimate or calculate a contacts matrix at different geographical scales and population mixes based on surveys and sensors. This paper presents a methodology for generating a contacts matrix by using high fidelity simulations which mimic actual workflow and movements of individuals in time and space. Results of this study show that such simulations can be a feasible, flexible, and reasonable alternative method for estimating social contacts and generating contacts mixing matrices for various settings under different conditions. Keywords: Agent-Based Modeling, ABM, Contact Matrices, COVID-19, Disease Transmission Modeling, High Fidelity Simulations, Proximity Matrix, WAIFW Page 1 1. Introduction and Background Person-to-person disease transmission is largely driven by who interacts with whom in time and space (Prem et al., 2020). Past and current studies, especially those conducted during the COVID- 19 pandemic have further revealed that individuals who have more person-to-person contact per period have higher chances of becoming infected, infecting others, and being infected earlier during pandemics (Smieszek et al., 2014). -
Quantifying How Social Mixing Patterns Affect Disease Transmission
Quantifying How Social Mixing Patterns Affect Disease Transmission ∗ S.E. LeGresley1;2, S.Y. Del Valle1, J.M. Hyman3 1 Energy and Infrastructure Analysis Group (D-4), Los Alamos National Laboratory, Los Alamos, NM 87545 2 Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66046 3 Department of Mathematics Tulane University, New Orleans, LA 70118 ∗Corresponding author. E-mail address: [email protected](S.E. LeGresley). 1 1 Abstract 2 We analyze how disease spreads among different age groups in an agent-based com- 3 puter simulation of a synthetic population. Quantifying the relative importance of differ- 4 ent daily activities of a population is crucial for understanding the disease transmission 5 and in guiding mitigation strategies. Although there is very little real-world data for these 6 mixing patterns, there is mixing data from virtual world models, such as the Los Alamos 7 Epidemic Simulation System (EpiSimS). We use this platform to analyze the synthetic 8 mixing patterns generated in southern California and to estimate the number and du- 9 ration of contacts between people of different ages. We approximate the probability of 10 transmission based on the duration of the contact, as well as a matrix that depicts who 11 acquired infection from whom (WAIFW). We provide some of the first quantitative esti- 12 mates of how infections spread among different age groups based on the mixing patterns 13 and activities at home, school, and work. The analysis of the EpiSimS data quantifies 14 the central role of schools in the early spread of an epidemic. -
Weekly Epidemiological Record Relevé Épidémiologique Hebdomadaire
2018, 93, 541–552 No 41 Weekly epidemiological record Relevé épidémiologique hebdomadaire 12 OCTOBER 2018, 93th YEAR / 12 OCTOBRE 2018, 93e ANNÉE No 41, 2018, 93, 541–552 http://www.who.int/wer Progress towards Progrès vers l’élimination Contents eliminating onchocerciasis de l’onchocercose dans 541 Progress towards in the WHO Region la Région OMS des Amériques: eliminating onchocerciasis in the WHO Region of of the Americas: advances progrès dans la cartographie the Americas: advances in mapping the Yanomami de la zone du foyer Yanomami in mapping the Yanomami focus area focus area 544 Guidance for evaluating Onchocerciasis (river blindness) is caused L’onchocercose (cécité des rivières) est provo- progress towards elimination by the parasitic worm Onchocerca volvulus, quée par Onchocerca volvulus, ver parasitaire of measles and rubella which is transmitted by Simulium species transmis par certaines espèces de Simulium black flies that breed in fast-flowing (simulies) qui se reproduisent dans les rivières Sommaire rivers and streams. In the human host, et les cours d’eau rapides. Chez l’hôte humain, adult male and female O. volvulus worms les adultes mâles et femelles d’O. volvulus s’en- 541 Progrès vers l’élimination become encapsulated in subcutaneous capsulent dans des «nodules» fibreux sous- de l’onchocercose dans fibrous “nodules”, and fertilized females cutanés et les femelles fécondées produisent la Région OMS des Amériques: progrès dans la cartographie produce embryonic microfilariae, which des microfilaires embryonnaires qui migrent de la zone du foyer Yanomami migrate to the skin, where they are vers la peau où elles sont ingérées par des 544 Orientations pour évaluer ingested by the black fly vectors during simulies vectrices lors d’un repas de sang.