Figurate Numbers and Sums of Numerical Powers: Fermat, Pascal, Bernoulli
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differential Calculus and by Era Integral Calculus, Which Are Related by in Early Cultures in Classical Antiquity the Fundamental Theorem of Calculus
History of calculus - Wikipedia, the free encyclopedia 1/1/10 5:02 PM History of calculus From Wikipedia, the free encyclopedia History of science This is a sub-article to Calculus and History of mathematics. History of Calculus is part of the history of mathematics focused on limits, functions, derivatives, integrals, and infinite series. The subject, known Background historically as infinitesimal calculus, Theories/sociology constitutes a major part of modern Historiography mathematics education. It has two major Pseudoscience branches, differential calculus and By era integral calculus, which are related by In early cultures in Classical Antiquity the fundamental theorem of calculus. In the Middle Ages Calculus is the study of change, in the In the Renaissance same way that geometry is the study of Scientific Revolution shape and algebra is the study of By topic operations and their application to Natural sciences solving equations. A course in calculus Astronomy is a gateway to other, more advanced Biology courses in mathematics devoted to the Botany study of functions and limits, broadly Chemistry Ecology called mathematical analysis. Calculus Geography has widespread applications in science, Geology economics, and engineering and can Paleontology solve many problems for which algebra Physics alone is insufficient. Mathematics Algebra Calculus Combinatorics Contents Geometry Logic Statistics 1 Development of calculus Trigonometry 1.1 Integral calculus Social sciences 1.2 Differential calculus Anthropology 1.3 Mathematical analysis -
Calculus? Can You Think of a Problem Calculus Could Be Used to Solve?
Mathematics Before you read Discuss these questions with your partner. What do you know about calculus? Can you think of a problem calculus could be used to solve? В A Vocabulary Complete the definitions below with words from the box. slope approximation embrace acceleration diverse indispensable sphere cube rectangle 1 If something is a(n) it В Reading 1 isn't exact. 2 An increase in speed is called Calculus 3 If something is you can't Calculus is the branch of mathematics that deals manage without it. with the rates of change of quantities as well as the length, area and volume of objects. It grew 4 If you an idea, you accept it. out of geometry and algebra. There are two 5 A is a three-dimensional, divisions of calculus - differential calculus and square shape. integral calculus. Differential calculus is the form 6 Something which is is concerned with the rate of change of quantities. different or of many kinds. This can be illustrated by slopes of curves. Integral calculus is used to study length, area 7 If you place two squares side by side, you and volume. form a(n) The earliest examples of a form of calculus date 8 A is a three-dimensional back to the ancient Greeks, with Eudoxus surface, all the points of which are the same developing a mathematical method to work out distance from a fixed point. area and volume. Other important contributions 9 A is also known as a fall. were made by the famous scientist and mathematician, Archimedes. In India, over the 98 Macmillan Guide to Science Unit 21 Mathematics 4 course of many years - from 500 AD to the 14th Pronunciation guide century - calculus was studied by a number of mathematicians. -
Power Values of Divisor Sums Author(S): Frits Beukers, Florian Luca, Frans Oort Reviewed Work(S): Source: the American Mathematical Monthly, Vol
Power Values of Divisor Sums Author(s): Frits Beukers, Florian Luca, Frans Oort Reviewed work(s): Source: The American Mathematical Monthly, Vol. 119, No. 5 (May 2012), pp. 373-380 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/10.4169/amer.math.monthly.119.05.373 . Accessed: 15/02/2013 04:05 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly. http://www.jstor.org This content downloaded on Fri, 15 Feb 2013 04:05:44 AM All use subject to JSTOR Terms and Conditions Power Values of Divisor Sums Frits Beukers, Florian Luca, and Frans Oort Abstract. We consider positive integers whose sum of divisors is a perfect power. This prob- lem had already caught the interest of mathematicians from the 17th century like Fermat, Wallis, and Frenicle. In this article we study this problem and some variations. We also give an example of a cube, larger than one, whose sum of divisors is again a cube. 1. INTRODUCTION. Recently, one of the current authors gave a mathematics course for an audience with a general background and age over 50. -
