Physiology of Stress and Its Managements

Total Page:16

File Type:pdf, Size:1020Kb

Physiology of Stress and Its Managements Sharma DK, J Med Stud Res 2018, 1: 001 DOI: 10.24966/MSR-5657/100001 HSOA Journal of Medicine: Study & Research Review Article Though stress is commonly associated with disagreeable states and Physiology of Stress and its experiences, but it is not always the case. Stress is simply a response to physical and emotional demands. Whenever we feel stressed this Managements usually means that the demands of the situation exceed all our avail- Dushyant Kumar Sharma* able resources. Generally when we talk about the stress in our lives we are talking about ‘stressors’. Department of Zoology, Government Model Science College, Gwalior, Madhya Pradesh, India Any factor or event that causes stress is called a stressor. Stressors can be of many types: physical or physiological changes in the body, changes in the environment, life events or behaviours. Even an unreal (imaginary) situation can act as a stressor and could be the reason of stress. In fact in most of the cases it is just an imagination which is the cause of a stress. Hence, it is very important how we perceive an event or a situation. Types of Stress Abstract Depending on the nature, duration and impact on the body, stress Today stress has become a major problem. Most of the people can be seen in the state of stress. Even young children are not an can be categorized into different categories: exception. It is essential to understand the physiology of stress if we Good and bad stress wish to cope with the stress. The stress response involves the in- volvement of both nervous as well as endocrine systems. Though re- Do all types of stress are harmful or have negative impact on the search on stress has provided invaluable insight and increased our body. The answer is “NO”. All types of stress are not harmful. There understanding about the physiological and metabolic complications are stressors which can be fun, exciting and motivating. Such stresses of stress. Stress affects most of the body systems. Though stress usually called Good stress or Eustress not only help in restoring our management has still remained a big challenge, we can manage stress by making some little changes in our lifestyle. energy but also improve heart function and increase our stamina and strength. They sharpen our thinking and enhance mental ability. Dis- Keywords: ACTH; Corticoids; HPA axis; Stress; Stressor; Stress tress on the other hand, is the stress which has negative or bad impact hormones on the body. It is the stress which causes anxiety or a feeling of dis- pleasure. Distress normally has a negative impact on our performance Introduction and can lead to mental as well as physical problems. ‘Stress’ is the word which is known to everyone. We often use the Acute stress, episodic stress, and chronic stress term in our daily lives. Stress is not a situation or a condition during Acute stress is the stress that occurs for a short period of time. an adverse condition, as it is generally assumed. In fact, it is a way It comes on quickly and also goes quickly. It is usually short lived. by which the body overcomes a demanding or undesirable situation. Acute stress is generally recognized with symptoms such as anger, Whenever we are in some unfavourable condition (whether it is phys- anxiety, irritability and acute periods of depression. Some time it may ical or mental) our body tries to maintain the homeostasis (internal bring thrill, pleasure and excitement in our lives. When acute stress is milieu) and protect itself from such events adopting some ‘changes’. felt too frequently it is called episodic stress. Episodic acute stress in Stress is a series of events our body follows to cope with such situa- some people occurs due to a series of stressful challenges occurring tions. Selye used the term ‘stress’ to represent the effects of anything one after another in their lives. When a stress persists for longer dura- that seriously threatens homeostasis of the body [1]. Both external tion it is called chronic stress. Chronic stress is brought about by the and internal factors affect the homeostasis of the body. long term exposure to stressors. Chronic stressors may not be as in- *Corresponding author: Dushyant Kumar Sharma, Department of Zoology, tense as acute stressors but they are more harmful than acute stressors. Government Model Science College, Gwalior, Madhya Pradesh, India, Tel: +91 This is because the effect of chronic stress is the accumulated effects 9425770641; E-mail: [email protected] of stressor for a long time. Chronic stress not only affects the physical Citation: Sharma DK (2018) Physiology of Stress and its Management. J Med health but is equally harmful for mental health. The effects occur due Stud Res 1: 001. to accumulated stress. Received: February 23, 2018; Accepted: April 26, 2018; Published: May 10, Stress Response 2018 Copyright: © 2018 Sharma DK. This is an open-access