Estimating Infectious Disease Parameters from Data on Social
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Some Simple Rules for Estimating Reproduction Numbers in the Presence of Reservoir Exposure Or Imported Cases
Some simple rules for estimating reproduction numbers in the presence of reservoir exposure or imported cases Angus McLure1*, Kathryn Glass1 1 Research School of Population Health, Australian National University, 62 Mills Rd, Acton, 0200, ACT, Australia * Corresponding author: [email protected] 1 Abstract The basic reproduction number () is a threshold parameter for disease extinction or survival in isolated populations. However no human population is fully isolated from other human or animal populations. We use compartmental models to derive simple rules for the basic reproduction number for populations with local person‐to‐person transmission and exposure from some other source: either a reservoir exposure or imported cases. We introduce the idea of a reservoir‐driven or importation‐driven disease: diseases that would become extinct in the population of interest without reservoir exposure or imported cases (since 1, but nevertheless may be sufficiently transmissible that many or most infections are acquired from humans in that population. We show that in the simplest case, 1 if and only if the proportion of infections acquired from the external source exceeds the disease prevalence and explore how population heterogeneity and the interactions of multiple strains affect this rule. We apply these rules in two cases studies of Clostridium difficile infection and colonisation: C. difficile in the hospital setting accounting for imported cases, and C. difficile in the general human population accounting for exposure to animal reservoirs. We demonstrate that even the hospital‐adapted, highly‐transmissible NAP1/RT027 strain of C. difficile had a reproduction number <1 in a landmark study of hospitalised patients and therefore was sustained by colonised and infected admissions to the study hospital. -
Contact Patterns and Their Implied Basic Reproductive Numbers: an Illustration for Varicella-Zoster Virus
Epidemiol. Infect. (2009), 137, 48–57. f 2008 Cambridge University Press doi:10.1017/S0950268808000563 Printed in the United Kingdom Contact patterns and their implied basic reproductive numbers: an illustration for varicella-zoster virus T. VAN EFFELTERRE1*, Z. SHKEDY1,M.AERTS1, G. MOLENBERGHS1, 2 2,3 P. VAN DAMME AND P. BEUTELS 1 Hasselt University, Center for Statistics, Biostatistics, Diepenbeek, Belgium 2 University of Antwerp, Epidemiology and Social Medicine, Center for Evaluation of Vaccination, Antwerp, Belgium 3 National Centre for Immunization Research and Surveillance, University of Sydney, Australia (Accepted 25 February 2008; first published online 9 May 2008) SUMMARY The WAIFW matrix (Who Acquires Infection From Whom) is a central parameter in modelling the spread of infectious diseases. The calculation of the basic reproductive number (R0) depends on the assumptions made about the transmission within and between age groups through the structure of the WAIFW matrix and different structures might lead to different estimates for R0 and hence different estimates for the minimal immunization coverage needed for the elimination of the infection in the population. In this paper, we estimate R0 for varicella in Belgium. The force of infection is estimated from seroprevalence data using fractional polynomials and we show how the estimate of R0 is heavily influenced by the structure of the WAIFW matrix. INTRODUCTION and social factors affecting the transmission rate be- tween an infective of age ak and a susceptible of age a An essential assumption in modelling the spread of [1, 2]. For the discrete case with a population divided infectious diseases is that the force of infection, which into a finite number, say n, of age groups, Anderson & is the probability for a susceptible to acquire the May [3] introduced the WAIFW (Who Acquires infection, varies over time as a function of the level of Infection From Whom) matrix in which the ij th entry infectivity in the population [1]. -
Seventy-Five Years of Estimating the Force of Infection from Current Status
Epidemiol. Infect. (2010), 138, 802–812. f Cambridge University Press 2009 doi:10.1017/S0950268809990781 Seventy-five years of estimating the force of infection from current status data N. HENS 1,2*, M. AERTS 1,C.FAES1,Z.SHKEDY1, O. LEJEUNE2, P. VAN DAMME2 AND P. BEUTELS2 1 Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium 2 Centre for Health Economics Research & Modelling Infectious Diseases; Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium (Accepted 18 August 2009; first published online 21 September 2009) SUMMARY The force of infection, describing the rate at which a susceptible person acquires an infection, is a key parameter in models estimating the infectious disease burden, and the effectiveness and cost-effectiveness of infectious disease prevention. Since Muench formulated the first catalytic model to estimate the force of infection from current status data in 1934, exactly 75 years ago, several authors addressed the estimation of this parameter by more advanced statistical methods, while applying these to seroprevalence and reported incidence/case notification data. In this paper we present an historical overview, discussing the relevance of Muench’s work, and we explain the wide array of newer methods with illustrations on pre-vaccination serological survey data of two airborne infections: rubella and parvovirus B19. We also provide guidance on deciding which method(s) to apply to estimate the -
