“Gamma” and Its Disguises: the Nonlinear Mappings of Intensity in Perception, Crts, Film and Video

Total Page:16

File Type:pdf, Size:1020Kb

“Gamma” and Its Disguises: the Nonlinear Mappings of Intensity in Perception, Crts, Film and Video “Gamma” and its Disguises: The Nonlinear Mappings of Intensity in Perception, CRTs, Film and Video By Charles A. Poynton In photography, video and computer graphics, the gamma symbol γ represents a Luminance numerical parameter that describes the nonlinearity of intensity reproduction. The subject of colorimetry concerns the Gamma is a mysterious and confusing subject, because it involves concepts from four relationship between the sensation of disciplines: physics, perception, photography and video. In this note I will explain color and spectral power at different how gamma is related to each of these disciplines. Having a good understanding of wavelengths in the visible band. De- the theory and practice of gamma will enable you to get good results when you create, tailed discussion of colorimetry is be- process and display pictures. yond the scope of this note, except for one fact that is important here. Human This note focuses on electronic reproduction of images, using video and computer vision gives special treatment to lumi- graphics techniques and equipment. However, the discussions of perception and nance, or roughly speaking, brightness. photography may be of general interest as well. This note deals mainly with the Luminance is a weighted mixture of reproduction of intensity, or as a photographer would say, tone scale. This is one spectral energy, where the weights are important step to achieving good color reproduction, but issues specific to color are determined by the characteristics of covered elsewhere. human vision. Luminance comprises roughly 11% power from blue regions of the spectrum, 59% from green and The nonuniform perception of intensity of the channel, and simultaneously cor- 30% from red. The coefficients in this is the subject of the first section of this rects for intensity nonlinearity at the weighted sum are derived from the sen- note. The human perceptual response to CRT display. If gamma correction were sitivity of human vision to the corre- intensity is distinctly nonuniform: the not already necessary for physical rea- sponding wavelengths: a saturated blue lightness sensation of vision is roughly sons at the CRT, we would have to color is quite dark, having a brightness a power function of intensity. This char- invent it for perceptual reasons. of about 0.11 relative to white. A satu- acteristic of vision needs to be accom- The next section of this note switches to rated red is considerably lighter, and modated if an image is to be coded so as a completely different topic: photogra- saturated green is lighter still. to minimize the visibility of noise and phy. Photography also involves make effective perceptual use of a lim- The Commission Internationale de ited number of bits per pixel. nonlinearity of intensity reproduction. L’Éclairage (CIE, or International Com- The nonlinearity of film is character- mission on Illumination) is the interna- The origin of gamma in the physics of a ized by a parameter gamma. As you tional body responsible for standards in cathode-ray tube (CRT) is covered in might suspect, electronics inherited the the area of color perception. The CIE the second section of this note. The term from photography! The effect of has standardized a weighting function, CRTs that are ubiquitous in workstation gamma in film primarily concerns the defined numerically, that relates spec- displays and in television sets are inher- appearance of pictures rather than the tral power to luminance. The symbol for ently nonlinear devices: the intensity of accurate reproduction of intensity val- luminance is Y, sometimes emphasized light reproduced at the screen of a CRT ues. Some of the appearance aspects of as being standard by the prefix CIE. monitor is not proportional to its voltage gamma in film also apply to television input. From a strictly physical point of and computer displays. Unfortunately, in video practice, the view, gamma correction can be thought term luminance has come to mean the In the fifth section of this note I will of as the process of compensating for video signal representative of luminance this nonlinearity in order to achieve describe how video draws aspects of its even though that video signal has been handling of gamma from of all of these correct reproduction of intensity. subjected to a nonlinear transfer func- areas: knowledge of the CRT from phys- tion. In the early days of video, the The third section of this note discusses ics, knowledge of the nonuniformity of nonlinear signal was denoted Y’, where how combining these two concepts — vision from perception, and knowledge the prime symbol indicated the nonlin- one from perception , the other from of viewing conditions from photogra- ear treatment. But over the last forty physics— reveals an amazing coinci- phy. I will also