article distributed Whenever the body is exposed to a stressor, which may be a real under the terms of the Creative Commons Attribution License, which permits or just imagined a response is elicited to overcome it. The response unrestricted use, distribution, and reproduction in any medium, provided the is not uniform in all individuals. Besides the intensity and duration original author and source are credited. of the stressor several other factors such as age, gender, personality, Citation: Sharma DK (2018) Physiology of Stress and its Management. J Med Stud Res 1: 001. • Page 2 of 5 • physical and mental health and past experiences of the person also of these hormones - epinephrine and nor epinephrine last for few sec- influence the stress response. Hans Selye developed General Adapta- onds. The functions of parasympathetic nervous system are opposite tion Syndrome (GAS), a profile of how organisms respond to stress to that of sympathetic nervous system and help in energy conservation [1]. There are three stages in stress response: 1. Alarm 2. Adaptation and relaxation. and 3. Exhaustion or recovery. Alarm is the first stage that involves the ‘fight-or-flight’ response. This is the stage which enables us to CRH acts at the anterior pituitary gland an endocrine gland lo- deal with the difficult (adverse) situations. The body is prepared either cated in the brain. Pituitary gland is also called ‘master gland’, as to face the perceived threat, or to escape from it. This stage invokes it controls the secretion of other endocrine glands in the body. On various reactions in the body such as release of stress hormones: cor- stimulation by CRH, anterior pituitary secretes Adrenocorticotropin tisol, nor adrenaline and adrenaline from the adrenal glands, increased Hormone (ACTH). According to Scantamburlo et al., arginine vaso- heart rate, rise in blood sugar level, increase in blood pressure, etc. pressin modulates the effect of CRH on ACTH secretion [2]. If the stressful situation isn’t resolved the body uses all its resourc- ACTH released from anterior pituitary gland in response to CRH es (for example, continuous secretion of stress hormones to provide stimulates adrenal glands located on the kidneys. There are two parts energy to deal with the situation) to adapt to the stressful situation. of adrenal - the outer part called cortex and the inner part known as This is the adaptation stage. This results in various types of physical medulla. (sleep problems, general tiredness, muscular pains, indigestion, aller- ACTH stimulates adrenal cortex to release corticoids (glucocorti- gies, minor infections like common colds etc.,), mental (lack of con- coids and mineralocorticoids). The major function of glucocorticoids centration), emotional (impatience and irritability) and behavioural is to release energy, which is required to cope with the ill effects of problems (smoking and drinking). stressor. The energy is released by conversion of glycogen into glu- If the body’s compensation mechanisms have succeeded in over- cose (glycogenolysis) and also by breakdown of fats into fatty acids coming the stressor’s effect there follows the recovery stage. But if and glycerol (lipolysis). In addition to this corticoids have several the body has used up its resources and is unable to maintain normal other functions such as: increased urea production, appetite suppres- function it leads to exhaustion stage. If exhaustion stage persists for sion, suppression of immune system, exacerbation of gastric irrita- a long time it can cause long term effects where the individual is at tion, associated feeling of depression and loss of control. These are risk of suffering from more serious health conditions. It may lead to the symptoms generally seen in a person under stress. Mineralocor- + + depression, hypertension and coronary diseases. ticoid (aldosterone) promotes Na retention and elimination of K . It increases blood pressure by increasing blood volume. The medulla Mechanism of Stress part of the adrenal gland secretes epinephrine and norepinephrine. The functions of these hormones are the same as that of those secreted Following a stressful event the body acts at different levels to cope from nerve endings of sympathetic nervous system. These hormones with the stressor. This is achieved through two major changes in the secreted by adrenal medulla, reinforce the functions of sympathetic body: 1. change in pattern/amount of the release of the energy and nervous system. The release of these hormones from adrenal medulla 2. change in the distribution of energy. Several events occur to bring acts as a backup system to ensure the most efficient means of physical these changes. All such events are collectively called stress or the survival. The effects brought out by epinephrine and norepinephrine stress response. Stress is a multidimensional phenomenon which in- from the sympathetic nervous system may be termed as immediate volves both nervous and endocrine system.
