Gossypium Hirsutum Source

Total Page:16

File Type:pdf, Size:1020Kb

Gossypium Hirsutum Source Gossypium hirsutum Source: AGRICOLA database (1970-1996) References (Biological Abstracts 1988-2000): Agrawal, A. A. (2000). Host-range evolution: Adaptation and trade-offs in fitness of mites on alternative hosts. Ecology Washington D C. [print] February 81(2): 500-508. {a} Department of Botany, University of Toronto, 25 Wilcocks Avenue, Toronto, ON, M5S 3B2, Canada Agrawal, A. A., R. Karban, et al. (2000). How leaf domatia and induced plant resistance affect herbivores, natural enemies and plant performance. Oikos . April 89(1): 70-80. {a} Dept of Botany, Univ. of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada Ahuja, S. L. and S. K. Banerjee (2000). Stability for bollworm resistance, jassid grade, seed cotton yield and its components of cytotypes in cotton (Gossypium hirsutum L.). Indian Journal of Agricultural Research. [print] June 34(2): 71-77. {a} Central Institute for Cotton Research Regional Station, Sirsa, 125055, India Anadranistakis, M., A. Liakatas, et al. (2000). Crop water requirements model tested for crops grown in Greece. Agricultural Water Management. [print] August 45(3): 297-316. {a} Agricultural University of Athens, 75 Iera Odos, GR-118 55, Athens, Greece Andersland, J. M. and B. A. Triplett (2000). Selective extraction of cotton fiber cytoplasts to identify cytoskeletal-associated proteins. Plant Physiology and Biochemistry Paris. March 38(3): 193-199. {a} ARS, Southern Regional Research Center, USDA, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124-4305, USA Ashraf, M. and S. Ahmad (2000). Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crops Research. May 66(2): 115-127. {a} ABC Road, 51-C Sheikh Colony, Faisalabad, Pakistan Baird, R., W. Batson, et al. (2000). First report of Rhizoctonia solani AG-7 on cotton in Mississippi. Plant Disease. [print] October 84(10). {a} Entomology and Plant Pathology Department, Mississippi State University, Mississippi State, MS, 39762, USA Banerjee, A. K., D. C. Agrawal, et al. (2000). Recovery of in vitro cotton shoots through micrografting. Current Science Bangalore. [print] 78(5): 623-626. {a} Plant Tissue Culture Division, National Chemical Laboratory, Pune, 411 008, India Banumathy, S. and S. Patil (2000). Genetic analysis of fuzzlessness and other attributes in Gossypium hirsutum L. Crop Research Hisar. [print] July 20(1): 102-104. {a} Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India Bararpour, M. T. and A. Abdollahi (2000). Velvetleaf (Abutilon theophrasti) interference and control. Zeitschrift fuer Pflanzenkrankheiten und Pflanzenschutz(17): 589-594. {a} Department of Agronomy, University of Mazandaran, Sari, Iran Barbour, M. M. and G. D. Farquhar (2000). Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell and Environment. [print] May 23(5): 473-485. Bauer, P. J., J. R. Frederick, et al. (2000). Canopy photosynthesis and fiber properties of normal- and late- planted cotton. Agronomy Journal. [print] May June 92(3): 518-523. {a} Coastal Plains Soil, Water, and Plant Res. Cent., USDA-ARS, 2611 W. Lucas St., Florence, SC, 29501-1242, USA Baumhardt, R. L. and R. J. Lascano (2000). Water budget and yield of dryland cotton intercropped with terminated winter wheat. Agronomy Journal. Nov. Dec. 91(6): 922-927. {a} Conservation and Production Res. Lab., USDA-ARS, Bushland, TX, 79012-0010, USA Bednarz, C. W., D. C. Bridges, et al. (2000). Analysis of cotton yield stability across population densities. Agronomy Journal. [print] January February 92(1): 128-135. {a} Coastal Plain Experiment Station, University of Georgia, Tifton, GA, 31793, USA Bednarz, C. W., G. H. Harris, et al. (2000). Agronomic and economic analyses of cotton starter fertilizers. Agronomy Journal. [print] July August 92(4): 766-771. {a} Coastal Plain Experiment Station, Univ. of Georgia, Tifton, GA, 31793, USA Beyrouty, C. A., J. K. Keino, et al. (2000). Phytotoxic concentrations of subsoil aluminum as influenced by soils and landscape position. Soil Science. Feb. 165(2): 135-143. {a} Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 115 Plant Science Bldg., Fayetteville, AR, 72701, USA Booker, F. L. (2000). Influence of carbon dioxide enrichment, ozone and nitrogen fertilization on cotton (Gossypium hirsutum L.) leaf and root composition. Plant Cell and Environment. [print] June 