discuss additional de- years the prime has been elided in video dence: the nonlinearity of a CRT is tails of the CRT transfer function that usage and now both the term luminance remarkably similar to the inverse of the you will need to know if you wish to and the symbol Y collide with the CIE, lightness sensitivity of human vision. calibrate a CRT or determine its making both ambiguous! This has led to Coding intensity into a gamma-corrected nonlinearity. great confusion, such as the incorrect signal makes maximum perceptual use In the final section of this note I will statement commonly found in computer make some comments about gamma graphics and color textbooks that in the Charles A. Poynton is a Staff Engineer with Sun correction in computer graphics. YIQ or YUV color spaces, the Y com- Microsystems Computer Corp., Mountain View, CA ponent is CIE luminance. I use the term 94043. Copyright © 1993 Society of Motion Picture and luminance according to its standardized Television Engineers, Inc. All rights reserved. SMPTE Journal, December 1993 1099 CIE definition and use the term luma to refer to the video signal. But my con- vention is not yet widespread, and in the meantime you must be careful to deter- mine whether a linear or nonlinear inter- pretation is being applied to the word and the symbol. Until now I have used the familiar term +∆ intensity — including in the title of this LL L note! — but from now on I will use the technical term luminance to refer to the brightness response of human vision. I will continue to use intensity for linear- light red, green and blue quantities. Luminance is a linear-light quantity, although its spectral composition is de- L0 fined according to human vision. The response of human visual system to luminance is the subject of the next L0: Adaptation (surround) Luminance section. Perception L: Test Luminance Human vision adapts over a remarkably ∆ L: Minimum detectable difference wide range of intensity levels — about seven decades of dynamic range in to- tal. This is illustrated in the sketch be- low. For about two decades at the bot- The adaptation is controlled by total the luminance of blacks, and thereby tom end of the intensity range, the reti- retinal illumination. Dark adaptation to lessen the contrast ratio and impair per- nal photoreceptor cells called rods are a lower intensity is slow: it can take ceived picture quality. employed. Since there is only one type many minutes to adapt from a bright of rod cell, what is loosely called night sunlit day to the dark ambient light of a Within the two decade range of lumi- nance over which vision can distinguish vision cannot discern colors. About one cinema. Light adaptation towards higher luminance levels, human vision has a decade of adaptation is effected by the intensity is more rapid but can be pain- certain discrimination threshold. For a iris; the remainder of the adaptation is ful, as you may have experienced when reason that will become clear in a mo- due to a photochemical process that walking out of the cinema back into ment, it is convenient to express the involves the visual pigment substance daylight. Since adaptation is controlled contained in photoreceptor cells. by total retinal illumination, your adap- discrimination capability in terms of contrast sensitivity, which is the ratio of tation state is closely related to the in- luminances between two adjacent tensity of “white” in your field of view. patches of similar luminance. Absolute At a particular state of adaptation, hu- The diagram above shows the pattern Scene man vision can distinguish different lu- presented to an observer in an experi- Luminance minance levels down to about one per- cent of peak white. In other words, our ment to determine the contrast sensitiv- ity of human vision. Most of the ability to distinguish luminance differ- observer’s field of vision is filled by a 10 k ences extends over a luminance range of surround luminance level L , in order about 100:1. Loosely speaking, intensi- 0 to fix the observer’s state of adaptation. 1 k ties less than about one percent of what In the central area of the field of vision sunlight is sometimes called peak white appear 100 simply “black”: different luminance is placed two adjacent patches having slightly different luminance levels L 100 values below this luminance level can- ∆ 10 and L+ L. The experimenter presents twilight not be distinguished. 10 stimuli having a wide range of test val- Contrast ratio is defined as the ratio of ues with respect to the surround, that is, 1 1 luminance between the lightest and dark- L est elements of a scene. Contrast ratio is a wide range of values. At each test moonlight L 100 m a major determinant of perceived pic- 0 ture quality, so much so that an image luminance, the experimenter presents to 10 m reproduced with a high contrast ratio the observer a range of luminance incre- may be judged sharper than another ments with respect to the test stimulus, starlight 1 m image that has higher measured spatial LL+ ∆ resolution.