Recommended publications
  • Chronic Stress Makes People Sick. but How? and How Might We Prevent Those Ill Effects?
    Sussing Out TRESS SChronic stress makes people sick. But how? And how might we prevent those ill effects? By Hermann Englert oad rage, heart attacks, migraine headaches, stom- ach ulcers, irritable bowel syndrome, hair loss among women—stress is blamed for all those and many other ills. Nature provided our prehistoric ancestors with a tool to help them meet threats: a Rquick activation system that focused attention, quickened the heartbeat, dilated blood vessels and prepared muscles to fight or flee the bear stalking into their cave. But we, as modern people, are sub- jected to stress constantly from commuter traffic, deadlines, bills, angry bosses, irritable spouses, noise, as well as social pressure, physical sickness and mental challenges. Many organs in our bodies are consequently hit with a relentless barrage of alarm signals that can damage them and ruin our health. 56 SCIENTIFIC AMERICAN MIND COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC. Daily pressures raise our stress level, but our ancient stress reactions—fight or flight—do not help us survive this kind of tension. www.sciam.com 57 COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC. What exactly happens in our brains and bod- mone (CRH), a messenger compound that un- ies when we are under stress? Which organs are leashes the stress reaction. activated? When do the alarms begin to cause crit- CRH was discovered in 1981 by Wylie Vale ical problems? We are only now formulating a co- and his colleagues at the Salk Institute for Biolog- herent model of how ongoing stress hurts us, yet ical Studies in San Diego and since then has been in it we are finding possible clues to counteract- widely investigated.
    [Show full text]
  • Love, Marriage, and Divorce: Newlyweds' Stress Hormones
    Journal of Consulting and Clinical Psychology Copyright 2003 by the American Psychological Association, Inc. 2003, Vol. 71, No. 1, 176–188 0022-006X/03/$12.00 DOI: 10.1037/0022-006X.71.1.176 Love, Marriage, and Divorce: Newlyweds’ Stress Hormones Foreshadow Relationship Changes Janice K. Kiecolt-Glaser Cynthia Bane Ohio State University College of Medicine and Ohio State Ohio State University Institute for Behavioral Medicine Research Ronald Glaser and William B. Malarkey Ohio State University College of Medicine and Ohio State Institute for Behavioral Medicine Research Neuroendocrine function, assessed in 90 couples during their first year of marriage (Time 1), was related to marital dissolution and satisfaction 10 years later. Compared to those who remained married, epinephrine levels of divorced couples were 34% higher during a Time 1 conflict discussion, 22% higher throughout the day, and both epinephrine and norepinephrine were 16% higher at night. Among couples who were still married, Time 1 conflict ACTH levels were twice as high among women whose marriages were troubled 10 years later than among women whose marriages were untroubled. Couples whose marriages were troubled at follow-up produced 34% more norepinephrine during conflict, 24% more norepinephrine during the daytime, and 17% more during nighttime hours at Time 1 than the untroubled. Broadly stated, social learning models suggest that disordered Bradbury’s (1999b) “two factor” hypothesis suggests that aggres- communication promotes poor marital outcomes (Bradbury & sion and aggressive tendencies appear to be a key risk factor for Carney, 1993). Although communication measures have been early divorces, whereas marital communication contributes to the linked to marital discord and divorce across a number of studies, variability in satisfaction in intact marriages.
