Hadamard's Psychology of Invention in the Mathematical Field

Total Page:16

File Type:pdf, Size:1020Kb

Hadamard's Psychology of Invention in the Mathematical Field THE PSYCHOLOGY OF INVENTION IN THE MATHEMATICAL FIELD ESSAY OJY The Psychology of Invention in the Mathematical Field BY JACQUES DOVER PUBLICATIONS, INC., Copyright., 1945, by Princeton University Press This new Dover edition, first published in 1954, is an unaltered and unabridged reprint of tifcxe first edition by special arrangement with Princeton University I^ress Library of Congress Catalog Card. Number; 54-4731 Manufactured in the United States of America J>over Publications, Inc. 180 Varick Street New York 14, N. Y. ~ia ccrmpftcpne tie met trie et cle mm* FOREWORD **Je dirai que j*ai trouvS la demonstration de tel theorems dans teffles cirConstances ; ce t'heore'me aura, tin notn barbare, que beaiicotip (Fentre von* ne connattront pa*; mai* cela n*a pas d*importance: ce qzi4 est interes&ant pour le psychologue* ce n*est pa* le tTieoreme* ce sont les cirConstances," Henri Poincare THIS study, like everything which could be writ- ten on mathematical invention, was first inspired by Henri l?oincare's famous lecture before the Societe de Psychologie in Paris. I first came back to the subject in a meeting at the Centre de Syn- th&se in Paris (1937). But a more thorough treatment of it has been given in an extensive course of lectures delivered (1943) at the Ecole .Libre des Hautes Etudes, New York City, I wish to express my gratitude to Princeton University Press, for the interest taken in this work and the careful help brought to its pub- lication. 1944 CONTENTS INTRODUCTION Xi I. GENERAL VIEWS AND INQ.UIRIES 1 U. DISCUSSIONS ON UNCONSCIOUSNESS 21 HI. THE UNCONSCIOUS AND DISCOVERY 29 IV. THE PREPARATION STAGE. LOGIC AND CHANCE 43 V. THE LATER CONSCIOUS WORK 56 VI. DISCOVERY AS A SYNTHESIS. THE HELP OF SIGNS 64 VH. DIFFERENT KINDS OF MATHEMATICAL MINDS 1OO VUJL. PARADOXICAL CASES OF INTUITION 116 IX. THE GENERAL DIRECTION OF RESEARCH 124 FINAL REMARKS 138 APPENDIX I 137 APPENDIX H 142 APPENDIX III 144 INTRODUCTION CONCERNING the title of this study, two remarks are use- ful. We speak of invention: it would be more correct to speak of discovery. The distinction between these two words is well known : discovery concerns a phenomenon, a law, a being which already existed, but had not been per- ceived. Columbus discovered America: it existed before him ; on the contrary, Franklin invented the lightning rod : before him there had never been any lightning rod. Such a distinction has proved less evident than appears at first glance. Toricelli has observed that when one inverts a closed tube on the mercury trough, the mercury ascends to a certain determinate height: this is a discovery; but, there are in doing this, he has invented the barometer ; and plenty of examples of scientific results which are just as much discoveries as inventions. Franklin's invention of the lightning rod is hardly different from his discovery of the electric nature of thunder. This is a reason why the afore- said distinction does not truly concern us; and, as a mat- ter of fact, psychological conditions are quite the same for both cases. On the other hand, our title is "Psychology of Invention in the Mathematical Field," and not "Psychology of Mathematical Invention." It may be useful to keep in mind that mathematical invention is but a case of invention in take in several general, a process which can place domains, whether it be in science, literature, in art or also tech- nology. have M6dern philosophers even say more. They per- xii INTRODUCTION ceived that intelligence is perpetual and constant inven- that life is 1 tion, perpetual invention. As Bibot says, "Invention in Fine Arts or Sciences is but a special case. In practical life, in mechanical, military, industrial, com- mercial inventions, in religious, social, political institu- tions, the human mind has spent and used as much imagina- 2 tion as else" with a still anywhere ; and Bergson, higher and more general intuition, states : "The inventive effort which is found in all domains of life by the creation of new species has found in mankind alone the means of continuing itself by individuals on whom has been bestowed, along with intelligence, the fac- 5 ulty of initiative, independence and liberty/ Such an audacious comparison has its analogue in Met- schnikoff, who observes, at the end of his book on phagocy- tosis, that, in the human species, the fight against microbes is the work not only of phagocytes, but also of the brain, by creating bacteriology. One cannot say that various kinds of invention proceed exactly in the same way. As the psychologist Souriau has noticed, there is, between the artistic domain and the scien- tific one, the difference that art enjoys a greater freedom, since the artist