A Simple Proof of the Mean Fourth Power Estimate
ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze K. RAMACHANDRA A simple proof of the mean fourth power estimate for 1 1 z(2 + it) and L(2 + it;c) Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 1, no 1-2 (1974), p. 81-97 <http://www.numdam.org/item?id=ASNSP_1974_4_1_1-2_81_0> © Scuola Normale Superiore, Pisa, 1974, tous droits réservés. L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ A Simple Proof of the Mean Fourth Power Estimate for 03B6(1/2 + it) and L(1/2 + it, ~). K. RAMACHANDRA (*) To the memory of Professor ALBERT EDWARD INGHAM 1. - Introduction. The main object of this paper is to prove the following four well-known theorems by a simple method. THEOREM 1. and then THEOREM 2. If T ~ 3, R>2 and Ti and also 1, then THEOREM 3. Let y be a character mod q (q fixed), T ~ 3, - tx,2 ... T, (.Rx > 2), and tx.i+,- 1. If with each y we associate such points then, where * denotes the sum over primitive character mod q. -
Accessing Bernoulli-Numbers by Matrix-Operations Gottfried Helms 3'2006 Version 2.3
Accessing Bernoulli-Numbers by Matrix-Operations Gottfried Helms 3'2006 Version 2.3 Accessing Bernoulli-Numbers by Matrixoperations ........................................................................ 2 1. Introduction....................................................................................................................................................................... 2 2. A common equation of recursion (containing a significant error)..................................................................................... 3 3. Two versions B m and B p of bernoulli-numbers? ............................................................................................................... 4 4. Computation of bernoulli-numbers by matrixinversion of (P-I) ....................................................................................... 6 5. J contains the eigenvalues, and G m resp. G p contain the eigenvectors of P z resp. P s ......................................................... 7 6. The Binomial-Matrix and the Matrixexponential.............................................................................................................. 8 7. Bernoulli-vectors and the Matrixexponential.................................................................................................................... 8 8. The structure of the remaining coefficients in the matrices G m - and G p........................................................................... 9 9. The original problem of Jacob Bernoulli: "Powersums" - from G -
Triangular Numbers /, 3,6, 10, 15, ", Tn,'" »*"
TRIANGULAR NUMBERS V.E. HOGGATT, JR., and IVIARJORIE BICKWELL San Jose State University, San Jose, California 9111112 1. INTRODUCTION To Fibonacci is attributed the arithmetic triangle of odd numbers, in which the nth row has n entries, the cen- ter element is n* for even /?, and the row sum is n3. (See Stanley Bezuszka [11].) FIBONACCI'S TRIANGLE SUMS / 1 =:1 3 3 5 8 = 2s 7 9 11 27 = 33 13 15 17 19 64 = 4$ 21 23 25 27 29 125 = 5s We wish to derive some results here concerning the triangular numbers /, 3,6, 10, 15, ", Tn,'" »*". If one o b - serves how they are defined geometrically, 1 3 6 10 • - one easily sees that (1.1) Tn - 1+2+3 + .- +n = n(n±M and (1.2) • Tn+1 = Tn+(n+1) . By noticing that two adjacent arrays form a square, such as 3 + 6 = 9 '.'.?. we are led to 2 (1.3) n = Tn + Tn„7 , which can be verified using (1.1). This also provides an identity for triangular numbers in terms of subscripts which are also triangular numbers, T =T + T (1-4) n Tn Tn-1 • Since every odd number is the difference of two consecutive squares, it is informative to rewrite Fibonacci's tri- angle of odd numbers: 221 222 TRIANGULAR NUMBERS [OCT. FIBONACCI'S TRIANGLE SUMS f^-O2) Tf-T* (2* -I2) (32-22) Ti-Tf (42-32) (52-42) (62-52) Ti-Tl•2 (72-62) (82-72) (9*-82) (Kp-92) Tl-Tl Upon comparing with the first array, it would appear that the difference of the squares of two consecutive tri- angular numbers is a perfect cube. -