    [Show full text]
  • Cortisol-Related Signatures of Stress in the Fish Microbiome
    fmicb-11-01621 July 11, 2020 Time: 15:28 # 1 ORIGINAL RESEARCH published: 14 July 2020 doi: 10.3389/fmicb.2020.01621 Cortisol-Related Signatures of Stress in the Fish Microbiome Tamsyn M. Uren Webster*, Deiene Rodriguez-Barreto, Sofia Consuegra and Carlos Garcia de Leaniz Centre for Sustainable Aquatic Research, College of Science, Swansea University, Swansea, United Kingdom Exposure to environmental stressors can compromise fish health and fitness. Little is known about how stress-induced microbiome disruption may contribute to these adverse health effects, including how cortisol influences fish microbial communities. We exposed juvenile Atlantic salmon to a mild confinement stressor for two weeks. We then measured cortisol in the plasma, skin-mucus, and feces, and characterized the skin and fecal microbiome. Fecal and skin cortisol concentrations increased in fish exposed to confinement stress, and were positively correlated with plasma cortisol. Elevated fecal cortisol was associated with pronounced changes in the diversity and Edited by: Malka Halpern, structure of the fecal microbiome. In particular, we identified a marked decline in the University of Haifa, Israel lactic acid bacteria Carnobacterium sp. and an increase in the abundance of operational Reviewed by: taxonomic units within the classes Clostridia and Gammaproteobacteria. In contrast, Heather Rose Jordan, cortisol concentrations in skin-mucus were lower than in the feces, and were not Mississippi State University, United States related to any detectable changes in the skin microbiome. Our results demonstrate that Timothy John Snelling, stressor-induced cortisol production is associated with disruption of the gut microbiome, Harper Adams University, United Kingdom which may, in turn, contribute to the adverse effects of stress on fish health.
    [Show full text]
  • Posttraumatic Stress Disorder
    TRAUMA AND STRESSOR RELATED DISORDERS POSTTRAUMATIC STRESS DISORDER What it is: In posttraumatic stress disorder, or PTSD, specific mental and emotional symptoms develop after an individual has been exposed to one or more traumatic events. The traumatic event experienced can range from war, as a combatant or a civilian, physical attack or assault, sexual violence, childhood physical or sexual abuse, natural disasters or a severe car accident. The traumatic events do not have to be experienced first-hand for the individual to develop PTSD, it can also develop as a result of witnessing a traumatic event, or through indirect exposure – when a traumatic event happens to a close friend or relative. Symptoms of PTSD can include distressing memories or dreams of the traumatic event, an avoidance of anything that is a reminder of the event, flashbacks of the event, as well as mood changes such as becoming more irritable, aggressive or hyper vigilant. In young children, developmental regression such as loss of language may occur. These symptoms can cause major disruptions and impairment to the individual’s ability to function at home, school and work. Individuals with PTSD are also 80% more likely to have symptoms of at least one other mental disorder, such as depressive, bipolar or substance use disorders. Common Symptoms: The following symptoms must be associated with one or more traumatic events the individual has experienced, witnessed or been indirectly exposed to. 1. Recurring and distressing memories of the event 2. Recurring and distressing dreams relating to the event 3. Dissociative reactions, such as flashbacks, in which the individual may feel or act as if the traumatic event were taking place again 4.
    [Show full text]
  • Hypothalamic–Pituitary–Adrenal Axis Dysregulation and Behavioral Analysis of Mouse Mutants with Altered Glucocorticoid Or Mineralocorticoid Receptor Function
    Stress, September 2008; 11(5): 321–338 REVIEW Hypothalamic–pituitary–adrenal axis dysregulation and behavioral analysis of mouse mutants with altered glucocorticoid or mineralocorticoid receptor function BENEDICT J. KOLBER, LINDSAY WIECZOREK, & LOUIS J. MUGLIA Departments of Pediatrics and Molecular Biology and Pharmacology and Program in Neuroscience, Washington University in St Louis, St Louis, MO 63110, USA (Received 12 July 2007; revised 29 October 2007; accepted 19 November 2007) Abstract Corticosteroid receptors are critical for the maintenance of homeostasis after both psychological and physiological stress. To understand the different roles and interactions of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) during stress, it is necessary to dissect the role of corticosteroid signaling at both the system and sub-system level. A variety of GR transgenic mouse lines have recently been used to characterize the role of GR in the CNS as a whole and particularly in the forebrain. We will describe both the behavioral and cellular/molecular implications of disrupting GR function in these animal models and describe the implications of this data for our understanding of normal endocrine function and stress adaptation. MRs in tight epithelia have a long established role in sodium homeostasis. Recently however, evidence has suggested that MRs in the limbic brain also play an important role in psychological stress. Just as with GR, targeted mutations in MR induce a variety of behavioral changes associated with stress adaptation. In this review, we will discuss the implications of this work on MR. Finally, we will discuss the possible interaction between MR and GR and how future work using double mutants (through For personal use only.
