ACTUATION SOLUTIONS Delivering Precision Load Management and Motion Control Solutions

Total Page:16

File Type:pdf, Size:1020Kb

ACTUATION SOLUTIONS Delivering Precision Load Management and Motion Control Solutions ACTUATION SOLUTIONS Delivering precision load management and motion control solutions. Actuators are devices which impart motion onto another item for a specific function and duty cycle. Actuators in the aerospace market are used widely throughout aircraft, both fixed- and rotary-wing, as well as in missiles, spacecraft, and other marine and surface vehicles. Functions range from moving flight control surfaces to extending the footrests in business-class seats. Industry Challenges Honeywell’s Response Actuators are devices which impart motion onto Honeywell's Actuation Solutions use the another item for a specific function and duty latest electromechanical, hydraulic, fueldraulic, cycle. Actuators in the aerospace market are pneumatic technologies to deliver precision used widely throughout aircraft, both fixed- and load management and motion control solutions rotary-wing, as well as in missiles, spacecraft, for an array of the most challenging actuation FIRST TO MARKET and military surface vehicles. Functions range applications. WITH AN ELECTRO- MECHANICAL THRUST from moving primary flight control surfaces to REVERSER ACTUATION Our weight-efficient, affordable solutions extending the footrests in business-class seats. SYSTEM draw on several decades of fueldraulic, Actuators may be operated by electric current, pneumatic and electromechanical applications hydraulic fluid pressure or pneumatic pressure. on commercial, military and business jet Affordable actuation systems are needed for platforms as well as space, missile and aircraft engine and thrust management control, marine applications. noise and vibration control, flight surface COMMERCIAL, control and aircraft utility functions such as fuel MILITARY & BUSINESS JET PLATFORMS inerting and doors. In space, actuators are key AS WELL AS SPACE, to launch and satellite propulsion controls, solar MISSILE & MARINE APPLICATIONS array drives, antennae pointing and docking control. Reliable steering control actuators are critical for precision directional control in tactical missiles and guided munitions. The new generation of marine vessels relies on high- power electric actuation to critical shipboard ENGINE ACTUATORS DECREASE SPECIFIC functions such as ballast control, compartment FUEL CONSUMPTION isolation and vessel steering controls. (SFC) FOR AIRCRAFT ENGINES LOWEST WEIGHT, CAPABLE OF WITHSTANDING THE HIGHEST TEMPERATURES IN THE INDUSTRY Honeywell's Actuation Solutions Engine Thrust Management: Thrust Reversers AIRCRAFT ENGINE ACTUATORS • Hydraulic Thrust Reverser Actuation are used for engine performance control System is capable of executing mid-stroke and thrust management: commands, has redundant lines of defense Engine Performance Control and retention safety features and is the • Engine Control Variable Bleed Valve lightest-weight commercially available Actuator Systems. The Variable Bleed Valve hydraulic solution. It is a high-performance Actuator is a pneumatic, fuel-driven or actuation system that utilizes the existing electromechanical actuator which adjusts aircraft hydraulic system supply to drive non- the position of engine bleed valves and leaking, ball-screw actuators for transcowl provides feedback to the engine’s controller. deployment and re-stow. HTRAS is available This increases engine efficiency, especially for any commercial, military or business in higher pressure ratio engines and is aircraft. These Hydraulic Thrust reverser available in fire-resistant and fire proof systems are based on our legacy pneumatic versions. Through robust design technology, thrust reverser systems deployed on CF6, Honeywell has a proven pedigree offering the JT9D, PW4000, TF39, TFE731, RB211, CF34 lowest weight option, capable of persisting engines on Airbus, Boeing, Bombardier and the highest temperatures in the industry. Dassault aircraft. This includes the CFM56-5B and LeapX-1B • Electro-mechanical Thrust Reverser turbofan engines. Actuator Systems (ETRAS) is a non-leaking, • Engine Control Variable Stator Vane high-performance, digitally controlled Actuators are highly optimized and actuation system that can translate the cowls technically differentiated engine actuators from the stowed to the deployed position with a higher-temperature capability and during reverser operation. It is capable lower-weight that decreases specific fuel of executing mid-stroke commands, has consumption (SFC) for aircraft engines. It redundant safety features, and can provide controls the position of the compressor stator prognostic and diagnostic information to vanes for several industry leading turbofan the operator for enhanced fault isolation and engines and commercial, business and maintenance capability. Honeywell