Francescogrecoxxixciclo.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITA’ DELLA CALABRIA Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica Dottorato di Ricerca in Information and Communication Engineering For Pervasive Intelligent Environments CICLO XXIX mm-Wave Antennas For Satellite And Mobile Communications Settore Scientifico Disciplinare Campi Elettromagnetici Coordinatore: Ch.mo Prof. Felice Crupi Firma _____________________________ Supervisore/Tutor: Ch.mo Prof. Giandomenico Amendola Firma______________________ Dottorando: Dott. Francesco Greco Firma____________ List of figures 4 List of Acronyms 10 Abstract 11 1. Antenna Needs for future Applications at Millimeter Waves 13 1.1. Satcom on The Move (K/Ka- band) 14 1.2. High speed Millimeter Waves link 15 1.3. Radar automotive applications 17 2. A Dual Band, Dual Polarized array for Ka band Satcom on the Move terminals 19 2.1. State of the art 19 2.2. Dual-Bands, Dual-Polarized array antenna 21 2.2.1. Radiating element 21 2.2.2. Antenna array 25 2.2.3. Measurements 30 3. Cylindrical Reflector Antenna for wireless communication systems 36 3.1. State of the Art 36 3.2. Cylindrical Reflector antenna 40 3.2.1. Parallel Plate 41 3.2.2. Hat Feed 43 3.2.2.1. General considerations 43 3.2.2.2. The hat feed for a cylindrical reflector – Theory 47 3.2.2.3. Single and Dual and hat feed for a cylindrical reflector 55 3.2.2.4. Gaussian Vertex plate 61 3.2.3. Cylindrical reflector realization and measurements 62 4. Segmented Reflectarray 75 4.1. State of the art 75 4.2. Segmented reflectarray 76 4.3. Simulated and measured results 83 5. Transmitarray antenna for Radar Automotive applications 88 5.1. Transmitarray theoretical model 88 5.2. State of the art 89 5.2.1. Transmitarray antenna configurations 89 5.2.2. Discrete Lens Arrays 90 5.2.3. Antenna Filer Antenna (AFA) 90 5.2.4. Multilayer Antenna Filter Antenna (MAFA) 91 5.2.5. Frequency Selective Surface (FSS) 93 5.3. Transmitarray antenna for radar automotive 94 5.3.1. Transmitarray efficiency performance 101 5.3.2. Designing procedure of the transmitarray antenna 106 Conclusions and future work 114 Bibliografia 115 List of figures Fig. 2.1 - Dual-Bands, Dual-polarized radiating element ...................................... Fig. 2.2 - Dual band single element geometry ...................................................... Fig. 2.3 - Simulated S parameters and Gain of the Rx radiator ........................ 24 Fig. 2.4 - Simulated S parameters and Gain of the Tx radiator ........................ 24 Fig. 2.5 - Dual bands, Dual-polarized array antenna ............................................ Fig. 2.6 - Stack-Up of the array antenna .......................................................... 27 Fig. 2.7 - Section view of the Dual Band, Dual polarized array antenna ........... 27 Fig. 2.8 - Simulated S-parameters in Rx band of the array configuration ......... 28 Fig. 2.9 - Simulated S-parameters in Tx band of the array configuration ......... 28 Fig. 2.10 - Radiation pattern at 20GHz ............................................................. 29 Fig. 2.11 - Radiation pattern at 30GHz ............................................................. 29 Fig. 2.12 - RHCP radiation pattern at frequency of 20GHz .............................. 30 Fig. 2.13 - RHCP radiation pattern at frequency of 30GHz .............................. 30 Fig. 2.14 - Bottom view of the antenna ............................................................. 31 Fig. 2.15 - Top view of the antenna .................................................................. 31 Fig. 2.16 - Antenna with MMPX to K transition ................................................. 31 Fig. 2.17 - Gain of the horizontal polarization in Rx band ................................. 33 Fig. 2.18 - Gain of the vertical polarization in Rx band ..................................... 33 Fig. 2.19 - Vertical polarization in Rx band ....................................................... 33 Fig. 2.20 - Horizontal polarization in Rx band ................................................... 34 Fig. 2.21 - Gain of the horizontal polarization in Tx band ................................. 34 Fig. 2.22 - S parameters of the horizontal polarization in Tx band ................... 35 Fig. 3.1 - 5G hybrid radio access architecture with a macro-cell providing microwaves access, mmW small cells and mmW backhaul. ............................ 37 Fig. 3.2 Structure of Cylidrical Reflector ............................................................... Fig. 3.3 - Parallel plate structure ....................................................................... 41 Fig. 3.4 Field distribution inside the PPW ......................................................... 