    [Show full text]
  • Poverty Raises Levels of the Stress Hormone Cortisol: Evidence from Weather Shocks in Kenya*
    Poverty Raises Levels of the Stress Hormone Cortisol: Evidence from Weather Shocks in Kenya* Johannes Haushofer, Joost de Laat, Matthieu Chemin October 21, 2012 Abstract Does poverty lead to stress? Despite numerous studies showing correlations between socioeconomic status and levels of the stress hormone cortisol, it remains unknown whether this relationship is causal. We used random weather shocks in Kenya to address this question. Our identication strategy exploits the fact that rainfall is an important input for farmers, but not for non-farmers such as urban artisans. We obtained salivary cortisol samples from poor rural farmers in Kianyaga district, Kenya, and informal metal workers in Nairobi, Kenya, together with GPS coordinates for household location and high-resolution infrared satellite imagery meausring rainfall. Since rainfall is a main input into agricultural production in the region, the absence of rain constitutes a random negative income shock for farmers, but not for non-farmers. We nd that low levels of rain increase cortisol levels with a temporal lag of 10-20 days; crucially, this eect is larger in farmers than in non-farmers. Both rain and cortisol levels are correlated with self-reported worries about life. Together, these ndings suggest that negative events lead to increases in worries and the stress hormone cortisol in poor people. JEL Codes: C93, D03, D87, O12 Keywords: weather shocks, rainfall, cortisol, stress, worries *We thank Ernst Fehr, David Laibson, Esther Duo, Abhijit Banerjee, and the members of the Harvard Program in History, Politics, and Economics for valuable feedback; Ellen Moscoe, Averie Baird, and Robin Audy for excellent research assistance; and Tavneet Suri for providing the rainfall data.
    [Show full text]
  • Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone
    International Journal of Molecular Sciences Review Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone Tiago Chaves 1,2, Csilla Lea Fazekas 1,2, Krisztina Horváth 1,2, Pedro Correia 1,2, Adrienn Szabó 1,2, Bibiána Török 1,2, Krisztina Bánrévi 1 and Dóra Zelena 1,3,* 1 Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; [email protected] (T.C.); [email protected] (C.L.F.); [email protected] (K.H.); [email protected] (P.C.); [email protected] (A.S.); [email protected] (B.T.); [email protected] (K.B.) 2 Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary 3 Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary * Correspondence: [email protected] Abstract: Stress adaptation is of utmost importance for the maintenance of homeostasis and, therefore, of life itself. The prevalence of stress-related disorders is increasing, emphasizing the importance of exploratory research on stress adaptation. Two major regulatory pathways exist: the hypothalamic– pituitary–adrenocortical axis and the sympathetic adrenomedullary axis. They act in unison, ensured by the enormous bidirectional connection between their centers, the paraventricular nucleus of the hypothalamus (PVN), and the brainstem monoaminergic cell groups, respectively. PVN and especially their corticotropin-releasing hormone (CRH) producing neurons are considered to be the centrum of stress regulation. However, the brainstem seems to be equally important. Therefore, Citation: Chaves, T.; Fazekas, C.L.; we aimed to summarize the present knowledge on the role of classical neurotransmitters of the Horváth, K.; Correia, P.; Szabó, A.; brainstem (GABA, glutamate as well as serotonin, noradrenaline, adrenaline, and dopamine) in stress Török, B.; Bánrévi, K.; Zelena, D.