was first military engines. to market with an electro-mechanical thrust reverser actuation system, and it is the most modern system in operation today. ETRAS is available for the Airbus A380 Trent-900 and GP7200 engines. • Engine Aircraft Utility – Auxiliary Power Units (APU) Door Actuators. APUs provide electrical power and compressed air to various aircraft systems and components. The APU door actuator controls the position of the inlet door to provide RAM air to the APU. These actuators are used on Gulfstream, Bombardier, COMAC and Dassault aircraft. • Rotary Valve Actuators are high performance, analog or digitally controlled actuators that integrate with aircraft controls to regulate various aircraft fluid flows based on system commands. These actuators are gear driven and are single or dual channel. COMMERCIAL AND BUSINESS The motors can be single phase AC, DC brush, AIRCRAFT AND HELICOPTERS or permanent magnet brushless DC type. MOTION CONTROL SOLUTIONS The actuators all contain some form of end are used for noise and vibration control, Aircraft of stroke limit switches and in some cases, Utility Actuation and Flight Control Actuation. continuous stroke indication. Using highly reliable, flight-proven architectures, these • Engine to Aircraft Noise and Vibration actuators maintain cabin temperature with Control. We use the same mission-critical a manual mode in the event of power loss mount isolation technology employed in or failure. These actuators are available for spacecraft to mount engines in commercial, Airbus A320 and A350 and Boeing 737, 747, military and business jet aircraft, thereby 757 and 777 aircraft.. controlling engine noise and reducing vibrations in the cabin by between four and • Supplemental Cooling System Actuators nine times compared to aircraft whose engines provide cooling for food and beverage use traditional visco-elastic mount damping. refrigeration (galley cooling) and for avionics This technology allows us to significantly ground cooling. These actuators have built-in reduce aircraft weight and reduce aircraft redundancy with self-limiting, limit switches noise and vibration. It's available in passive for end-of-travel shutoff. They are available and semi-active configurations for enhanced for Airbus A320 and A350 and Boeing 737, multi-mode vibration tuning, and has been 747, 757 and 777 aircraft. carefully designed as the highest performing mount isolation system commercially available. • Fuel Tank Inerting (FTI) actuators provide SPACE APPLICATIONS the FTI system with temperature and Honeywell actuators are used for launch pressure controlled air, used to control the vehicles and spacecraft for thrust vector inert gas generation. An inerting system control and engine valve control. Operating for decreases the probability of combustion of the entire duration of flight, these actuation flammable materials stored in a confined systems provide steering control to missiles space, such as a fuel tank, by maintaining and rockets. Satellite, cargo and crew vehicle a chemically non-reactive or "inert" gas. utility motion controls include solar array Honeywell FTI actuators are available for drive mechanisms, antennae pointing and Airbus A320 and Boeing 737, 747, 757 and docking control. 777 aircraft. • Launch and Satellite Propulsion Controls • Flight Controls The Pitch Trim Actuator is a – Thrust Vector Control and Engine Valve high-performance, direct power application Actuation systems provide steering control actuator that responds to vehicle power to rocket motors deployed on missiles, inputs to apply load and rate to the vehicle’s spacecraft and satellite launch vehicles. pitch surface based on system commands. The Thrust Vector Control Actuation This actuator is deployed on the Boeing systems control the flight trajectory by CH-47 Chinook heavy-lift helicopter. moving the engine nozzle around a gimbal, or pivot point to change the thrust vector alignment. Honeywell systems have strong pedigree in multiple power sources including electromechanical, hydraulic blowdown, hydraulic and pneumatic. Includes deployment in platforms such as Standard Missile 3, RS-25 and AR1. MISSILES • Reaction Jet Control Systems provide lateral Honeywell actuators are used for steering thrust control to maintain precise attitude controls including fast fin control and reaction control or deliver high lateral force for divert jet control. maneuvering of missiles, spacecraft and ballistic missile interceptors. This new family Steering Control of advanced high-temperature, fast-response actuators provides unmatched agility, • Fast Fin Control Actuation Systems maneuverability and end-game lethality provide directional steering control to move to tactical missiles and precision guided tail fins and canard on tactical missiles and munitions. These actuation systems
Recommended publications
  • Sl Premium Universal Tractor Hydraulic Fluid