42 Fig. 3.5 - Radiation Pattern of the PPW ........................................................... 42 Fig. 3.6 - Profile of the Hat Feed with its three main parts ............................... 43 Fig. 3.7 - Hard and soft surface structure ......................................................... 44 Fig. 3.8 - Ray-fixed coordinate system ............................................................. 45 Fig. 3.9 - Transverse corrugations .................................................................... 46 Fig. 3.10 - Infinite corrugated ground plane .......................................................... Fig. 3.11 - Radiation and surface wave regions in the k0 L-β0 L plane ............. 54 Fig. 3.12 - Radiation and surface wave regions in the k0L-βnL diagram ........... 55 Fig. 3.13 - Dual band Hat feed ......................................................................... 56 Fig. 3.14 - Hat Feed with a single corrugation .................................................. 56 Fig. 3.15 - Reflection coefficient in Rx-band ..................................................... 57 Fig. 3.16 - Reflection coefficient in Tx-band ..................................................... 57 Fig. 3.17 - Simulated radiation pattern of the Hat Feed at the 40GHz and 60GHz ......................................................................................................................... 58 Fig. 3.18 - Input impedance of the single corrugation ....................................... 59 Fig. 3.19 - Hat Feed with a dual corrugations ....................................................... Fig. 3.20 - Input impedance of the dual corrugation at the optimal point .......... 60 Fig. 3.21 - Simulated radiation pattern of the hat feed with two corrugations at the centre frequency of the two bands ................................................................... 61 Fig. 3.22 - Gaussian vertex plate in a reflector antenna ................................... 62 Fig. 3.23 - Simulated structure of the overall antenna in Q-V bands ................ 63 Fig. 3.24 -Frontal view of the overall antenna in Q-V bands ............................. 63 Fig. 3.25 - Realized prototype antenna in Ka band .............................................. Fig. 3.26 - Top view of the realized antenna in Ka band .................................. 64 Fig. 3.27 - Feeding structure of the realized antenna ....................................... 65 Fig. 3.28 - Measured S11 (Rx band) ................................................................ 66 Fig. 3.29 - Measured S11 (Tx band) ................................................................. 66 Fig. 3.30 - Comparison between simulated and measured results (Plane E) at 19GHz .............................................................................................................. 67 Fig. 3.31 - Comparison between simulated and measured results (Plane H) at 19GHz .............................................................................................................. 67 Fig. 3.32 - Comparison between simulated and measured results (Plane H) at 20GHz .............................................................................................................. 68 Fig. 3.33 - Comparison between simulated and measured results (Plane E) at 20GHz .............................................................................................................. 68 Fig. 3.34 - Comparison between simulated and measured results (Plane H) at 21GHz .............................................................................................................. 69 Fig. 3.35 - Comparison between simulated and measured results (Plane E) at 21GHz .............................................................................................................. 69 Fig. 3.36 - Comparison between simulated and measured results (Plane E) at 29GHz .............................................................................................................. 70 Fig. 3.37 - Comparison between simulated and measured results (Plane E) at 30GHz .............................................................................................................. 70 Fig. 3.38 - Comparison between simulated and measured results (Plane E) at 31GHz .............................................................................................................. 71 Fig. 3.39 -Comparison between simulated and measured gain (Rx Band) ...... 71 Fig. 3.40 - Measured gain (Tx Band) ................................................................ 72 Fig. 3.41 - Mask Comparison ........................................................................... 73 Fig. 3.42 - Radiation pattern of the terminal along the plane 45° at 29GHz ..... 73 Fig. 3.43 - Radiation pattern of the terminal along the plane 45° at 30GHz ..... 74