Recommended publications
  • Package 'Magick'
    Package ‘magick’ August 18, 2021 Type Package Title Advanced Graphics and Image-Processing in R Version 2.7.3 Description Bindings to 'ImageMagick': the most comprehensive open-source image processing library available. Supports many common formats (png, jpeg, tiff, pdf, etc) and manipulations (rotate, scale, crop, trim, flip, blur, etc). All operations are vectorized via the Magick++ STL meaning they operate either on a single frame or a series of frames for working with layers, collages, or animation. In RStudio images are automatically previewed when printed to the console, resulting in an interactive editing environment. The latest version of the package includes a native graphics device for creating in-memory graphics or drawing onto images using pixel coordinates. License MIT + file LICENSE URL https://docs.ropensci.org/magick/ (website) https://github.com/ropensci/magick (devel) BugReports https://github.com/ropensci/magick/issues SystemRequirements ImageMagick++: ImageMagick-c++-devel (rpm) or libmagick++-dev (deb) VignetteBuilder knitr Imports Rcpp (>= 0.12.12), magrittr, curl LinkingTo Rcpp Suggests av (>= 0.3), spelling, jsonlite, methods, knitr, rmarkdown, rsvg, webp, pdftools, ggplot2, gapminder, IRdisplay, tesseract (>= 2.0), gifski Encoding UTF-8 RoxygenNote 7.1.1 Language en-US NeedsCompilation yes Author Jeroen Ooms [aut, cre] (<https://orcid.org/0000-0002-4035-0289>) Maintainer Jeroen Ooms <[email protected]> 1 2 analysis Repository CRAN Date/Publication 2021-08-18 10:10:02 UTC R topics documented: analysis . .2 animation . .3 as_EBImage . .6 attributes . .7 autoviewer . .7 coder_info . .8 color . .9 composite . 12 defines . 14 device . 15 edges . 17 editing . 18 effects . 22 fx .............................................. 23 geometry . 24 image_ggplot .
    [Show full text]
  • The Rehabilitation of Gamma
    The rehabilitation of gamma Charles Poynton poynton @ poynton.com www.poynton.com Abstract Gamma characterizes the reproduction of tone scale in an imaging system. Gamma summarizes, in a single numerical parameter, the nonlinear relationship between code value – in an 8-bit system, from 0 through 255 – and luminance. Nearly all image coding systems are nonlinear, and so involve values of gamma different from unity. Owing to poor understanding of tone scale reproduction, and to misconceptions about nonlinear coding, gamma has acquired a terrible reputation in computer graphics and image processing. In addition, the world-wide web suffers from poor reproduction of grayscale and color images, due to poor handling of nonlinear image coding. This paper aims to make gamma respectable again. Gamma’s bad reputation The left-hand column in this table summarizes the allegations that have led to gamma’s bad reputation. But the reputation is ill-founded – these allegations are false! In the right column, I outline the facts: Misconception Fact A CRT’s phosphor has a nonlinear The electron gun of a CRT is responsible for its nonlinearity, not the phosphor. response to beam current. The nonlinearity of a CRT monitor The nonlinearity of a CRT is very nearly the inverse of the lightness sensitivity is a defect that needs to be of human vision. The nonlinearity causes a CRT’s response to be roughly corrected. perceptually uniform. Far from being a defect, this feature is highly desirable. The main purpose of gamma The main purpose of gamma correction in video, desktop graphics, prepress, JPEG, correction is to compensate for the and MPEG is to code luminance or tristimulus values (proportional to intensity) into nonlinearity of the CRT.