Multiscale Mobility Networks and the Spatial Spreading of Infectious Diseases
Multiscale mobility networks and the spatial spreading of infectious diseases Duygu Balcana,b, Vittoria Colizzac, Bruno Gonc¸alvesa,b, Hao Hud, Jose´ J. Ramascob, and Alessandro Vespignania,b,c,1 aCenter for Complex Networks and Systems Research, School of Informatics and Computing, Indiana University, Bloomington, IN 47408; bPervasive Technology Institute, Indiana University, Bloomington, IN 47404; cComputational Epidemiology Laboratory, Institute for Scientific Interchange Foundation, 10133 Torino, Italy; and dDepartment of Physics, Indiana University, Bloomington, IN 47406 Edited by H. Eugene Stanley, Boston University, Boston, MA, and approved October 13, 2009 (received for review June 19, 2009) Among the realistic ingredients to be considered in the computational two questions stand out: (i) Is there a most relevant mobility scale modeling of infectious diseases, human mobility represents a crucial in the definition of the global epidemic pattern? and (ii) At which challenge both on the theoretical side and in view of the limited level of resolution of the epidemic behavior does a given mobility availability of empirical data. To study the interplay between short- scale become relevant, and to what extent? scale commuting flows and long-range airline traffic in shaping the To begin addressing these questions, we use high-resolution spatiotemporal pattern of a global epidemic we (i) analyze mobility worldwide population data that allow for the definition of sub- data from 29 countries around the world and find a gravity model populations according to a Voronoi decomposition of the world able to provide a global description of commuting patterns up to 300 surface centered on the locations of International Air Transport kms and (ii) integrate in a worldwide-structured metapopulation Association (IATA)-indexed airports (www.iata.org). -
Supplementary Information Methods Supplement
1 SUPPLEMENTARY INFORMATION 2 METHODS SUPPLEMENT 3 4 Description of Model Structure 5 A frequency-dependent SIRS-type metapopulation model was used to explore the effect of enhanced 6 shielding with three population categories being modelled: 7 8 Vulnerable population (Nv) - Those who have risk factors that place them at elevated risk of 9 developing severe disease if infected with COVID-19 and so would remain shielded whilst the 10 rest of the population is gradually released from lockdown. 11 Shielders population (Ns) - Those who have contact with the vulnerable population and include 12 carers, certain care workers and healthcare workers. It is expected that they would also 13 continue some shielding whilst the rest of the population is released from lockdown. 14 General population (Ng). The population that are not vulnerable or shielders. 15 16 For the baseline scenario, a population structure of 20% vulnerable, 20% shielders and 60% general 17 was used (Table M1). A total infectious fraction of 0.0001 (split equally across the population) was 18 used as the initial conditions to seed infection. Model parameters were chosen to best describe the 19 transmission dynamics of COVID-19 in the UK using current assumptions (as of publication) regarding 20 the values of key epidemiological parameters (Table M2). 21 22 The SIRS model assumes that the number of new infections in a sub-population is a function of the 23 fraction of the sub-population that is susceptible (SX), the fraction of the sub-population that is 24 infectious (IX) and the rate of infectious transmission between the two sub-populations (βX). -
Understanding the Spreading Power of All Nodes in a Network: a Continuous-Time Perspective
i i “Lawyer-mainmanus” — 2014/6/12 — 9:39 — page 1 — #1 i i Understanding the spreading power of all nodes in a network: a continuous-time perspective Glenn Lawyer ∗ ∗Max Planck Institute for Informatics, Saarbr¨ucken, Germany Submitted to Proceedings of the National Academy of Sciences of the United States of America Centrality measures such as the degree, k-shell, or eigenvalue central- epidemic. When this ratio exceeds this critical range, the dy- ity can identify a network’s most influential nodes, but are rarely use- namics approach the SI system as a limiting case. fully accurate in quantifying the spreading power of the vast majority Several approaches to quantifying the spreading power of of nodes which are not highly influential. The spreading power of all all nodes have recently been proposed, including the accessibil- network nodes is better explained by considering, from a continuous- ity [16, 17], the dynamic influence [11], and the impact [7] (See time epidemiological perspective, the distribution of the force of in- fection each node generates. The resulting metric, the Expected supplementary Note S1). These extend earlier approaches to Force (ExF), accurately quantifies node spreading power under all measuring centrality by explicitly incorporating spreading dy- primary epidemiological models across a wide range of archetypi- namics, and have been shown to be both distinct from previous cal human contact networks. When node power is low, influence is centrality measures and more highly correlated with epidemic a function of neighbor degree. As power increases, a node’s own outcomes [7, 11, 18]. Yet they retain the common foundation degree becomes more important. -
Epidemic Response to Physical Distancing Policies and Their Impact on the Outbreak Risk