is governed only by his own fantasy, so that works of art are truly inventions. Beethoven's sym- phonies and even Racine's tragedies are inventions. The scientist behaves quite otherwise and his work properly concerns discoveries. As my master, Hermite, told me: **We are rather servants than masters in Mathematics." Although the truth is not yet known to us, it preexists and i Sec Delacroix, L'lnvention et le G6nle (in G. Dumas* Nova>ea& Trait* d* Ptychologie^ VoL VI), p. 449. p. 447. INTRODUCTION xiii inescapably imposes on us the path we must follow under penalty of going astray. This does not preclude many analogies between these two activities, as we shall have occasion to observe. These analogies appeared when, in 1937, at the Centre de Syn- these in Paris, a series of lectures was delivered on inven- tion of various kinds, with the help of the great Genevese psychologist, Claparede. A whole week was devoted to the various kinds of invention, with one session for mathemat- ics. Especially, invention in experimental sciences was treated by Louis de Broglie and Bauer, poetical invention by Paul Valery. The comparison between the circum- stances of invention in these various fields may prove very fruitful. It is all the more useful, perhaps, to deal with a special case such as the mathematical one, which I shall discuss, since it is the one I know best. Results in one sphere (and we shall see that important achievements have been reached in that field, thanks to a masterly lecture of Henri Poin- care*) may always be helpful in order to understand what happens in other ones. GENERAL VIEWS AND INQUIRIES THE SUBJECT we are dealing with is far from unexplored and though, of course, it still holds many mysteries for us, we seem to possess fairly copious data, more copious and more coherent than might have been expected, consider- ing the difficulty of the problem. That difficulty is not only an intrinsic one, but one which, in an increasing number of instances, hampers the progress of our knowledge: I mean the fact that the sub- ject involves two disciplines, psychology and mathematics, and would require, in order to be treated adequately, that one be both a psychologist and a mathematician. Owing to the lack of this composite equipment, the subject has been investigated by mathematicians on one side, by psycholo- gists on the other and even, as we shall see, by a neurolo- gist. As always in psychology, two kinds of methods are avail- 1 able: the "subjective** and the "objective" methods. Sub- 1 1 speak of objective or introspective methods. I see that the modern behaviorist distinguishes between objective psychology and introspective psychology (the latter being said to belong to the past since the death of William James and Titchener), as though these were two different dences, differing as to their object, while it seems to me that botk kinds of methods of observation could be applied and even help each other for the study of the same psychological processes. I understand, however, that for the behaviorist, the object of introspection, Le-, thought and consciousness, is to be ignored. Already, in older times, the prominent biologist Le Dantec eliminated consciousness by qualifying it as an "epipbenomenon." I have always considered that an unscientific attitude, because if consciousness were an epipbenomenon, it would be the only epiphenomenon in nature, where everything reacts on everything else. But, epiphenomenon or not, it exists and can be observed. We are not unjustified in presenting such observm- 2 GENERAL VIEWS jective (or "introspective") methods are those which could be called "observing from the inside," that is, those where information about the ways of thought is directly obtained by the thinker himself who, looking inwards, re- ports on his own mental process. The obvious disadvantage of such a procedure is that the observer may disturb the very phenomenon which he is investigating. Indeed, as both operations to think and to observe one's thought are to take place at the same time, it may be supposed a priori that they are likely to hamper each other. We shall see, however, that this is less to be feared in the inventive process (at least, in some of its stages) than in other men- tal phenomena. In the present study, I shall use the results of introspection, the only ones I feel qualified to speak of. In our case, these results are clear enough to deserve, it would seem, a certain degree of confidence. In doing so, I face an objection for which I apologize in advance: that is, the writer is obliged to speak too much about himself. Objective methods observing from the outside are those in which the experimenter is other than the thinker. interfere each other Observation and thought do not with ; tkras, made by ourselves or by others, as I shall do in the course of this study.