23(6): 573- 583. {a} Agricultural Research Service, Air Quality-Plant Growth and Development Research Unit, and Department of Crop Science, United States Department of Agriculture, North Carolina State University, 3908 Inwood Road, Raleigh, NC, 27603, USA Booker, F. L., S. R. Shafer, et al. (2000). Carbon dioxide enrichment and nitrogen fertilization effects on cotton (Gossypium hirsutum L.) plant residue chemistry and decomposition. Plant and Soil. [print] 220(1-2): 89-98. {a} Air Quality - Plant Growth and Development Research Unit, and Department of Crop Science, U.S. Department of Agriculture, Agricultural Research Service, North Carolina State University, 3908 Inwood Road, Raleigh, NC, 27603, USA Borole, V. K., D. B. Dhumale, et al. (2000). Embryo culture studies in interspecific crosses between arboreum and hirsutum cotton. Indian Journal of Genetics and Plant Breeding. Feb. 60(1): 105-110. {a} Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, 444 104, India Briddon, R. W., S. Mansoor, et al. (2000). Clones of cotton leaf curl geminivirus induce symptoms atypical of cotton leaf curl disease. Virus Genes. Feb. 20(1): 19-26. {a} Department of Virus Research, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK Cantrell, R. G. and D. D. Davis (2000). Registration of NM24016, an interspecific-derived cotton genetic stock. Crop Science. [print] July August 40(4). {a} Dep. Agronomy and Horticulture, New Mexico State Univ., Las Cruces, NM, 88003-8003, USA Cantrell, R. G., C. L. Roberts, et al. (2000). Registration of 'Acala 1517-99' cotton. Crop Science. [print] July August 40(4): 1200-1201. {a} Dep. Agronomy and Horticulture, New Mexico State Univ., Las Cruces, NM, 88003-8003, USA Chen, C. x., Y. j. Yu, et al. (2000). Genetic analysis of salt-tolerance variant in cotton. Xibei Zhiwu Xuebao. [print] March 20(2): 234-237. {a} Laboratory of Plant Genetic Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China Chimbekujwo, I. B. (2000). Frequency and pathogenicity of fusarium wilts (Fusarium solani and Fusarium equiseti) of cotton (Gossypium hirsutum) in Adamawa in Nigeria. Revista de Biologia Tropical. [print] March 48(1): 1-5. {a} Department of Biological Sciences, Federal University of Technology, Yola, Adamawa State, Nigeria Chipika, J. T. and G. Kowero (2000). Deforestation of woodlands in communal areas of Zimbabwe: Is it due to agricultural policies? Agriculture Ecosystems and Environment. [print] July 79(2-3): 175-185. {a} Center for International Forestry Research (CIFOR), Regional Office, c/o Institute of Environmental Studies, University of Zimbabwe, Harare, Zimbabwe Chu, C. C., T. Freeman, et al. (2000). Bemisia argentifolii adult, nymp h and egg densities and egg distribution on selected upland cottons. Journal of Entomological Science. Jan. 35(1): 39-47. {a} Western Cotton Research Laboratory, USDA, ARS, Phoenix, AZ, 85040, USA Colson, H. E. S. and B. J. Deverall (2000). Effect of 2,6-dichloroisonicotinic acid, its formulation materials and benzothiadiazole on systemic resistance to alternaria leaf spot in cotton. Plant Pathology Oxford. April 49(2): 171-178. {a} Department of Crop Sciences, University of Sydney, Sydney, NSW, 2006, Australia Crow, W. T., D. W. Dickson, et al. (2000). Yield reduction and root damage to cotton induced by Belonolaimus longicaudatus. Journal of Nematology. [print] June 32(2): 205-209. {a} Texas A and M University Agricultural Research and Extension Center-Dallas, 17360 Coit Road, Dallas, TX, 75252, USA Crow, W. T., D. P. Weingartner, et al. (2000). Population dynamics of Belonolaimus longicaudatus in a cotton production system. Journal of Nematology. [print] June 32(2): 210-214. {a} Texas A and M University Agricultural Research and Extension Center-Dallas, 17360 Coit Road, Dallas, TX, 75252, USA Cui, Y., A. A. Bell, et al. (2000). Expression of potential defense response genes in cotton. Physiological and Molecular Plant Pathology. Jan. 56(1): 25-31. {a} Dept. of Plant Pathology and Microbiology, Texas A and M University, College Station, TX, 77843-2132, USA Culpepper, A. S. and A. C. York (2000). Weed management in ultra narrow row cotton (Gossypium hirsutum). Weed Technology. Jan. March 14(1): 19-29. {a} Department of Agronomy, University of Georgia, Tifton, GA, 31793, USA De, B. P. J., P. J. Hart, et al. (2000). The biology of two Eretmocerus spp. (Haldeman) and three Encarsia spp. Forster and their potential as biological control agents of Bemisia tabaci biotype B in Australia. Entomologia Experimentalis et Applicata. Jan. 94(1): 93-102. {a} CSIRO Entomology, Indooroopilly, QLD, 4068, Australia Dixon, D. C., W. R. Meredith, Jr., et al. (2000). An assessment of alpha-tubulin isotype modification in developing cotton fiber. International Journal of Plant Sciences. Jan. 161(1): 63-67. {a} Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70179-0687, USA Dubey, B. K., J. Gupta, et al.