    UNIVERSAL TRACTOR HYDRAULIC FLUID Sinclair Universal Tractor Fluid is a premium quality universal tractor hydraulic fluid formulated with high quality base oils and anti-wear and extreme pressure (EP) additives providing excellent load carrying capacity and wear protection for a wide temperature range and long-term service under severe conditions. It is designed for equipment using a common sump or requiring a single fluid for hydraulic systems, transmission, differential, wet brakes/wet clutches, power take off (PTO) units and final drive. Sinclair Universal Tractor Fluid protects against foam and corrosion and resists the negative effects of water contamination and is highly resistant to oxidation. APPLICATIONS Sinclair Universal Tractor Fluid meets or exceeds most tractor manufacturers’ specifications and can be used where any of the following are specified: • AGCO, Allis Chalmers & Deutz-Allis: 821XL • Massey Ferguson: Permatran III, M-1141 • John Deere: J20C, J20A, J14B, J21A, • Ford M2C134C/D, FNHA-2-C-200.00, M2C86-B, M2C41-B Hygard, 303 Fluid • White: Q1826, Q1705, Q1766, Q1802 • Case International Harvester: MS 1209 (Hy-Tran ULTRA), MS 1207 • Caterpillar: TO-2 (Hy-Tran Plus), MS 1210 (TCH Fluid), MS-1206, MS1230, JIC-144, JIC-143 • Allison: C-4 Fluid • Oliver: Type 55, Universal HTF, Q1766 • Renk 873 and 874 A/B Transmissions • International Harvester: B-6 • Kubota: UDT • Minneapolis-Moline Fluids UNIVERSAL TRACTOR HYDRAULIC FLUID TYPICAL PHYSICAL PROPERTIES METHOD TYPICAL RESULTS Viscosity Grade Universal Tractor Hydraulic Fluid Gravity, °API ASTM D287 30.99 Specific Gravity @ 60°F (15.6°C) ASTM D4052 0.8708 Viscosity @ 40°C cSt ASTM D445 59.34 Viscosity @ 100°C cSt ASTM D445 9.34 Viscosity Index ASTM D2270 138 Pour Point °C (°F) ASTM D5950 -42C (-44 F) Brookfield Viscosity at -35°C, cP ASTM D2983 37,292 Brookfield Viscosity at -20°C, cP ASTM D2983 3,819 Color ASTM D1500 2 Zinc, wt.
    [Show full text]
  • Hydraulic Fluids 1
    HYDRAULIC FLUIDS 1 1. PUBLIC HEALTH STATEMENT This public health statement tells you about hydraulic fluids and the effects of exposure. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for long-term federal cleanup. Hydraulic fluids have been found in at least 10 of the 1,428 current or former NPL sites. However, it’s unknown how many NPL sites have been evaluated for these substances. As more sites are evaluated, the sites with hydraulic fluids may increase. This is important because exposure to these substances may harm you and because these sites may be sources of exposure. When a substance is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. This release does not always lead to exposure. You are exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance or by skin contact. If you are exposed to hydraulic fluids, many factors determine whether you’ll be harmed. These factors include the dose (how much), the duration (how long), and how you come in contact with it. You must also consider the other chemicals you’re exposed to and your age, sex, diet, family traits, lifestyle, and state of health. 1 .1 WHAT ARE HYDRAULIC FLUIDS? Hydraulic fluids are a very large class of materials that are used in machines and equipment to.
    [Show full text]
  • Mk 7 Aircraft Recovery Equipment
    CHAPTER 3 MK 7 AIRCRAFT RECOVERY EQUIPMENT Present-day aircraft normally require the use of then opened, allowing fluid to be forced from the runways that are 5,000 to 8,000 feet long in order to accumulator back into the engine cylinder, forcing the land ashore. On an aircraft carrier, these same aircraft ram out. As the ram moves out of the cylinder, the are stopped within 350 feet after contacting the deck. crosshead is forced away from the fixed sheave This feat is accomplished through the use of aircraft assembly, pulling the purchase cables back onto the recovery equipment, including an emergency barricade engine until the crosshead is returned to its BATTERY that brings a landing aircraft to a controlled stop by position and the crossdeck pendant is in its normal absorbing and dispelling the energy developed by the position on the flight deck. landing aircraft. This recovery equipment is commonly called arresting gear. PRERECOVERY PREPARATIONS The sole purpose of an aircraft carrier is to provide Prior to recovery of aircraft, all recovery equipment a means of launching a strike against an enemy and landing area must be made ready and all personnel anywhere in the world. After the aircraft complete their properly positioned. The following is a general listing mission, the carrier must provide a means of safely of the events that must be accomplished prior to the recovering them. The Mk 7 arresting gear provides this recovery of aircraft: means. • All operational retractable sheaves raised to the full up position AIRCRAFT RECOVERY • LEARNING OBJECTIVE: Describe aircraft All aft deckedge antennas positioned, as arrestments aboard aircraft carriers.