Epidemic response to physical distancing policies and their impact on the outbreak risk Fabio Vanni∗†‡ David Lambert§ ‡ Luigi Palatella¶ Abstract We introduce a theoretical framework that highlights the impact of physical distancing variables such as human mobility and physical proximity on the evolution of epidemics and, crucially, on the reproduction number. In particular, in response to the coronavirus disease (CoViD-19) pandemic, countries have introduced various levels of ’lockdown’ to reduce the number of new infections. Specifically we use a collisional approach to an infection-age struc- tured model described by a renewal equation for the time homogeneous evolution of epidemics. As a result, we show how various contributions of the lockdown policies, namely physical prox- imity and human mobility, reduce the impact of SARS-CoV-2 and mitigate the risk of disease resurgence. We check our theoretical framework using real-world data on physical distanc- ing with two different data repositories, obtaining consistent results. Finally, we propose an equation for the effective reproduction number which takes into account types of interac- tions among people, which may help policy makers to improve remote-working organizational structure. Keywords: Renewal equation, Epidemic Risk, Lockdown, Social Distancing, Mobility, Smart Work. arXiv:2007.14620v2 [physics.soc-ph] 31 Jul 2020 1 Introduction As the coronavirus disease (CoViD-19) epidemic worsens, understanding the effectiveness of public messaging and large-scale physical distancing interventions is critical in order to manage the acute ∗Sciences Po, OFCE , France †Institute of Economics, Sant’Anna School of Advanced Studies, Pisa, Italy ‡Department of Physics, University of North Texas, USA §Department of Mathematics, University of North Texas, USA ¶Liceo Scientifico Statale “C. -
The Basic Reproduction Number of an Infectious Disease in a Stable Population: the Impact of Population Growth Rate on the Eradication Threshold
Math. Model. Nat. Phenom. Vol. 3, No. 7, 2008, pp. 194-228 The Basic Reproduction Number of an Infectious Disease in a Stable Population: The Impact of Population Growth Rate on the Eradication Threshold H. Inabaa1 and H. Nishiurab a Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan b Theoretical Epidemiology, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 7, 3584 CL, Utrecht, The Netherlands Abstract. Although age-related heterogeneity of infection has been addressed in various epidemic models assuming a demographically stationary population, only a few studies have explicitly dealt with age-speci¯c patterns of transmission in growing or decreasing population. To discuss the threshold principle realistically, the present study investigates an age-duration- structured SIR epidemic model assuming a stable host population, as the ¯rst scheme to account for the non-stationality of the host population. The basic reproduction number R0 is derived using the next generation operator, permitting discussions over the well-known invasion principles. The condition of endemic steady state is also characterized by using the e®ective next generation operator. Subsequently, estimators of R0 are o®ered which can explicitly account for non-zero population growth rate. Critical coverages of vaccination are also shown, highlighting the threshold condition for a population with varying size. When quantifying R0 using the force of infection estimated from serological data, it should be remembered that the estimate increases as the population growth rate decreases. On the contrary, given the same R0, critical coverage of vaccination in a growing population would be higher than that of decreasing population. -
Reproduction Numbers for Infections with Free-Living Pathogens Growing in the Environment
Journal of Biological Dynamics Vol. 6, No. 2, March 2012, 923–940 Reproduction numbers for infections with free-living pathogens growing in the environment Majid Bani-Yaghouba*, Raju Gautama, Zhisheng Shuaib, P. van den Driesscheb and Renata Ivaneka aDepartment of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; bDepartment of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 3R4 (Received 29 January 2012; final version received 6 May 2012) The basic reproduction number 0 for a compartmental disease model is often calculated by the next generation matrix (NGM) approach.R When the interactions within and between disease compartments are interpreted differently, the NGM approach may lead to different 0 expressions. This is demonstrated by considering a susceptible–infectious–recovered–susceptible modelR with free-living pathogen (FLP) growing in the environment.Although the environment could play different roles in the disease transmission process, leading to different 0 expressions, there is a unique type reproduction number when control R strategies are applied to the host population.All 0 expressions agree on the threshold value 1 and preserve their order of magnitude. However, using data forR salmonellosis and cholera, it is shown that the estimated 0 values are substantially different. This study highlights the utility and limitations of reproduction numbersR to accurately quantify the effects of control strategies for infections with FLPs growing in the environment. Keywords: SIRSP model; infection control; free-living pathogen; basic reproduction number; type reproduction number 1. Introduction The basic reproduction number, 0, is considered as one of the most practical tools that R Downloaded by [University of Central Florida] at 08:28 15 August 2012 mathematical thinking has brought to epidemic theory [26]. -