Recommended publications
  • Is Diadegma Insulare Or Microplitis Plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella Xylostella ?
    War of the Wasps: Is Diadegma insulare or Microplitis plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella xylostella ? ADAMO YOUNG 108 Homestead Street, Ottawa Ontario K2E 7N6 Canada; email: [email protected] Young, Adamo. 2013. War of the wasps: is Diadegma insulare or Microplitis plutellae a more effective parasitoid of the Dia - mondback Moth, Plutella xylostella ? Canadian Field-Naturalist 127(3): 211–215. Parasitism levels by Diadegma insulare (Muesebeck) (Hymenoptera: Ichneumonidae) and Microplitis plutellae (Haliday) (Hymenoptera: Braconidae) at various densities of their host, Plutella xylostella (L.) (Lepidoptera: Plutellidae), were assessed. Cages with densities of 10 hosts, 20 hosts, and 40 hosts were set up, with the cage volume (40 500 cm 3) and number of wasps (2 females) remaining constant. The host populations were also exposed to the wasps for two different exposure times: 1 day and 3 days. The study showed that D. insulare was a better parasitoid overall, achieving a level of parasitism equal to or higher than M. plutellae at all densities. Microplitis plutellae performed best at a lower host density (76% ± 9% of 10 hosts vs. 43% ± 3% of 40 hosts). Diadegma insulare performed similarly at all densities tested (75% ± 5% of 10 hosts, 83% ± 4% of 20 hosts, and 79% ± 6% of 40 hosts). This suggests that D. insulare may be the better parasitoid overall and should be applied in severe, large-scale infestations, while M. plutellae may be better for small-scale infestations. Key Words: Diamondback Moth; Plutella xylostella; Microplitis plutellae; Diadegma insulare; parasitoids; biological control Introduction ical control can provide better control than pesticides.
    [Show full text]
  • Improving Integrated Crop Management by Conserving Natural Enemies of Insect Pests
    Improving Integrated Crop Management by Conserving Natural Enemies of Insect Pests Dr. Lloyd Dosdall, Department of Agricultural, Food and Nutritional Science, University of Alberta and Doug Moisey, Canola Council of Canada Project Code: CARP 2004-01 Final Report: March 2007 Field studies were undertaken in southern Alberta and Saskatchewan during the 2006 field season to investigate different management strategies for enhancing the effectiveness of natural enemies of cabbage seedpod weevil and diamondback moth in canola. The study showed that the level of parasitism of the cabbage seedpod weevil has increased dramatically in recent years, and the hymenopteran wasp, Diadegma insulare, is capable of causing significant reductions in diamondback moth populations. Canola growers in regions infested with damaging infestations of cabbage seedpod weevil should maintain recommended seeding rates 2.5 to 4.5 lb/acre (3 to 5 kg/ha) for optimal yields and consistent times to crop maturity. However, early seeding (late April) predisposes the crop to greater attack by the cabbage seedpod weevil and should be avoided. Canola insect pests are subject to attack by a wide range of natural enemies, comprising parasitoids, predators, and pathogens, many of which help limit or reduce pest populations. However, in spite of their economic importance, comparatively little is known of their biology and the factors that can enhance their effectiveness. The cabbage seedpod weevil, Ceutorhynchus obstrictus and the diamondback moth, Plutella xylostella are two important insect pests of canola in western Canada that can be subject to considerable population mortality by natural enemies. In this project, field studies were conducted in southern Alberta and Saskatchewan during the 2006 field season to investigate aspects of improved integrated crop management by conserving natural enemies of the cabbage seedpod weevil and the diamondback moth.