    [Show full text]
  • AN9717: Ycbcr to RGB Considerations (Multimedia)
    YCbCr to RGB Considerations TM Application Note March 1997 AN9717 Author: Keith Jack Introduction Converting 4:2:2 to 4:4:4 YCbCr Many video ICs now generate 4:2:2 YCbCr video data. The Prior to converting YCbCr data to R´G´B´ data, the 4:2:2 YCbCr color space was developed as part of ITU-R BT.601 YCbCr data must be converted to 4:4:4 YCbCr data. For the (formerly CCIR 601) during the development of a world-wide YCbCr to RGB conversion process, each Y sample must digital component video standard. have a corresponding Cb and Cr sample. Some of these video ICs also generate digital RGB video Figure 1 illustrates the positioning of YCbCr samples for the data, using lookup tables to assist with the YCbCr to RGB 4:4:4 format. Each sample has a Y, a Cb, and a Cr value. conversion. By understanding the YCbCr to RGB conversion Each sample is typically 8 bits (consumer applications) or 10 process, the lookup tables can be eliminated, resulting in a bits (professional editing applications) per component. substantial cost savings. Figure 2 illustrates the positioning of YCbCr samples for the This application note covers some of the considerations for 4:2:2 format. For every two horizontal Y samples, there is converting the YCbCr data to RGB data without the use of one Cb and Cr sample. Each sample is typically 8 bits (con- lookup tables. The process basically consists of three steps: sumer applications) or 10 bits (professional editing applica- tions) per component.
    [Show full text]
  • High Dynamic Range Image and Video Compression - Fidelity Matching Human Visual Performance
    HIGH DYNAMIC RANGE IMAGE AND VIDEO COMPRESSION - FIDELITY MATCHING HUMAN VISUAL PERFORMANCE Rafał Mantiuk, Grzegorz Krawczyk, Karol Myszkowski, Hans-Peter Seidel MPI Informatik, Saarbruck¨ en, Germany ABSTRACT of digital content between different devices, video and image formats need to be extended to encode higher dynamic range Vast majority of digital images and video material stored to- and wider color gamut. day can capture only a fraction of visual information visible High dynamic range (HDR) image and video formats en- to the human eye and does not offer sufficient quality to fully code the full visible range of luminance and color gamut, thus exploit capabilities of new display devices. High dynamic offering ultimate fidelity, limited only by the capabilities of range (HDR) image and video formats encode the full visi- the human eye and not by any existing technology. In this pa- ble range of luminance and color gamut, thus offering ulti- per we outline the major benefits of HDR representation and mate fidelity, limited only by the capabilities of the human eye show how it differs from traditional encodings. In Section 3 and not by any existing technology. In this paper we demon- we demonstrate how existing image and video compression strate how existing image and video compression standards standards can be extended to encode HDR content efficiently. can be extended to encode HDR content efficiently. This is This is achieved by a custom color space for encoding HDR achieved by a custom color space for encoding HDR pixel pixel values that is derived from the visual performance data. values that is derived from the visual performance data.
    [Show full text]
  • High Dynamic Range Video
    High Dynamic Range Video Karol Myszkowski, Rafał Mantiuk, Grzegorz Krawczyk Contents 1 Introduction 5 1.1 Low vs. High Dynamic Range Imaging . 5 1.2 Device- and Scene-referred Image Representations . ...... 7 1.3 HDRRevolution ............................ 9 1.4 OrganizationoftheBook . 10 1.4.1 WhyHDRVideo? ....................... 11 1.4.2 ChapterOverview ....................... 12 2 Representation of an HDR Image 13 2.1 Light................................... 13 2.2 Color .................................. 15 2.3 DynamicRange............................. 18 3 HDR Image and Video Acquisition 21 3.1 Capture Techniques Capable of HDR . 21 3.1.1 Temporal Exposure Change . 22 3.1.2 Spatial Exposure Change . 23 3.1.3 MultipleSensorswithBeamSplitters . 24 3.1.4 SolidStateSensors . 24 3.2 Photometric Calibration of HDR Cameras . 25 3.2.1 Camera Response to Light . 25 3.2.2 Mathematical Framework for Response Estimation . 26 3.2.3 Procedure for Photometric Calibration . 29 3.2.4 Example Calibration of HDR Video Cameras . 30 3.2.5 Quality of Luminance Measurement . 33 3.2.6 Alternative Response Estimation Methods . 33 3.2.7 Discussion ........................... 34 4 HDR Image Quality 39 4.1 VisualMetricClassification. 39 4.2 A Visual Difference Predictor for HDR Images . 41 4.2.1 Implementation......................... 43 5 HDR Image, Video and Texture Compression 45 1 2 CONTENTS 5.1 HDR Pixel Formats and Color Spaces . 46 5.1.1 Minifloat: 16-bit Floating Point Numbers . 47 5.1.2 RGBE: Common Exponent . 47 5.1.3 LogLuv: Logarithmic encoding . 48 5.1.4 RGB Scale: low-complexity RGBE coding . 49 5.1.5 LogYuv: low-complexity LogLuv . 50 5.1.6 JND steps: Perceptually uniform encoding .