Who Acquires Infection from Whom and How? Disentangling Multi-Host and Multi- Mode Transmission Dynamics in the 'Elimination
Downloaded from http://rstb.royalsocietypublishing.org/ on March 22, 2017 Who acquires infection from whom and how? Disentangling multi-host and multi- rstb.royalsocietypublishing.org mode transmission dynamics in the ‘elimination’ era Review Joanne P. Webster1, Anna Borlase1 and James W. Rudge2,3 1 Cite this article: Webster JP, Borlase A, Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases, Royal Veterinary College, University of London, Hatfield AL9 7TA, UK Rudge JW. 2017 Who acquires infection from 2Communicable Diseases Policy Research Group, London School of Hygiene and Tropical Medicine, whom and how? Disentangling multi-host and Keppel Street, London WC1E 7HT, UK multi-mode transmission dynamics in the 3Faculty of Public Health, Mahidol University, 420/1 Rajavithi Road, Bangkok 10400, Thailand ‘elimination’ era. Phil. Trans. R. Soc. B 372: JPW, 0000-0001-8616-4919 20160091. http://dx.doi.org/10.1098/rstb.2016.0091 Multi-host infectious agents challenge our abilities to understand, predict and manage disease dynamics. Within this, many infectious agents are also able to use, simultaneously or sequentially, multiple modes of transmission. Accepted: 25 August 2016 Furthermore, the relative importance of different host species and modes can itself be dynamic, with potential for switches and shifts in host range and/ One contribution of 16 to a theme issue or transmission mode in response to changing selective pressures, such as ‘Opening the black box: re-examining the those imposed by disease control interventions. The epidemiology of such multi-host, multi-mode infectious agents thereby can involve a multi-faceted ecology and evolution of parasite transmission’. -
Global Convergence of COVID-19 Basic Reproduction Number and Estimation from Early-Time SIR Dynamics
PLOS ONE RESEARCH ARTICLE Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics 1,2 1☯ 3,4☯ 5☯ Gabriel G. KatulID *, Assaad MradID , Sara BonettiID , Gabriele ManoliID , Anthony 6☯ J. ParolariID 1 Nicholas School of the Environment, Duke University, Durham, NC, United States of America, 2 Department of Civil and Environmental Engineering, Duke University, Durham, NC, United States of America, a1111111111 3 Department of Environmental Systems Science, ETH ZuÈrich, ZuÈrich, Switzerland, 4 Bartlett School of a1111111111 Environment, Energy and Resources, University College London, London, United Kingdom, 5 Department of a1111111111 Civil, Environmental and Geomatic Engineering, University College London, London, United Kingdom, 6 Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, a1111111111 Wisconsin, United States of America a1111111111 ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Abstract Citation: Katul GG, Mrad A, Bonetti S, Manoli G, Parolari AJ (2020) Global convergence of COVID- The SIR (`susceptible-infectious-recovered') formulation is used to uncover the generic 19 basic reproduction number and estimation from spread mechanisms observed by COVID-19 dynamics globally, especially in the early early-time SIR dynamics. PLoS ONE 15(9): phases of infectious spread. During this early period, potential controls were not effectively e0239800. https://doi.org/10.1371/journal. pone.0239800 put in place or enforced in many countries. Hence, the early phases of COVID-19 spread in countries where controls were weak offer a unique perspective on the ensemble-behavior of Editor: Maria Vittoria Barbarossa, Frankfurt Institute for Advanced Studies, GERMANY COVID-19 basic reproduction number Ro inferred from SIR formulation. -
Into to Epidemic Modeling
INTRO TO EPIDEMIC MODELING Introduction to epidemic modeling is usually made through one of the first epidemic models proposed by Kermack and McKendrick in 1927, a model known as the SIR epidemic model When a disease spreads in a population it splits the population into nonintersecting classes. In one of the simplest scenarios there are 3 classes: • The class of individuals who are healthy but can contract the disease. These people are called susceptible individuals or susceptibles. The size of this class is usually denoted by S. • The class of individuals who have contracted the disease and are now sick with it, called infected individuals. In this model it is assumed that infected individuals are also infectious. The size of the class of infectious/infected individuals is denoted by I. • The class of individuals who have recovered and cannot contract the disease again are called removed/recovered individuals. The class of recovered individuals is usually denoted by R. The number of individuals in each of these classes changes with time, that is, S(t), I(t), and R(t). The total population size N is the sum of these three classes 푁 푡 = 푆 푡 + 퐼 푡 + 푅(푡) Assumptions: (1) Infected individuals are also infectious; (2) The total population size remains constant; (3) The population is closed (no immigration/emigration); (4) No births/deaths; (5)All recovered individuals have complete immunity Epidemiological models consist of systems of ODEs which describe the dynamics in each class. To derive the differential equations, we consider how the classes change in time. When a susceptible individual enters into a contact with an infectious individual, that susceptible individual becomes infected and moves from the susceptible class into the infected class.