    [Show full text]
  • The Taxonomy of the Side Species Group of Spilochalcis (Hymenoptera: Chalcididae) in America North of Mexico with Biological Notes on a Representative Species
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1984 The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species. Gary James Couch University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Couch, Gary James, "The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species." (1984). Masters Theses 1911 - February 2014. 3045. Retrieved from https://scholarworks.umass.edu/theses/3045 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1984 Department of Entomology THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Approved as to style and content by: Dr. T/M. Peter's, Chairperson of Committee CJZl- Dr. C-M. Yin, Membe D#. J.S. El kin ton, Member ii Dedication To: My mother who taught me that dreams are only worth the time and effort you devote to attaining them and my father for the values to base them on.
    [Show full text]
  • Normas Para Confecção Da Versão
    UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE GENÉTICA E BIOQUÍMICA PÓS-GRADUAÇÃO EM GENÉTICA E BIOQUÍMICA Poliploidia e variações reprodutivas em Bombacoideae (Malvaceae): distribuição geográfica, filogeografia e tamanho do genoma Aluna: Rafaela Cabral Marinho Orientadora: Profª. Drª. Ana Maria Bonetti Co-orientador: Prof. Dr. Paulo Eugênio Alves Macedo de Oliveira UBERLÂNDIA - MG 2017 UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE GENÉTICA E BIOQUÍMICA PÓS-GRADUAÇÃO EM GENÉTICA E BIOQUÍMICA Poliploidia e variações reprodutivas em Bombacoideae (Malvaceae): distribuição geográfica, filogeografia e tamanho do genoma Aluna: Rafaela Cabral Marinho Orientadora: Profª. Drª. Ana Maria Bonetti Co-orientador: Prof. Dr. Paulo Eugênio Alves Macedo de Oliveira Tese apresentada à Universidade Federal de Uberlândia como parte dos requisitos para obtenção do Título de Doutora em Genética e Bioquímica (Área Genética) UBERLÂNDIA – MG 2017 ii Dados Internacionais de Catalogação na Publicação (CIP) Sistema de Bibliotecas da UFU, MG, Brasil. M338p Marinho, Rafaela Cabral, 1988 2017 Poliploidia e variações reprodutivas em Bombacoideae (Malvaceae): distribuição geográfica, filogeografia e tamanho do genoma / Rafaela Cabral Marinho. - 2017. 100 f. : il. Orientadora: Ana Maria Bonetti. Coorientador: Paulo Eugênio Alves Macedo de Oliveira. Tese (doutorado) - Universidade Federal de Uberlândia, Programa de Pós-Graduação em Genética e Bioquímica. Disponível em: http://dx.doi.org/10.14393/ufu.di.2018.134 Inclui bibliografia. 1. Genética - Teses. 2. Malvaceae
    [Show full text]
  • Comparative Transcriptomic Analysis to Identify the Genes Related to Delayed Gland Morphogenesis in Gossypium Bickii
    G C A T T A C G G C A T genes Article Comparative Transcriptomic Analysis to Identify the Genes Related to Delayed Gland Morphogenesis in Gossypium bickii Mushtaque Ali 1, Hailiang Cheng 1, Mahtab Soomro 1, Li Shuyan 1, Muhammad Bilal Tufail 1, Mian Faisal Nazir 1 , Xiaoxu Feng 1,2, Youping Zhang 1, Zuo Dongyun 1, Lv Limin 1, Qiaolian Wang 1 and Guoli Song 1,* 1 State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; [email protected] (M.A.); [email protected] (H.C.); [email protected] (M.S.); [email protected] (L.S.); [email protected] (M.B.T.); [email protected] (M.F.N.); [email protected] (X.F.); [email protected] (Y.Z.); [email protected] (Z.D.); [email protected] (L.L.); [email protected] (Q.W.) 2 Plant Genetics, Gambloux Agro Bio Tech, University of Liege, 5030 Gambloux, Belgium * Correspondence: [email protected]; Tel.: +86-3722562377 Received: 20 March 2020; Accepted: 19 April 2020; Published: 26 April 2020 Abstract: Cotton is one of the major industrial crops that supply natural fibers and oil for industries. This study was conducted to understand the mechanism of delayed gland morphogenesis in seeds of Gossypium bickii. In this study, we compared glandless seeds of G. bickii with glanded seeds of Gossypium arboreum. High-throughput sequencing technology was used to explore and classify the expression patterns of gland-related genes in seeds and seedlings of cotton plants. Approximately 131.33 Gigabases of raw data from 12 RNA sequencing samples with three biological replicates were generated.