    [Show full text]
  • Color Calibration Guide
    WHITE PAPER www.baslerweb.com Color Calibration of Basler Cameras 1. What is Color? When talking about a specific color it often happens that it is described differently by different people. The color perception is created by the brain and the human eye together. For this reason, the subjective perception may vary. By effectively correcting the human sense of sight by means of effective methods, this effect can even be observed for the same person. Physical color sensations are created by electromagnetic waves of wavelengths between 380 and 780 nm. In our eyes, these waves stimulate receptors for three different Content color sensitivities. Their signals are processed in our brains to form a color sensation. 1. What is Color? ......................................................................... 1 2. Different Color Spaces ........................................................ 2 Eye Sensitivity 2.0 x (λ) 3. Advantages of the RGB Color Space ............................ 2 y (λ) 1,5 z (λ) 4. Advantages of a Calibrated Camera.............................. 2 5. Different Color Systems...................................................... 3 1.0 6. Four Steps of Color Calibration Used by Basler ........ 3 0.5 7. Summary .................................................................................. 5 0.0 This White Paper describes in detail what color is, how 400 500 600 700 it can be described in figures and how cameras can be λ nm color-calibrated. Figure 1: Color sensitivities of the three receptor types in the human eye The topic of color is relevant for many applications. One example is post-print inspection. Today, thanks to But how can colors be described so that they can be high technology, post-print inspection is an automated handled in technical applications? In the course of time, process.
    [Show full text]
  • Color Spaces
    RGB Color Space 15 Chapter 3: Color Spaces Chapter 3 Color Spaces A color space is a mathematical representation RGB Color Space of a set of colors. The three most popular color models are RGB (used in computer graphics); The red, green, and blue (RGB) color space is YIQ, YUV, or YCbCr (used in video systems); widely used throughout computer graphics. and CMYK (used in color printing). However, Red, green, and blue are three primary addi- none of these color spaces are directly related tive colors (individual components are added to the intuitive notions of hue, saturation, and together to form a desired color) and are rep- brightness. This resulted in the temporary pur- resented by a three-dimensional, Cartesian suit of other models, such as HSI and HSV, to coordinate system (Figure 3.1). The indicated simplify programming, processing, and end- diagonal of the cube, with equal amounts of user manipulation. each primary component, represents various All of the color spaces can be derived from gray levels. Table 3.1 contains the RGB values the RGB information supplied by devices such for 100% amplitude, 100% saturated color bars, as cameras and scanners. a common video test signal. BLUE CYAN MAGENTA WHITE BLACK GREEN RED YELLOW Figure 3.1. The RGB Color Cube. 15 16 Chapter 3: Color Spaces Red Blue Cyan Black White Green Range Yellow Nominal Magenta R 0 to 255 255 255 0 0 255 255 0 0 G 0 to 255 255 255 255 255 0 0 0 0 B 0 to 255 255 0 255 0 255 0 255 0 Table 3.1.