    [Show full text]
  • Impact of Stress on Metabolism and Energy Balance
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com ScienceDirect Impact of stress on metabolism and energy balance Cristina Rabasa and Suzanne L Dickson The stress response mobilizes the body’s energy stores in order to stress response. The dorsal cap and submagnocellular respond to a threatening situation. A striking observation is the part of the PVN send projections to the brainstem and diversity of metabolic changes that can occur in response to spinal nuclei controlling sympathetic and parasympa- stress. On one hand acute intense stress is commonly associated thetic activity. During stress, activation of the sympa- with feeding suppression and reduced body weight gain. The thetic nervous system (SNS) stimulates epinephrine and activation of the hypothalamic–pituitary–adrenal axis and the a smaller, although significant norepinephrine release release of corticotropin-releasing hormone (CRH) might partially from the adrenal medulla, as well as norepinephrine explain the anorexigenic effects of acute stress. CRH can also release from the sympathetic nerve endings [1]. These stimulate the sympathetic nervous system and catecholamine catecholamines stimulate a(1–2) and b(1–3) receptors release, inducing hypophagia and weight loss, through their expressed in different central and peripheral targets to effects on the liver and on white and brown adipose tissue. On the coordinate cardiovascular responses (e.g. cardiac output other hand, chronic stress can lead to dietary over-consumption and respiration are accelerated), redirect blood flow to (especially palatable foods), increased visceral adiposity and arouse the brain and prepare the muscles and the heart weight gain.
    [Show full text]
  • Subject Index Volume 23 Number S2
    SUBJECT INDEX VOLUME 23 NUMBER S2 A B Cigarette smoking, S150 Circadian salivary cortisol levels, S105 Abnormal neuroendocrine, S97 B12 vitamin, S140 Circannual melatonin, S108 Abstinent male alcoholics, S156 Beclomethasone-induced vasoconstriction Circuitry pharmacotherapy, S73–S75 Academia, S10 (BIV), S121 Clinical diagnosis, S115 Academically-striving countries, S59 Bed nucleus of the stria terminals, S111 Clinical Global Impression Scale, S116 ACE gene, S130 Behavior problems, S100 Clinical trials, S43 ACE I/D polymorphism, S106 Behavioral effects of NK1, S23 Clobazam, S3 ACTH secretion, S29 Behavioral endocrine responses, S119 Clonidine administration, S132, S139 Acute adolescent mania, S124 Benign intracranial hypertension, S136 Clorniphene, S78 Acute major depressive disorder, S113 Benzodiazepine withdrawal syndrome, Clozapine, S54, S116, S123, S135 Acute schizophrenia, S122 S124 Cocaine, S17, S46, S133 Addiction, S17, S102 Benzodiazapines, S56 Cognition, S51, S79, S92–S94 Administrative arrangements, S9 Benzothiophenes, S79 Cognitive aging, S94 Adolescent, S82 Bilateral grand mal seizure, S91 Cognitive dysfunction, S128 Adrenal hyperplasia, S60 Biochemical markers, S110 Cognitive functioning, S8 Adrenal insufficiency, S48 Biogenic amine systems, S43 Cognitive therapeutic considerations, S99 Adrenalectomy treatment, S145 Biological Psychiatry, S35 Collaboration, S58 ␤-, ␣2-adrenergic receptors, S3 Biosynthesis, S70 Collegium International A2-adrenoceptor supersensibility, S139 Bipolar adolescents, S124 NeuroPsychopharmacologicum,
    [Show full text]
  • Classification of Trauma and Stressor-Related Disorders in Dsm-5
    DEPRESSION AND ANXIETY 28: 737-749 (2011) Review CLASSIFICATION OF TRAUMA AND STRESSOR-RELATED DISORDERS IN DSM-5 Matthew J. Friedman, M.D. Ph.D., 1,2 Patricia A. Resick, Ph.D.,3,4 Richard A. Bryant, Ph.D.,5 James Strain, M.D.,6 Mardi Horowitz, M.D.,7 and David Spiegel, M.D.8,* This review examines the question of whether there should be a cluster of disorders, including the adjustment disorders (ADs), acute stress disorder (ASD), posttraumatic stress disorder (PTSD), and the dissociative disorders (DDs), in a section devoted to abnormal responses to stress and trauma in the DSM-5. Environmental risk factors, including the individual's developmental experience, would thus become a major diagnostic consideration. The relation ship of these disorders