    [Show full text]
  • Toxicity of Insecticides and Miticides to Natural Enemies in Australian Grains: a Review
    insects Review Toxicity of Insecticides and Miticides to Natural Enemies in Australian Grains: A Review Kathy Overton 1,*, Ary A. Hoffmann 2 , Olivia L. Reynolds 1 and Paul A. Umina 1,2 1 Cesar Australia, 293 Royal Parade, Parkville, VIC 3052, Australia; [email protected] (O.L.R.); [email protected] (P.A.U.) 2 Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3052, Australia; [email protected] * Correspondence: [email protected] Simple Summary: Controlling invertebrate pests in crop fields using chemicals has been the main management strategy within the Australian grains industry for decades. However, chemical use can have unintended effects on natural enemies, which can play a key role in suppressing and controlling pest outbreaks within crops. We undertook a literature review of studies that have conducted chemical toxicity testing against arthropod natural enemies relevant to the Australian grains industry to examine trends and highlight research gaps and priorities. Most toxicity trials have been conducted in the laboratory, with few at larger, and hence, industry-relevant scales. Researchers have used a variety of methods when conducting toxicity testing, making it difficult to compare within and across different species of natural enemies. Furthermore, we found many gaps in testing, leading to unknown toxicity effects for several key natural enemies, some of which are economically important predators and parasitoids. Through our review, we make several key recommendations for future areas of research that could arm farmers and their advisors with the knowledge they need to make informed decisions when it comes to controlling crop pests.
    [Show full text]
  • A Wasp Parasitoid, Diadegma Insulare (Cresson) (Insecta: Hymenotera: Ichneumonidae)1 Andrei Sourakov and Everett Mitchell2
    EENY-124 A Wasp Parasitoid, Diadegma insulare (Cresson) (Insecta: Hymenotera: Ichneumonidae)1 Andrei Sourakov and Everett Mitchell2 Distribution Description Diadegma insulare is found in the United States and South Egg America: New Hampshire west to southern British Colum- The egg is clear, and is hard to distinguish from the host’s bia, south to Florida, Texas, and California; Hawaii, West fat body when it is dissected. Unlike Cotesia plutella, Indies, and Mexico south to Venezuela. another parasitoid of the diamondback moth, the egg is rounded rather than pointed and lacks a projection. These wasps are found in cruciferous crops, overwintering as a cocoon. The number of generations per year cor- responds to the number of generations of its hosts: Hellula undalis (F.), Plutella armoracia Bsk., and P. xylostella (L.), the diamondback moth. Figure 2. Egg of Diadegma insulare (Cresson), a parasitoid wasp. Figure 1. Male Diadegma insulare (Cresson), a parasitoid wasp, and Credits: Guangye Hu , USDA mature larvae of the diamondback moth, Plutella xylostella (Linnaeus). Credits: Andrei Sourakov, Florida Museum of Natural History 1. This document is EENY-124, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date March 2000. Revised November 2005. Reviewed May 2020. Visit the EDIS website at https://edis.ifas.ufl.edu. This document is also available on the Featured Creatures website at http://entnemdept.ifas.ufl.edu/creatures/. 2. Andrei Sourakov, Florida Museum of Natural History; and Everett Mitchell, USDA, Gainesville, FL. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations.