    [Show full text]
  • Enhancement of Hazy Image Using Color Depth Estimation and Visibility Restoration G
    ISSN XXXX XXXX © 2017 IJESC Research Article Volume 7 Issue No.11 Enhancement of Hazy Image Using Color Depth Estimation and Visibility Restoration G. Swetha1, Dr.B.R.Vikram2, Mohd Muzaffar Hussain3 Assistant Professor1, Professor and Principal2, M.Tech Scholar3 Vijay Rural Engineering College, India Abstract: The hazy removal technique divided into three categories such additional information approaches, multiple image approaches, single- image approaches. The first two methods are expense one and high computational complexity. Recently single image approach is used for this de-hazing process because of its flexibility and low cost. The dark channel prior is to estimate scene depth in a single image and it is estimated through get at least one color channel with very low intensity value regard to the patches of an image. The transmission map will be estimated through atmospheric light estimation. The median filter and adaptive gamma correction are used for enhancing transmission to avoid halo effect problem. Then visibility restoration module utilizes average color difference values and enhanced transmission to restore an image with better quality. Keywords: Hazy Image, Contrast Stretching, Bi-orthogonal Wavelet Transform, Depth Estimation, Adaptive Gamma Correction, Color Analysis, Visibility Restoration I. INTRODUCTION: estimation. The median filter and adaptive gamma correction are used for enhancing transmission to avoid halo effect problem. The project presents visibility restoration of single hazy images using color analysis and depth estimation with enhanced on bi- orthogonal wavelet transformation technique. Visibility of outdoor images is often degraded by turbid mediums in poor weather, such as haze, fog, sandstorms, and smoke. Optically, poor visibility in digital images is due to the substantial presence of different atmospheric particles that absorb and scatter light between the digital camera and the captured object.
    [Show full text]
  • An Adaptive Gamma Correction for Image Enhancement Shanto Rahman1*, Md Mostafijur Rahman1, M
    Rahman et al. EURASIP Journal on Image and Video EURASIP Journal on Image Processing (2016) 2016:35 DOI 10.1186/s13640-016-0138-1 and Video Processing RESEARCH Open Access An adaptive gamma correction for image enhancement Shanto Rahman1*, Md Mostafijur Rahman1, M. Abdullah-Al-Wadud2, Golam Dastegir Al-Quaderi3 and Mohammad Shoyaib1 Abstract Due to the limitations of image-capturing devices or the presence of a non-ideal environment, the quality of digital images may get degraded. In spite of much advancement in imaging science, captured images do not always fulfill users’ expectations of clear and soothing views. Most of the existing methods mainly focus on either global or local enhancement that might not be suitable for all types of images. These methods do not consider the nature of the image, whereas different types of degraded images may demand different types of treatments. Hence, we classify images into several classes based on the statistical information of the respective images. Afterwards, an adaptive gamma correction (AGC) is proposed to appropriately enhance the contrast of the image where the parameters of AGC are set dynamically based on the image information. Extensive experiments along with qualitative and quantitative evaluations show that the performance of AGC is better than other state-of-the-art techniques. Keywords: Contrast enhancement, Gamma correction, Image classification 1 Introduction In global enhancement techniques, each pixel of an Since digital cameras have become inexpensive, people image is transformed following a single transformation have been capturing a large number of images in every- function. However, different parts of the image might day life.
    [Show full text]
  • Package 'Adimpro'
    Package ‘adimpro’ January 11, 2021 Version 0.9.3 Date 2021-01-11 Title Adaptive Smoothing of Digital Images Author Karsten Tabelow <[email protected]>, Joerg Polzehl <[email protected]> Maintainer Karsten Tabelow <[email protected]> Depends R (>= 3.2.0) Imports awsMethods (>= 1.1-1), grDevices, methods SystemRequirements Image Magick (for reading non PPM format), dcraw (for reading RAW images). Description Implements tools for manipulation of digital images and the Propagation Separation approach by Polzehl and Spokoiny (2006) <DOI:10.1007/s00440-005-0464-1> for smoothing digital images, see Polzehl and Tabelow (2007) <DOI:10.18637/jss.v019.i01>. License GPL (>= 2) Copyright This package is Copyright (C) 2006-2019 Weierstrass Institute for Applied Analysis and Stochastics. URL http://www.wias-berlin.de/software/imaging/ NeedsCompilation yes Repository CRAN Date/Publication 2021-01-11 22:50:02 UTC R topics documented: adimpro . .2 adimpro.options . .4 adjust.image . .5 awsimage . .6 awsraw ........................................... 10 clip.image . 11 1 2 adimpro colorspace . 12 combine . 14 develop.raw . 15 edges . 17 extract.image . 18 extract.info . 19 extract.ni . 20 imganiso2D . 20 mask.create . 21 plot.adimpro . 22 rimage . 24 rotate.image . 25 segment . 26 show.image . 29 shrink.image . 30 summary.adimpro . 31 write.image . 32 write.raw . 34 Index 35 adimpro I/O Functions Description Create image objects of class "adimpro" from arrays, RAW-format files and other image formats. Usage read.raw(filename, type="PPM", wb="CAMERA",cspace="Adobe",interp="Bilinear",maxrange=TRUE, rm.ppm=TRUE, compress=TRUE) read.image(filename, compress=TRUE) make.image(x,compress=TRUE, gammatype="None", whitep = "D65", cspace="Adobe", scale="Original",xmode="RGB") Arguments filename file name x Array or matrix containing RGB or greyscale values in the range (0,1) or (0,65535).