Recommended publications
  • Differential Calculus and by Era Integral Calculus, Which Are Related by in Early Cultures in Classical Antiquity the Fundamental Theorem of Calculus
    History of calculus - Wikipedia, the free encyclopedia 1/1/10 5:02 PM History of calculus From Wikipedia, the free encyclopedia History of science This is a sub-article to Calculus and History of mathematics. History of Calculus is part of the history of mathematics focused on limits, functions, derivatives, integrals, and infinite series. The subject, known Background historically as infinitesimal calculus, Theories/sociology constitutes a major part of modern Historiography mathematics education. It has two major Pseudoscience branches, differential calculus and By era integral calculus, which are related by In early cultures in Classical Antiquity the fundamental theorem of calculus. In the Middle Ages Calculus is the study of change, in the In the Renaissance same way that geometry is the study of Scientific Revolution shape and algebra is the study of By topic operations and their application to Natural sciences solving equations. A course in calculus Astronomy is a gateway to other, more advanced Biology courses in mathematics devoted to the Botany study of functions and limits, broadly Chemistry Ecology called mathematical analysis. Calculus Geography has widespread applications in science, Geology economics, and engineering and can Paleontology solve many problems for which algebra Physics alone is insufficient. Mathematics Algebra Calculus Combinatorics Contents Geometry Logic Statistics 1 Development of calculus Trigonometry 1.1 Integral calculus Social sciences 1.2 Differential calculus Anthropology 1.3 Mathematical analysis
    [Show full text]
  • Calculus? Can You Think of a Problem Calculus Could Be Used to Solve?
    Mathematics Before you read Discuss these questions with your partner. What do you know about calculus? Can you think of a problem calculus could be used to solve? В A Vocabulary Complete the definitions below with words from the box. slope approximation embrace acceleration diverse indispensable sphere cube rectangle 1 If something is a(n) it В Reading 1 isn't exact. 2 An increase in speed is called Calculus 3 If something is you can't Calculus is the branch of mathematics that deals manage without it. with the rates of change of quantities as well as the length, area and volume of objects. It grew 4 If you an idea, you accept it. out of geometry and algebra. There are two 5 A is a three-dimensional, divisions of calculus - differential calculus and square shape. integral calculus. Differential calculus is the form 6 Something which is is concerned with the rate of change of quantities. different or of many kinds. This can be illustrated by slopes of curves. Integral calculus is used to study length, area 7 If you place two squares side by side, you and volume. form a(n) The earliest examples of a form of calculus date 8 A is a three-dimensional back to the ancient Greeks, with Eudoxus surface, all the points of which are the same developing a mathematical method to work out distance from a fixed point. area and volume. Other important contributions 9 A is also known as a fall. were made by the famous scientist and mathematician, Archimedes. In India, over the 98 Macmillan Guide to Science Unit 21 Mathematics 4 course of many years - from 500 AD to the 14th Pronunciation guide century - calculus was studied by a number of mathematicians.