    [Show full text]
  • Evolutionary Ecology of Diamondback Moth, Plutella Xylostella (L.) and Diadegma Insulare (Cresson) in North America: a Review
    Annual Research & Review in Biology 5(3): 189-206, 2015, Article no.ARRB.2015.021 ISSN: 2347-565X SCIENCEDOMAIN international www.sciencedomain.org Evolutionary Ecology of Diamondback Moth, Plutella xylostella (L .) and Diadegma insulare (Cresson) in North America: A Review Sadia Munir 1* , Lloyd M. Dosdall 1 and John T. O’Donovan 2 1Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada. 2Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada. Authors’ contributions This work was carried out in collaboration between all authors. Author SM managed the literature searches and wrote the first draft of the manuscript. Author LMD supervised and critically reviewed the manuscript and author JTO helped in editing and final revision of manuscript. All authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2015/11834 Editor(s): (1) George Perry, Dean and Professor of Biology, University of Texas at San Antonio, USA. Reviewers: (1) Anonymous, Osmania University, India. (2) Anonymous, Southwest University, China. (3) Isabel Bertolaccini, Department of Plant Production, Facultad de Ciencias Agrarias (U.N.L.), Kreder 2805, (3080) Esperanza (Santa Fe), Argentina. Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=668&id=32&aid=6211 Received 5th June 2014 th Review Article Accepted 7 July 2014 Published 24 th September 2014 ABSTRACT The diamondback moth (DBM), Plutella xylostella (L.), is recognized as a widely distributed destructive insect pest of Brassicaceae. The frequency and severity of P. xylostella outbreaks has increased in recent years, due to climate changes, high production of host plants (vegetable and oilseed Brassica crops), genetic flexibility of the pest that enables it to develop resistance to almost all known insecticides and establish quickly and easily in new environment.
    [Show full text]
  • Lose the Plot: Cost-Effective Survey of the Peak Range, Central Queensland
    Lose the plot: cost-effective survey of the Peak Range, central Queensland. Don W. Butlera and Rod J. Fensham Queensland Herbarium, Environmental Protection Agency, Mt Coot-tha Botanic Gardens, Mt Coot-tha Road, Toowong, QLD, 4066 AUSTRALIA. aCorresponding author, email: [email protected] Abstract: The Peak Range (22˚ 28’ S; 147˚ 53’ E) is an archipelago of rocky peaks set in grassy basalt rolling-plains, east of Clermont in central Queensland. This report describes the flora and vegetation based on surveys of 26 peaks. The survey recorded all plant species encountered on traverses of distinct habitat zones, which included the ‘matrix’ adjacent to each peak. The method involved effort comparable to a general flora survey but provided sufficient information to also describe floristic association among peaks, broad habitat types, and contrast vegetation on the peaks with the surrounding landscape matrix. The flora of the Peak Range includes at least 507 native vascular plant species, representing 84 plant families. Exotic species are relatively few, with 36 species recorded, but can be quite prominent in some situations. The most abundant exotic plants are the grass Melinis repens and the forb Bidens bipinnata. Plant distribution patterns among peaks suggest three primary groups related to position within the range and geology. The Peak Range makes a substantial contribution to the botanical diversity of its region and harbours several endemic plants among a flora clearly distinct from that of the surrounding terrain. The distinctiveness of the range’s flora is due to two habitat components: dry rainforest patches reliant upon fire protection afforded by cliffs and scree, and; rocky summits and hillsides supporting xeric shrublands.
    [Show full text]
  • A Parasitoid of the Diamondback Moth (Lepidoptera: Plutellidae)
    Scientific Notes 377 A NOVEL METHOD TO REAR DIADEGMA INSULARE (HYMENOPTERA: ICHNEUMONIDAE), A PARASITOID OF THE DIAMONDBACK MOTH (LEPIDOPTERA: PLUTELLIDAE) DENISE L. JOHANOWICZ1 AND EVERETT R. MITCHELL2 1Department of Entomology and Nematology, University of Florida P.O. Box 110620, Gainesville, FL 32611 2Center for Medical, Agricultural and Veterinary Entomology U.S. Department of Agriculture, Agricultural Research Service P.O. Box 14565, Gainesville, FL 32604 Diadegma insulare (Cresson) (Hymenoptera: Ichnuemonidae) is a solitary, host- specific endoparasitoid of diamondback moth (Plutella xylostella) (L.) (Lepidoptera: Plutellidae) larvae, and is considered one of its most important natural enemies (Idris & Grafius 1993). Diadegma insulare and related species occur naturally throughout much of the United States and in other cabbage-growing regions of the world (Lasota & Kok 1986, Idris & Grafius 1993, Muckenfuss et al. 1992, Fitton & Walker 1992). Ad- ditionally, they are augmentatively released for biological control programs. Our laboratory is involved in developing methods to further suppress diamond- back moths in Florida cabbage, including augmenting natural populations of D. insu- lare early in the season before they normally appear (Mitchell et al. 1997). To this end, we conduct research on more efficient methods of rearing D. insulare. An ideal rearing method would be easy, inexpensive, and produce large enough quantities of wasps. In addition, the sex ratio should be as female biased as possible, since the females are the individuals actively controlling larval populations. We currently rear D. insulare on diamondback moth larvae feeding on cruciferous plants. In order to have enough plant material for our rearing operation, we grow or purchase pesticide residue-free crucifers.