    [Show full text]
  • New Features in Mpdf V6.0
    NewNew FeaturesFeatures inin mPDFmPDF v6.0v6.0 Images Gamma correction in PNG images Some PNG images contain a source Gamma correction value to maintain consistent colour display between devices. mPDF will adjust for gamma correction if a PNG image has a source gAMA entry <> 2.2 Gamma correction is not supported in GIF files. For more information, and sample image files see http://www.libpng.org/pub/png/colorcube/gamma-consistency-test.html Below are some of the example images, displayed on a background of HTML colour, such that when displayed correctly they should appear as one solid block of the same colour: iCCP PNG images sRGB PNG image Unlabelled Unlabelled PNG image PNG image ("gamma 1.0" pixel ("absolute GIF image PNG image with gamma with gamma data, linear ICC colorimetric" (the usual (no gamma 1/1.6 1/2.2 profiles: rendering intent kind) info) (i.e. 0.625) (i.e. 0.4545) "iCCPGamma 1.0 "sRGB") profile") NB View this page as HTML in your browser and see the difference between browsers! Note that there are inconsistencies between browsers, so the image display varies considerably on the system you are using. There are also image errors which are not always apparent. The image below is taken from http://www.w3.org/TR/CSS21/intro.html and has the gAMA value set to 1.45454 This is probably unintentional and should be 0.45454 which is 1 / 2.2 The image appears differently on IE9/Safari versus Firefox/Opera. To quote from http://www.libpng.org/pub/png/spec/1.2/PNG-Encoders.html "If the source file's gamma value is greater than 1.0, it is probably a display system exponent,....and you should use its reciprocal for the PNG gamma." Some applications seem to ignore this, displaying the image how it was probably intended.
    [Show full text]
  • Lossless Compression of Mosaic Images with Convolutional Neural Network Prediction
    Lossless Compression of Mosaic Images with Convolutional Neural Network Prediction Seyed Mehdi Ayyoubzadeh Xiaolin Wu McMaster University McMaster University Hamilton, ON Hamilton, ON [email protected] [email protected] Abstract precedented restoration performances [16, 12, 11, 19]. But in order to produce the best results, these convolutional neu- We present a CNN-based predictive lossless compres- ral networks need to take the original mosaic image data as sion scheme for raw color mosaic images of digital cam- input; in other words, any information loss caused by DIP eras. This specialized application problem was previously has negative impact on the final inference result. For this understudied but it is now becoming increasingly impor- reason, professional SLR cameras and many of high end tant, because modern CNN methods for image restoration smartphones offer a lossless mode, in which users can ac- tasks (e.g., superresolution, low lighting enhancement, de- cess to raw mosaic sensor readings. However, if not com- blurring), must operate on original raw mosaic images to pressed, storing raw mosaic images is not practical due to obtain the best possible results. The key innovation of this their sheer size. This gives rise to the subject of this pa- paper is a high-order nonlinear CNN predictor of spatial- per, the lossless compression of CFA mosaic images. The spectral mosaic patterns. The deep learning prediction above stated problem has been hardly studied in any depth. can model highly complex sample dependencies in spatial- Technically, losslessly compressing mosaic images is much spectral mosaic images more accurately and hence remove more difficult than lossless compression of conventional im- statistical redundancies more thoroughly than existing im- ages, because the spatial-spectral interleaving of pixels gen- age predictors.
    [Show full text]