    [Show full text]
  • Historical Notes on Calculus
    Historical notes on calculus Dr. Vladimir Dotsenko Dr. Vladimir Dotsenko Historical notes on calculus 1/9 Descartes: Describing geometric figures by algebraic formulas 1637: Ren´eDescartes publishes “La G´eom´etrie”, that is “Geometry”, a book which did not itself address calculus, but however changed once and forever the way we relate geometric shapes to algebraic equations. Later works of creators of calculus definitely relied on Descartes’ methodology and revolutionary system of notation in the most fundamental way. Ren´eDescartes (1596–1660), courtesy of Wikipedia Dr. Vladimir Dotsenko Historical notes on calculus 2/9 Fermat: “Pre-calculus” 1638: In a letter to Mersenne, Pierre de Fermat explains what later becomes the key point of his works “Methodus ad disquirendam maximam et minima” and “De tangentibus linearum curvarum”, that is “Method of discovery of maximums and minimums” and “Tangents of curved lines” (published posthumously in 1679). This is not differential calculus per se, but something equivalent. Pierre de Fermat (1601–1665), courtesy of Wikipedia Dr. Vladimir Dotsenko Historical notes on calculus 3/9 Pascal and Huygens: Implicit calculus In 1650s, slightly younger scientists like Blaise Pascal and Christiaan Huygens also used methods similar to those of Fermat to study maximal and minimal values of functions. They did not talk about anything like limits, but in fact were doing exactly the things we do in modern calculus for purposes of geometry and optics. Blaise Pascal (1623–1662), courtesy of Christiaan Huygens (1629–1695), Wikipedia courtesy of Wikipedia Dr. Vladimir Dotsenko Historical notes on calculus 4/9 Barrow: Tangents vs areas 1669-70: Isaac Barrow publishes “Lectiones Opticae” and “Lectiones Geometricae” (“Lectures on Optics” and “Lectures on Geometry”), based on his lectures in Cambridge.
    [Show full text]
  • Evolution of Mathematics: a Brief Sketch
    Open Access Journal of Mathematical and Theoretical Physics Mini Review Open Access Evolution of mathematics: a brief sketch Ancient beginnings: numbers and figures Volume 1 Issue 6 - 2018 It is no exaggeration that Mathematics is ubiquitously Sujit K Bose present in our everyday life, be it in our school, play ground, SN Bose National Center for Basic Sciences, Kolkata mobile number and so on. But was that the case in prehistoric times, before the dawn of civilization? Necessity is the mother Correspondence: Sujit K Bose, Professor of Mathematics (retired), SN Bose National Center for Basic Sciences, Kolkata, of invenp tion or discovery and evolution in this case. So India, Email mathematical concepts must have been seen through or created by those who could, and use that to derive benefit from the Received: October 12, 2018 | Published: December 18, 2018 discovery. The creative process of discovery and later putting that to use must have been arduous and slow. I try to look back from my limited Indian perspective, and reflect up on what might have been the course taken up by mathematics during 10, 11, 12, 13, etc., giving place value to each digit. The barrier the long journey, since ancient times. of writing very large numbers was thus broken. For instance, the numbers mentioned in Yajur Veda could easily be represented A very early method necessitated for counting of objects as Dasha 10, Shata (102), Sahsra (103), Ayuta (104), Niuta (enumeration) was the Tally Marks used in the late Stone Age. In (105), Prayuta (106), ArA bud (107), Nyarbud (108), Samudra some parts of Europe, Africa and Australia the system consisted (109), Madhya (1010), Anta (1011) and Parartha (1012).
    [Show full text]
  • Pure Mathematics
    good mathematics—to be without applications, Hardy ab- solved mathematics, and thus the mathematical community, from being an accomplice of those who waged wars and thrived on social injustice. The problem with this view is simply that it is not true. Mathematicians live in the real world, and their mathematics interacts with the real world in one way or another. I don’t want to say that there is no difference between pure and ap- plied math. Someone who uses mathematics to maximize Why I Don’t Like “Pure the time an airline’s fleet is actually in the air (thus making money) and not on the ground (thus costing money) is doing Mathematics” applied math, whereas someone who proves theorems on the Hochschild cohomology of Banach algebras (I do that, for in- † stance) is doing pure math. In general, pure mathematics has AVolker Runde A no immediate impact on the real world (and most of it prob- ably never will), but once we omit the adjective immediate, I am a pure mathematician, and I enjoy being one. I just the distinction begins to blur. don’t like the adjective “pure” in “pure mathematics.” Is mathematics that has applications somehow “impure”? The English mathematician Godfrey Harold Hardy thought so. In his book A Mathematician’s Apology, he writes: A science is said to be useful of its development tends to accentuate the existing inequalities in the distri- bution of wealth, or more directly promotes the de- struction of human life. His criterion for good mathematics was an entirely aesthetic one: The mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the ideas, like the colours or the words must fit together in a harmo- nious way.