    [Show full text]
  • Evolution of Telomerase RNA by Dhenugen Logeswaran A
    Evolution of Telomerase RNA by Dhenugen Logeswaran A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved November 2019 by the Graduate Supervisory Committee: Julian Chen, Chair Giovanna Ghirlanda Chad Borges ARIZONA STATE UNIVERSITY December 2019 ABSTRACT The highly specialized telomerase ribonucleoprotein enzyme is composed minimally of telomerase reverse transcriptase (TERT) and telomerase RNA (TR) for catalytic activity. Telomerase is an RNA-dependent DNA polymerase that syntheizes DNA repeats at chromosome ends to maintain genome stability. While TERT is highly conserved among various groups of species, the TR subunit exhibits remarkable divergence in primary sequence, length, secondary structure and biogenesis, making TR identification extremely challenging even among closely related groups of organisms. A unique computational approach combined with in vitro telomerase activity reconstitution studies was used to identify 83 novel TRs from 10 animal kingdom phyla spanning 18 diverse classes from the most basal sponges to the late evolving vertebrates. This revealed that three structural domains, pseudoknot, a distal stem-loop moiety and box H/ACA, are conserved within TRs from basal groups to vertebrates, while group- specific elements emerge or disappear during animal TR evolution along different lineages. Next the corn-smut fungus Ustilago maydis TR was identified using an RNA- immunoprecipitation and next-generation sequencing approach followed by computational identification of TRs from 19 additional class Ustilaginomycetes fungi, leveraging conserved gene synteny among TR genes. Phylogenetic comparative analysis, in vitro telomerase activity and TR mutagenesis studies reveal a secondary structure of TRs from higher fungi, which is also conserved with vertebrates and filamentous fungi, providing a crucial link in TR evolution within the opisthokonta super-kingdom.
    [Show full text]
  • Hymenopterous Parasitoids Associated with Diamondback Moth
    25 Hymenopterous Parasitoids Associated with Diamondback Moth: the Taxonomic Dilemma Mike Fitton and Annette Walker¹ Natural History Museum, London and 'International Institute of Entomology, London, SW7 5BD, England Abstract Attempts to control diamondback moth Plutella xylostella (L.) using insect parasitoids have not been entirely successful. Parasitoids which have been utilized include Diadegma species and Cotesia plutellae. A better understanding of the systematics of these Hymenoptera could lead to their more effective exploitation in biological control. Diadegma is a very large and difficult genus of lchneumonidae. There are no completely satisfactory taxonomic treatments, and from the limited work that has been done we know that some distinct biological species are almost impossible to separate using traditional, morphological characters. Nine putative species of Diadegma attack diamondback moth. So far no studies have adequately considered the taxonomic questions which are important in relation to their parasitism of this widespread pest. The microgastrine braconid Cotesia plutellae has been used with limited success in controlling diamondback moth, but recent field studies have raised suspicions that it is a complex of two or more species. We present a review of our knowledge of Diadegma and Cotesia and other microgastrines associated with diamondback moth, and attempt to outline a strategy for solving the taxonomic problems, leading to a better understanding of relationships with this host. The other parasitoids which we consider reliably recorded from diamondback moth are also noted. Introduction This paper concentrates on Diadegma and Cotesia, but briefly touches on other hymenopterous parasitoids of diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera; Yponomeutidae). In each of these three sections, the current taxonomic situation, related questions of biology, and strategies for the future are considered.
    [Show full text]