An Heptagonal Numbers
© April 2021| IJIRT | Volume 7 Issue 11 | ISSN: 2349-6002 An Heptagonal Numbers Dr. S. Usha Assistant Professor in Mathematics, Bon Secours Arts and Science College for Women, Mannargudi, Affiliated by Bharathidasan University, Tiruchirappalli, Tamil Nadu Abstract - Two Results of interest (i)There exists an prime factor that divides n is one. First few square free infinite pairs of heptagonal numbers (푯풎 , 푯풌) such that number are 1,2,3,5,6,7,10,11,13,14,15,17…… their ratio is equal to a non –zero square-free integer and (ii)the general form of the rank of square heptagonal Definition(1.5): ퟑ ퟐ풓+ퟏ number (푯 ) is given by m= [(ퟏퟗ + ퟑ√ퟒퟎ) + 풎 ퟐퟎ Square free integer: ퟐ풓+ퟏ (ퟏퟗ − ퟑ√ퟒퟎ) +2], where r = 0,1,2…….relating to A Square – free Integer is an integer which is divisible heptagonal number are presented. A Few Relations by no perfect Square other than 1. That is, its prime among heptagonal and triangular number are given. factorization has exactly one factors for each prime that appears in it. For example Index Terms - Infinite pairs of heptagonal number, the 10 =2.5 is square free, rank of square heptagonal numbers, square-free integer. But 18=2.3.3 is not because 18 is divisible by 9=32 The smallest positive square free numbers are I. PRELIMINARIES 1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23……. Definition(1.1): A number is a count or measurement heptagon: Definition(1.6): A heptagon is a seven –sided polygon. -
Historical Notes on Calculus
Historical notes on calculus Dr. Vladimir Dotsenko Dr. Vladimir Dotsenko Historical notes on calculus 1/9 Descartes: Describing geometric figures by algebraic formulas 1637: Ren´eDescartes publishes “La G´eom´etrie”, that is “Geometry”, a book which did not itself address calculus, but however changed once and forever the way we relate geometric shapes to algebraic equations. Later works of creators of calculus definitely relied on Descartes’ methodology and revolutionary system of notation in the most fundamental way. Ren´eDescartes (1596–1660), courtesy of Wikipedia Dr. Vladimir Dotsenko Historical notes on calculus 2/9 Fermat: “Pre-calculus” 1638: In a letter to Mersenne, Pierre de Fermat explains what later becomes the key point of his works “Methodus ad disquirendam maximam et minima” and “De tangentibus linearum curvarum”, that is “Method of discovery of maximums and minimums” and “Tangents of curved lines” (published posthumously in 1679). This is not differential calculus per se, but something equivalent. Pierre de Fermat (1601–1665), courtesy of Wikipedia Dr. Vladimir Dotsenko Historical notes on calculus 3/9 Pascal and Huygens: Implicit calculus In 1650s, slightly younger scientists like Blaise Pascal and Christiaan Huygens also used methods similar to those of Fermat to study maximal and minimal values of functions. They did not talk about anything like limits, but in fact were doing exactly the things we do in modern calculus for purposes of geometry and optics. Blaise Pascal (1623–1662), courtesy of Christiaan Huygens (1629–1695), Wikipedia courtesy of Wikipedia Dr. Vladimir Dotsenko Historical notes on calculus 4/9 Barrow: Tangents vs areas 1669-70: Isaac Barrow publishes “Lectiones Opticae” and “Lectiones Geometricae” (“Lectures on Optics” and “Lectures on Geometry”), based on his lectures in Cambridge. -
On Terms of Generalized Fibonacci Sequences Which Are Powers of Their Indexes
mathematics Article On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes Pavel Trojovský Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic, [email protected]; Tel.: +42-049-333-2860 Received: 29 June 2019; Accepted: 31 July 2019; Published: 3 August 2019 (k) Abstract: The k-generalized Fibonacci sequence (Fn )n (sometimes also called k-bonacci or k-step Fibonacci sequence), with k ≥ 2, is defined by the values 0, 0, ... , 0, 1 of starting k its terms and such way that each term afterwards is the sum of the k preceding terms. This paper is devoted to the proof of the fact that the (k) t (2) 2 (3) 2 Diophantine equation Fm = m , with t > 1 and m > k + 1, has only solutions F12 = 12 and F9 = 9 . Keywords: k-generalized Fibonacci sequence; Diophantine equation; linear form in logarithms; continued fraction MSC: Primary 11J86; Secondary 11B39. 1. Introduction The well-known Fibonacci sequence (Fn)n≥0 is given by the following recurrence of the second order Fn+2 = Fn+1 + Fn, for n ≥ 0, with the initial terms F0 = 0 and F1 = 1. Fibonacci numbers have a lot of very interesting properties (see e.g., book of Koshy [1]). One of the famous classical problems, which has attracted a attention of many mathematicians during the last thirty years of the twenty century, was the problem of finding perfect powers in the sequence of Fibonacci numbers. Finally in 2006 Bugeaud et al. [2] (Theorem 1), confirmed these expectations, as they showed that 0, 1, 8 and 144 are the only perfect powers in the sequence of Fibonacci numbers. -