to one another is examined and also their relationship to other anxiety disorders to determine whether they are better grouped with anxiety disorders or a new specific grouping of trauma and stressor-related disorders. First how stress responses have been classified since DSM-III is reviewed. The major focus is on PTSD because it has received the most attention, regarding its proper placement among the psychiatric diagnoses. It is discussed whether PTSD should be considered an anxiety disorder, a stress induced fear circuitry disorder, an internalizing disorder, or a trauma and stressor-related disorder. Then, ASD, AD, and DD are considered from a similar perspective. Evidence is examined pro and con, and a conclusion is offered recommending inclusion of this cluster of disorders in a section entitled "Trauma and Stressor-Related Disorders." The recommendation to shift ASD and PTSD out of the anxiety disorders section reflects increased recognition of trauma as a precipitant, emphasizing common etiology over common phenomenology.
    [Show full text]
  • Statistical Issues in Studies of Thermoregulation in Farm Animals
    Kansas State University Libraries New Prairie Press Conference on Applied Statistics in Agriculture 1989 - 1st Annual Conference Proceedings STATISTICAL ISSUES IN STUDIES OF THERMOREGULATION IN FARM ANIMALS A. M. Parkhurst G. L. Hahn Follow this and additional works at: https://newprairiepress.org/agstatconference Part of the Agriculture Commons, and the Applied Statistics Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Parkhurst, A. M. and Hahn, G. L. (1989). "STATISTICAL ISSUES IN STUDIES OF THERMOREGULATION IN FARM ANIMALS," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/ 2475-7772.1449 This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Conference on Applied Statistics in Agriculture Kansas State21 University STATISTICAL ISSUES IN STUDIES OF THERMOREGULATION IN FARM ANIK~LS A. M. Parkhurst and G. L. Hahn University of Nebraska-Lincoln and U. S. Meat Animal Research Center, ARS-USDA, Clay Center, NE Abstract Patterns of tympanic temperature response were identified in ad-lib-fed cattle exposed to constant or cyclic (±7 C) conditions at two levels of air temperature: 10 C and 28 C. Use of time series analysis following the DDS approach of Pandit and Wu indicate the thermoregulatory control dynamics for steers at 28±7 C were markedly different from those at the other conditions. Preliminary evaluations using the ideas of chaos and non-linear dynamics show promise of further characterization of stress responses in farm animals.
    [Show full text]
  • The Biology of Stress
    Maia Thompson Independent Biology Study Ms. Howe The Biology of Stress Introduction As a senior in high school, the last two years have been filled with important tests with scores that reflect the opportunities that will be made available to me as college approaches. Being a student instigates stress quite naturally as classwork is daily, homework is never rare and tests are seen weekly. Just in the last month of May, students have Advanced Placement exams, finals and final projects. Students also have to navigate the social aspect of school, dealing with their own teenager insecurities and finding their self-identities. I took two AP tests, worked on this project, took my class finals, and took my Emergency Medical Technician finals and practicals all while keeping up with regular schoolwork and hanging out with friends. This is a typical schedule for many students.This project is important to me, to show the effect of stress in students as they prepare for tests, hopefully to create awareness of the preparation these students go through and the hard work they present with. In this independent study I studied the biological reaction of stress in the body along with an experiment to see if I can decrease the stress of students before an AP test using a therapy dog. Context First, what is stress and why is it so important? Stress often seems like a negative and debilitating reaction from our body, but this reaction was necessary for our survival. Our perceived stress originates from a fight-or-flight response in the body that has helped humans to survive.
    [Show full text]