    [Show full text]
  • Fermat's Technique of Finding Areas Under Curves
    Fermat’s technique of finding areas under curves Ed Staples Erindale College, ACT <[email protected]> erhaps next time you head towards the fundamental theorem of calculus Pin your classroom, you may wish to consider Fermat’s technique of finding expressions for areas under curves, beautifully outlined in Boyer’s History of Mathematics. Pierre de Fermat (1601–1665) developed some impor- tant results in the journey toward the discovery of the calculus. One of these concerned finding areas under simple polynomial curves. It is an amazing fact that, despite deriving these results, he failed to document any connection between tangents and areas. The method is essentially an exercise in geometric series, and I think it is instructive and perhaps refreshing to introduce a little bit of variation from the standard introductions. The method is entirely accessible to senior students, and makes an interesting connection between the anti derivative result and the factorisation of (1 – rn+1). Fermat considered that the area between x = 0 and x = a below the curve y = xn and above the x-axis, to be approximated by circumscribed rectangles where the width of each rectangle formed a geometric sequence. The divi- sions into which the interval is divided, from the right hand side are made at x = a, x = ar, x = ar2, x = ar3 etc., where a and r are constants, with 0 < r < 1 as shown in the diagram. A u s t r a l i a n S e n i o r M a t h e m a t i c s J o u r n a l 1 8 ( 1 ) 53 s e 2 l p If we first consider the curve y = x , the area A contained within the rectan- a t S gles is given by: A = (a – ar)a2 + (ar – ar2)(ar)2 + (ar2 – ar3)(ar2)2 + … This is a geometric series with ratio r3 and first term (1 – r)a3.
    [Show full text]
  • Leonhard Euler English Version
    LEONHARD EULER (April 15, 1707 – September 18, 1783) by HEINZ KLAUS STRICK , Germany Without a doubt, LEONHARD EULER was the most productive mathematician of all time. He wrote numerous books and countless articles covering a vast range of topics in pure and applied mathematics, physics, astronomy, geodesy, cartography, music, and shipbuilding – in Latin, French, Russian, and German. It is not only that he produced an enormous body of work; with unbelievable creativity, he brought innovative ideas to every topic on which he wrote and indeed opened up several new areas of mathematics. Pictured on the Swiss postage stamp of 2007 next to the polyhedron from DÜRER ’s Melencolia and EULER ’s polyhedral formula is a portrait of EULER from the year 1753, in which one can see that he was already suffering from eye problems at a relatively young age. EULER was born in Basel, the son of a pastor in the Reformed Church. His mother also came from a family of pastors. Since the local school was unable to provide an education commensurate with his son’s abilities, EULER ’s father took over the boy’s education. At the age of 14, EULER entered the University of Basel, where he studied philosophy. He completed his studies with a thesis comparing the philosophies of DESCARTES and NEWTON . At 16, at his father’s wish, he took up theological studies, but he switched to mathematics after JOHANN BERNOULLI , a friend of his father’s, convinced the latter that LEONHARD possessed an extraordinary mathematical talent. At 19, EULER won second prize in a competition sponsored by the French Academy of Sciences with a contribution on the question of the optimal placement of a ship’s masts (first prize was awarded to PIERRE BOUGUER , participant in an expedition of LA CONDAMINE to South America).