    [Show full text]
  • NOTICE FEDERAL AVIATION ADMINISTRATION Effective Date: National Policy 8/3/16 Cancellation Date: 8/3/17
    U.S. DEPARTMENT OF TRANSPORTATION N 8900.374 NOTICE FEDERAL AVIATION ADMINISTRATION Effective Date: National Policy 8/3/16 Cancellation Date: 8/3/17 SUBJ: Revised FAA-Approved Deicing Program Updates, Winter 2016-2017 1. Purpose of This Notice. This notice provides inspectors with information on holdover times (HOT) and recommendations on various other ground deicing/anti-icing issues. 2. Audience. The primary audience for this notice is Flight Standards District Office (FSDO) principal operations inspectors (POI) responsible for approving an air carrier’s deicing program. The secondary audience includes Flight Standards Service (AFS) personnel in FSDOs, branches, and divisions in the regions and at headquarters (HQ). 3. Where You Can Find This Notice. You can find this notice on the MyFAA employee Web site at https://employees.faa.gov/tools_resources/orders_notices. Inspectors can access this notice through the Flight Standards Information Management System (FSIMS) at http://fsims.avs.faa.gov. Operators can find this notice on the Federal Aviation Administration’s (FAA) Web site at http://fsims.faa.gov. This notice is available to the public at http://www.faa.gov/regulations_policies/orders_notices. Note: The FAA Holdover Time Guidelines for 2016-2017 and related tables referenced in this document can be found on the Air Transportation Division’s (AFS-200) Aircraft Ground Deicing Web site at http://www.faa.gov/other_visit/ aviation_industry/airline_operators/airline_safety/deicing. 4. Cancellation. Notice N 8900.335, Revised FAA-Approved Deicing Program Updates, Winter 2015-2016, dated November 18, 2015, is canceled. 5. Background. Title 14 of the Code of Federal Regulations (14 CFR) part 121, § 121.629(c) requires that part 121 certificate holders have an approved ground deicing/anti-icing program.
    [Show full text]
  • Hydraulic Fluid Quick Reference Hägglunds Products
    RE 15414/08.2019 Replaces: 01.2015 Hydraulic fluid quick reference Hägglunds products Contents 1 Hydraulic fluid quick reference 2 1.1 Applicable fluids 2 1.2 Viscosity Limits 3 1.3 Down-rating 3 1.4 Seal and primer compatibility 3 1.5 Additional demands 4 RE 15414/08.2019, Bosch Rexroth AB 2/4 Hägglunds products | Hydraulic fluid quick reference 1 Hydraulic fluid quick reference 1.1 Applicable fluids Only hydraulic fluids by the standards given in Table 1 are Bosch Rexroth’s Hägglunds radial piston hydraulic motors suggested. Fluids complying to other standards only, are are primarily designed to operate on conventional petro- not approved. leum based hydraulic fluids. Table 1: Standards for detailed requirements of respective fluid group. To get a well working drive system it is very important to ISO 11158 ISO 15380 ISO 12922 follow the recommendations given in this instruction. Mineral oil based and Environmentally Fire resistant Improper hydraulic fluid might cause a shorter service life mineral oil related acceptable hydraulic hydraulic fluids or in worst case lead to instant failure. hydraulic fluids fluids Within these standards, not all fluid classes are allowed, and only some are recommended (see Table 2). NOTICE Wrong hydraulic fluid for Hägglunds motors Table 2: Applicable fluids by designation according to ISO 6743-4. Risk of damage to equipment and impact on service Recommended Allowed Not allowed life for Hägglunds motors HM HV [mineral] 1) HH ▶ Fluids HFDU other than polyol esters are not allowed HV no VI improver HEPR HL [e.g. PAO] HEES [saturated] HETG HR Wrong hydraulic fluid for Hägglunds accessories HEES [un-saturated] HG Risk of damage to equipment and impact on service life HFB 2) 3) HFA for accessories Hägglunds MDA brakes (HFAE and HFAS) ▶ Fluids HFB, HFC and HFD are not allowed HFC 2) 3) HEPG HFDU 2) 3) 5) HFDU [Non-polyol ester] HFDR 2) 3) 4) Wrong hydraulic fluid for CBm motors Risk of damage to equipment and impact on service life 1) Recommended to be without VI improver.