Number Systems and Radix Conversion
Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will be required for PA1. We humans are comfortable with numbers in the decimal system where each po- sition has a weight which is a power of 10: units have a weight of 1 (100), ten’s have 10 (101), etc. Even the fractional apart after the decimal point have a weight that is a (negative) power of ten. So the number 143.25 has a value that is 1 ∗ 102 + 4 ∗ 101 + 3 ∗ 0 −1 −2 2 5 10 + 2 ∗ 10 + 5 ∗ 10 , i.e., 100 + 40 + 3 + 10 + 100 . You can think of this as a polyno- mial with coefficients 1, 4, 3, 2, and 5 (i.e., the polynomial 1x2 + 4x + 3 + 2x−1 + 5x−2+ evaluated at x = 10. There is nothing special about 10 (just that humans evolved with ten fingers). We can use any radix, r, and write a number system with digits that range from 0 to r − 1. If our radix is larger than 10, we will need to invent “new digits”. We will use the letters of the alphabet: the digit A represents 10, B is 11, K is 20, etc. 2 What is the value of a radix-r number? Mathematically, a sequence of digits (the dot to the right of d0 is called the radix point rather than the decimal point), : : : d2d1d0:d−1d−2 ::: represents a number x defined as follows X i x = dir i 2 1 0 −1 −2 = ::: + d2r + d1r + d0r + d−1r + d−2r + ::: 1 Example What is 3 in radix 3? Answer: 0.1. -
Cheat Sheet of SSE/AVX Intrinsics, for Doing Arithmetic Ll F(Int Ind, Int K) { Return Dp[Ind][K]; } on Several Numbers at Once
University of Bergen Garbage Collectors Davide Pallotti, Jan Soukup, Olav Røthe Bakken NWERC 2017 Nov 8, 2017 UiB template .bashrc .vimrc troubleshoot 1 tan v + tan w Contest (1) Any possible infinite recursion? tan(v + w) = Invalidated pointers or iterators? 1 − tan v tan w template.cpp Are you using too much memory? v + w v − w 15 lines Debug with resubmits (e.g. remapped signals, see Various). sin v + sin w = 2 sin cos #include <bits/stdc++.h> 2 2 using namespace std; Time limit exceeded: v + w v − w Do you have any possible infinite loops? cos v + cos w = 2 cos cos #define rep(i, a, b) for(int i = a; i < (b); ++i) What is the complexity of your algorithm? 2 2 #define trav(a, x) for(auto& a : x) Are you copying a lot of unnecessary data? (References) #define all(x) x.begin(), x.end() How big is the input and output? (consider scanf) (V + W ) tan(v − w)=2 = (V − W ) tan(v + w)=2 #define sz(x) (int)(x).size() Avoid vector, map. (use arrays/unordered_map) typedef long long ll; What do your team mates think about your algorithm? where V; W are lengths of sides opposite angles v; w. typedef pair<int, int> pii; typedef vector<int> vi; Memory limit exceeded: a cos x + b sin x = r cos(x − φ) What is the max amount of memory your algorithm should need? int main() { Are you clearing all datastructures between test cases? a sin x + b cos x = r sin(x + φ) cin.sync_with_stdio(0); cin.tie(0); cin.exceptions(cin.failbit); p 2 2 } Mathematics (2) where r = a + b ; φ = atan2(b; a). -
Sums of Powers and the Bernoulli Numbers Laura Elizabeth S
Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1996 Sums of Powers and the Bernoulli Numbers Laura Elizabeth S. Coen Eastern Illinois University This research is a product of the graduate program in Mathematics and Computer Science at Eastern Illinois University. Find out more about the program. Recommended Citation Coen, Laura Elizabeth S., "Sums of Powers and the Bernoulli Numbers" (1996). Masters Theses. 1896. https://thekeep.eiu.edu/theses/1896 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates (who have written formal theses) SUBJECT: Permission to Reproduce Theses The University Library is rece1v1ng a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. u Author uate I respectfully request Booth Library of Eastern Illinois University not allow my thesis