    [Show full text]
  • Beyond Riemann Sums: Fermat's Method of Integration
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Calculus Mathematics via Primary Historical Sources (TRIUMPHS) Winter 2020 Beyond Riemann Sums: Fermat's Method of Integration Dominic Klyve Central Washington University, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_calculus Click here to let us know how access to this document benefits ou.y Recommended Citation Klyve, Dominic, "Beyond Riemann Sums: Fermat's Method of Integration" (2020). Calculus. 12. https://digitalcommons.ursinus.edu/triumphs_calculus/12 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Calculus by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. Beyond Riemann Sums: Fermat's method of integration Dominic Klyve∗ February 8, 2020 Introduction Finding areas of shapes, especially shapes with curved boundaries, has challenged mathematicians for thousands of years. Today calculus students learn to graph functions, approximate the area with rectangles of the same width, and use \Riemann Sums" to approximate the area under a curve (or, by taking limits, to find it exactly). Centuries before Riemann used this method, and a generation before Newton and Leibniz discovered calculus, seventeenth-century lawyer (and math fan) Pierre de Fermat (1607{1665) used a similar method, with an interesting twist that let the widths of the rectangles get larger as x grows. In this Primary Source Project, we will explore Fermat's method. Part 1: On \quadrature" It's worth noting that Fermat thought of area slightly differently than we usually do today.
    [Show full text]
  • Euler Transcript
    Euler Transcript Date: Wednesday, 6 March 2002 - 12:00AM Euler Professor Robin Wilson "Read Euler, read Euler, he is the master of us all...." So said Pierre-Simon Laplace, the great French applied mathematician. Leonhard Euler, the most prolific mathematician of all time, wrote more than 500 books and papers during his lifetime about 800 pages per year with another 400 publications appearing posthumously; his collected works already fill 73 large volumes tens of thousands of pages with more volumes still to appear. Euler worked in an astonishing variety of areas, ranging from the very pure the theory of numbers, the geometry of a circle and musical harmony via such areas as infinite series, logarithms, the calculus and mechanics, to the practical optics, astronomy, the motion of the Moon, the sailing of ships, and much else besides. Euler originated so many ideas that his successors have been kept busy trying to follow them up ever since. Many concepts are named after him, some of which Ill be talking about today: Eulers constant, Eulers polyhedron formula, the Euler line of a triangle, Eulers equations of motion, Eulerian graphs, Eulers pentagonal formula for partitions, and many others. So with all these achievements, why is it that his musical counterpart, the prolific composer Joseph Haydn, creator of symphonies, concertos, string quartets, oratorios and operas, is known to all, while he is almost completely unknown to everyone but mathematicians? Today, Id like to play a small part in restoring the balance by telling you about Euler, his life, and his diverse contributions to mathematics and the sciences.
    [Show full text]
  • Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory Lecture Notes in Mathematics 2239 1
    Lecture Notes in Mathematics 2239 Mauro Di Nasso Isaac Goldbring Martino Lupini Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory Lecture Notes in Mathematics 2239 1 Editors-in-Chief: 2 Jean-Michel Morel, Cachan 3 Bernard Teissier, Paris 4 Advisory Editors: 5 Michel Brion, Grenoble 6 Camillo De Lellis, Princeton 7 Alessio Figalli, Zurich 8 Davar Khoshnevisan, Salt Lake City 9 Ioannis Kontoyiannis, Cambridge 10 Gábor Lugosi, Barcelona 11 Mark Podolskij, Aarhus 12 Sylvia Serfaty, New York 13 Anna Wienhard, Heidelberg 14 UNCORRECTED PROOF More information about this series at http://www.springer.com/series/304 15 UNCORRECTED PROOF Mauro Di Nasso • Isaac Goldbring • Martino Lupini 16 Nonstandard Methods 17 in Ramsey Theory 18 and Combinatorial Number 19 Theory 20 UNCORRECTED PROOF 123 21 Mauro Di Nasso Isaac Goldbring Department of Mathematics Department of Mathematics Universita di Pisa University of California, Irvine Pisa, Italy Irvine, CA, USA 22 Martino Lupini School of Mathematics and Statistics Victoria University of Wellington Wellington, New Zealand ISSN 0075-8434 ISSN 1617-9692 (electronic) Lecture Notes in Mathematics 23 ISBN 978-3-030-17955-7 ISBN 978-3-030-17956-4 (eBook) https://doi.org/10.1007/978-3-030-17956-4 Mathematics Subject Classification (2010): Primary: 05D10, Secondary: 03H10 24 © Springer Nature Switzerland AG 2019 25 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 26 the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 27 broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 28 storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 29 nowUNCORRECTED known or hereafter developed.