    [Show full text]
  • Operator's Manual
    OPERATOR'S MANUAL WE225, WE235 Trailer Wood Splitter Rev May-2019 Part Number: Z97112_En WE225, WE235 Introduction Trailer Wood Splitter 1. Introduction Review all safety, operation and maintenance information contained in this manual. 1.1 Foreword WARNING! Congratulations on choosing a Wallenstein Trailer Wood Do not attempt to start or operate the machine Splitter! without thoroughly reviewing this manual for This high-quality machine is designed and manufactured safe and proper operation. to meet the needs of an efficient wood splitting operation. Keep this manual with the machine at all times. This manual covers the Wallenstein 20 ton WE Series W034 trailer wood splitters. Model Variants Covered in this Manual • WE225 (Horizontal splitting only) • WE235 (Horizontal and vertical splitting) Units of measurement in Wallenstein Equipment technical manuals are written as: US Customary (SI metric) Keep this manual handy for frequent reference and to pass on to new operators or owners. Call your Wallenstein dealer or distributor if you need assistance, information or additional copies of the manuals. Wallenstein Equipment Inc. • © 2019 www.wallensteinequipment.com 2 WE225, WE235 Trailer Wood Splitter Introduction Table of Contents 1. Introduction ............................................................2 7. Storing the Wood Splitter ...................................32 1.1 Foreword .........................................................2 7.1 Removing from Storage .................................32 1.2 Delivery Inspection Report ..............................4
    [Show full text]
  • 80, 70, 65 SERIES QUEEN AIR Ground Handling Anti-Ice Reservoir
    80, 70, 65 SERIES QUEEN AIR Ground Handling Anti-ice Reservoir Access to the anti-ice reservoir is gained by opening a panel located in the left wing, between the nacelle and the fuselage. Capacity: 3 gals.; Fluid type: Spec TT-I-735 Battery The aircraft electrical system utilizes a 24V, Ni-Cad battery, located in the left engine nacelle behind the firewall. Access is gained by removing the electrical equipment compartment door. NOTE: There are two optional installations where the battery may be on the left forward side of baggage compartment and accessible through the left baggage door, or in the nosecone and accessible by removing the nosecone. Emergency Exits Left rear cabin door. Rear cabin window on right side has emergency release. External Power An external power receptacle is located on the outboard side of the left engine nacelle and uses a standard AN-type plug. This aircraft requires a 28V, DC, negative ground power unit. CAUTION: Battery switch must be ON and all electrical switches OFF prior to connecting ground power unit plug; assure that avionics power is OFF prior to turning the ground power unit ON. Battery must be ON anytime ground power unit is in use. Alternator or generator switch must be OFF while using external power. Fueling Standard configuration incorporates one main G tank and two aux tanks in each wing. The main tank is located inboard of the engine nacelles and the aux tanks are outboard. There are also two optional fuel configurations which may have been used. System capacity: LEADING MAINS EDGE AUXS BOX SECTION AUX Std.
    [Show full text]
  • Hydraulic Power Units
    STANDARD HYDRAULIC POWER UNITS NV - VERTICAL STYLE POWER UNIT NH - HORIZONTAL STYLE POWER UNIT NSP STYLE POWER UNIT Table of Contents NV VERTICAL STYLE POWER UNIT....................................................................Page General Information...................................................................................................................................3 Technical Information - Table “A” & “B”.................................................................................................4 How-to-Order - Reservoir.............................................................................................................................5 How-to-Order - Manifold..............................................................................................................................6 Unit Specification Work Sheet..................................................................................................................7 Hydraulic Schematics.................................................................................................................................8 Unit Drawing..........................................................................................................................................9-10 Manifold Dimensional Information.........................................................................................................11 Optional Component Information and Bolt Kit Model Numbers.........................................................12 NH HORIZONTAL STYLE POWER
    [Show full text]
  • Research Article Modeling and Simulation of Arresting Gear System with Multibody Dynamic Approach
    Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2013, Article ID 867012, 12 pages http://dx.doi.org/10.1155/2013/867012 Research Article Modeling and Simulation of Arresting Gear System with Multibody Dynamic Approach Wenhou Shen,1,2 Zhihua Zhao,1 Gexue Ren,1 and Jiapeng Liu1 1 Tsinghua University, Beijing 100084, China 2 Naval Aviation Institute, Huludao 125001, China Correspondence should be addressed to Wenhou Shen; [email protected] Received 17 July 2013; Revised 19 September 2013; Accepted 19 September 2013 Academic Editor: Song Cen Copyright © 2013 Wenhou Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The arresting dynamics of the aircraft on the aircraft carrier involves both a transient wave propagation process in rope and a smooth decelerating of aircraft. This brings great challenge on simulating the whole process since the former one needs small time-step to guarantee the stability, while the later needs large time-step to reduce calculation time. To solve this problem, this paper proposes a full-scale multibody dynamics model of arresting gear system making use of variable time-step integration scheme. Especially, a kind of new cable element that is capable of describing the arbitrary large displacement and rotation in three-dimensional space is adopted to mesh the wire cables, and damping force is used to model the effect of hydraulic system. Then, the stress of the wire ropes during the landing process is studied. Results show that propagation, reflection, and superposition of the stress wave between the deck sheaves contribute mainly to the peak value of stress.
    [Show full text]
  • Challenger 300 Flight Crew Operating Manual (Volume 2)
    HYDRAULICS Table of Contents Introduction ......................................................................................................................... 13-01-01 Left and Right Hydraulic System ......................................................................................... 13-01-01 Description................................................................................................................. 13-01-02 Components and Operation....................................................................................... 13-01-03 Engine-Driven Pumps ................................................................................................ 13-01-03 DC Motor-Driven Pump.............................................................................................. 13-01-03 Hydraulic Shutoff Valve.............................................................................................. 13-01-03 Hydraulic Reservoir.................................................................................................... 13-01-03 Ecology Bottle ............................................................................................................ 13-01-04 Unloading of Hydraulic Pump for Inflight Restarts ..................................................... 13-01-04 Left and Right Hydraulic System Cooling ..................................................................13-01-04 Hydraulic Reservoir Quantity Percentages ................................................................ 13-01-04 Left Hydraulic System
    [Show full text]
  • Airplane Flying Handbook (FAA-H-8083-3B) Chapter 2
    Chapter 2 Ground Operations Introduction All pilots must ensure that they place a strong emphasis on ground operations as this is where safe flight begins and ends. At no time should a pilot hastily consider ground operations without proper and effective thoroughness. This phase of flight provides the first opportunity for a pilot to safely assess the various factors of flight operations including the regulatory requirements, an evaluation of the airplane’s condition, and the pilot’s readiness for their pilot in command (PIC) responsibilities. 2-1 Flying an airplane presents many new responsibilities that are not required for other forms of transportation. Focus is often overly placed on the flying portion itself with less emphasis placed on ground operations; it must be stressed that a pilot should allow themselves adequate time to properly prepare for flight and maintain effective situational awareness at all times until the airplane is safely and securely returned to its tie-down or hangar. This chapter covers the essential elements for the regulatory basis of flight including an airplane’s airworthiness requirements, important inspection items when conducting a Figure 2-2. A visual inspection of the aircraft before flight is an preflight visual inspection, managing risk and resources, and important step in mitigating airplane flight hazards. proper and effective airplane surface movements including the use of the Airplane Flight Manual/Pilot’s Operating Handbook (AFM/POH) and airplane checklists. be kept accurate and secure but available for inspection. Airplane logbooks are not required, nor is it advisable, to be Preflight Assessment of the Aircraft kept in the airplane.
    [Show full text]
  • 13-6609-6610 Ground Test Tool Boeing 787 Ram Air Turbine
    Operation & Service Manual Model: 13-6609-6610 Ground Test Tool Boeing 787 Ram Air Turbine 10/2009 − Rev. 01 Includes Illustrated Parts Lists DEVELOPED IN CONJUNCTION WITH HAMILTON-SUNDSTRAND 1740 Eber Rd Tronair, Inc. Phone: (419) 866-6301 Holland, OH 43528-9794 www.tronair.com 800-426-6301 USA Email: [email protected] Fax: (419) 867-0634 REVISION DATE TEXT AFFECTED 01 10/2009 Original Release Model: 13-6609-6610 Ground Test Tool - Boeing 787 Ram Air Turbine TABLE OF CONTENTS PAGE 1.0 PRODUCT INFORMATION ........................................................................................................................................... 1 1.1 FUNCTION ................................................................................................................................................................. 1 1.2 LIST OF DRAWINGS ................................................................................................................................................. 1 1.3 RELEVANT STANDARDS ......................................................................................................................................... 1 1.3.1 The GTT has been designed to comply with the following directives ......................................................................... 1 1.4 OVERVIEW ................................................................................................................................................................ 1 1.5 MATING COUPLINGS AND PLUGS .........................................................................................................................
    [Show full text]