    [Show full text]
  • Fermat's Dilemma: Why Did He Keep Mum on Infinitesimals? and The
    FERMAT’S DILEMMA: WHY DID HE KEEP MUM ON INFINITESIMALS? AND THE EUROPEAN THEOLOGICAL CONTEXT JACQUES BAIR, MIKHAIL G. KATZ, AND DAVID SHERRY Abstract. The first half of the 17th century was a time of in- tellectual ferment when wars of natural philosophy were echoes of religious wars, as we illustrate by a case study of an apparently innocuous mathematical technique called adequality pioneered by the honorable judge Pierre de Fermat, its relation to indivisibles, as well as to other hocus-pocus. Andr´eWeil noted that simple appli- cations of adequality involving polynomials can be treated purely algebraically but more general problems like the cycloid curve can- not be so treated and involve additional tools–leading the mathe- matician Fermat potentially into troubled waters. Breger attacks Tannery for tampering with Fermat’s manuscript but it is Breger who tampers with Fermat’s procedure by moving all terms to the left-hand side so as to accord better with Breger’s own interpreta- tion emphasizing the double root idea. We provide modern proxies for Fermat’s procedures in terms of relations of infinite proximity as well as the standard part function. Keywords: adequality; atomism; cycloid; hylomorphism; indi- visibles; infinitesimal; jesuat; jesuit; Edict of Nantes; Council of Trent 13.2 Contents arXiv:1801.00427v1 [math.HO] 1 Jan 2018 1. Introduction 3 1.1. A re-evaluation 4 1.2. Procedures versus ontology 5 1.3. Adequality and the cycloid curve 5 1.4. Weil’s thesis 6 1.5. Reception by Huygens 8 1.6. Our thesis 9 1.7. Modern proxies 10 1.8.
    [Show full text]
  • Pierre De Fermat
    Pierre de Fermat 1608-1665 Paulo Ribenboim 13 Lectures on Fermat's Last Theorem Springer-Verlag New Y ork Heidelberg Berlin Paulo Ribenboim Department of Mathematics and Statistics Jeff ery Hall Queen's University Kingston Canada K7L 3N6 AMS Subjeet Classifieations (1980): 10-03, 12-03, 12Axx Library of Congress Cataloguing in Publication Data Ribenboim, Paulo. 13 leetures on Fermat's last theorem. Inc1udes bibliographies and indexes. I. Fermat's theorem. I. Title. QA244.R5 512'.74 79-14874 All rights reserved. No part of this book may be translated or reprodueed in any form without written permission from Springer-Verlag. © 1979 by Springer-Verlag New York Ine. Softtcover reprint ofthe hardcover 1st edition 1979 9 8 7 6 543 2 1 ISBN 978-1-4419-2809-2 ISBN 978-1-4684-9342-9 (eBook) DOI 10.1007/978-1-4684-9342-9 Hommage a Andre Weil pour sa Le<;on: gout, rigueur et penetration. Preface Fermat's problem, also ealled Fermat's last theorem, has attraeted the attention of mathematieians far more than three eenturies. Many clever methods have been devised to attaek the problem, and many beautiful theories have been ereated with the aim of proving the theorem. Yet, despite all the attempts, the question remains unanswered. The topie is presented in the form of leetures, where I survey the main lines of work on the problem. In the first two leetures, there is a very brief deseription of the early history , as well as a seleetion of a few of the more representative reeent results. In the leetures whieh follow, I examine in sue­ eession the main theories eonneeted with the problem.
    [Show full text]