Oxidative Stress and Fish Immune System: Phagocytosis and Leukocyte Respiratory Burst Activity

Total Page:16

File Type:pdf, Size:1020Kb

Oxidative Stress and Fish Immune System: Phagocytosis and Leukocyte Respiratory Burst Activity Anais da Academia Brasileira de Ciências (2018) 90(4): 3403-3414 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201820170730 www.scielo.br/aabc | www.fb.com/aabcjournal Oxidative stress and fish immune system: phagocytosis and leukocyte respiratory burst activity JAQUELINE D. BILLER and LEONARDO S. TAKAHASHI Universidade Estadual Paulista/UNESP, Faculdade de Ciências Agrárias e Tecnológicas/FCAT, Campus de Dracena, Rodovia Comandante João Ribeiro de Barros, Km 651, Bairro das Antas, 17900-000 Dracena, SP, Brazil Manuscript received on September 18, 2017; accepted for publication on February 19, 2018 ABSTRACT Molecular oxygen is a necessary compound for all aerobic organisms, although oxygen is a potent oxidant, which can cause oxidative stress (OS). OS occurs when there is an imbalance between the production of oxidant and antioxidants components, are result of normal cell metabolism, and many of these compounds play a fundamental role in several metabolic pathways. The organism produces several reactive oxygen species (ROS), but they are balanced by an antioxidant defense system that maintains the levels of these oxidizing compounds at an acceptable level. Many of these components are essential in the organism defense and their byproducts are considered potent bactericides that actively act in the destruction of invading pathogens. Fish immune system is composed of innate and acquired mechanisms of defense. Phagocytosis is an innate process of defense, which interconnects these two systems, since the pathogens processing by professional phagocytes is a fundamental stage for antibodies production. During phagocytosis there is production of ROS and consequent production of free radicals (FR), these compounds lead to the formation of potent bactericides to combat microorganisms. However, it is known that OS limits the immune response, with an impairment in defense compounds in an attempt to decrease the ROS production. Studies of fish FR production are preliminary and should be executed to evaluate the effects of ROS on fish, including their beneficial action against pathogens and its deleterious action on the oxidation of cellular components. Key words: reactive oxygen species, innate immunity, antioxidant system, free radical. INTRODUCTION metabolism, and many of these compounds play a key role in various metabolic pathways. Many Molecular oxygen is a necessary compound for all of these components are essential in the organism aerobic organisms, since this element is critical for energy production; however, is a potent oxidant, defense and their byproducts are considered potent which can lead to oxidative stress (OS). The bactericides that act actively in the destruction of reactive oxygen species (ROS) produced and the invasive pathogens (Cross et al. 1987, Dong et al. resulting free radicals (FR) are results of normal cell 2017, Biller-Takahashi et al. 2015). Correspondence to: Jaqueline Dalbello Biller OS occurs when there is an imbalance E-mail: [email protected] between the production of oxidant and antioxidant An Acad Bras Cienc (2018) 90 (4) 3404 JAQUELINE D. BILLER and LEONARDO S. TAKAHASHI components. The organism during its normal OXIDATIVE STRESS metabolism produces several ROSs, however, it has Oxidative stress is a condition that refers to an antioxidant defense system that keeps the levels the imbalance between levels of ROS and their of these oxidizing compounds at an acceptable antioxidants. ROS may be increased and damage level. In some situations the oxidants production is lipids, proteins and DNA. OS has been linked to a very high and the cells can suffer serious damage wide variety of diseases; however, ROS molecules and die (Dong et al. 2017, Finkel 2011, Kiley and Storz 2004, Li et al. 2016). also act on immune defense, as well as signaling The fish immune system is composed of innate molecules and on the maintenance of physiological and acquired mechanisms of defense. Phagocytosis processes (Figure 1) (Wood et al. 2003, Schieber is an innate process, which interconnects these and Chandel 2014). two systems, since the pathogens processing by ROS are involved in energy production, professional phagocytes is a fundamental stage for phagocytosis, regulation of cell growth, intercellular the antibodies production. During phagocytosis signaling and synthesis of important biological there is the production of ROS and consequent FR, substances. They may also be classified as FR, these compounds lead to the formation of potent since chemical properties give them reactivity to bactericides compounds to combat microorganisms different biological targets, and when in excess (Biller-Takahashi et al. 2015, Biller-Takahashi and they can cause peroxidation of membrane lipids, Urbinati 2014). impairment of proteins in tissues, membranes, Currently, several studies have evaluated enzymes, carbohydrates and DNA. Even though the effects of FR on the immune system and new ROS are evolutionarily selected to modulate areas of knowledge are being explored, such as immunological and physiological processes (Cross immunosenescence, which studies the aging of et al. 1987, Dong et al. 2017, Kiley and Storz 2004, cells of the immune system caused by FR, as well as Finkel 2011). inflammasomes, which are biochemical pathways FR are highly reactive atoms or molecules initiated by the activation of receptors that provoke that have an unpaired electron in their last electron chronic inflammation (genesis of many diseases) layer, so, have an unpaired number of electrons in (Paiva-Oliveira et al. 2010, Tschopp and Schroder their atomic or molecular orbital. Instability makes 2010, Angosto and Mulero 2014). atoms or molecules very reactive and therefore Studies of the fish FR production are can non-specifically bind with other biological preliminary, but there are two factors that positively molecules. FR can be formed by absorption of influence the OS studies in this species; one of them ultraviolet radiation or visible light, by redox is that fish are considered biological indicators reactions or by enzymatic catalysis (Ferreira and of pollution, which is a factor that promotes the Matsubara 1997). generation of FR by the aquatic organism. Second ROS are produced mainly in the mitochondria, is that many fish are considered biological models peroxisomes, cytoplasm and plasma membrane. for metabolic pathways evaluation, so, due to the Oxygen is a birradical that has two radicals in the importance of the theme, other studies should be orbitals, which makes it little reactive, however, carried out to evaluate the ROS effects on fish, the electron transfer or energy absorption processes including their beneficial effect against pathogens can promote the ROS formation from molecular and deleterious impact on the oxidation of cellular oxygen. ROS include oxygen FR, such as the • •- components (Ahmad et al. 2000, Oruc et al. 2004). hydroxyl radical (HO ), superoxide anion (O2 ), An Acad Bras Cienc (2018) 90 (4) OXIDATIVE STRESS AND FISH IMMUNE SYSTEM 3405 peroxyl (ROO•) and alkoxyl (RO•), nitric oxide or repair the damage caused by it (Halliwell et al. (NO), but also non-radical compounds, such as 1992, Barreiros et al. 2006). •– oxygen, hydrogen peroxide (H2O2), hypochlorous The superoxide anion radical (O2 ) is usually acid (HClO), and transition metals (Cu and Fe) inactive, and in aqueous media produces a hydrogen (Sorg 2004, Barreiros et al. 2006). peroxide molecule and an oxygen molecule by The FR have a different degree of reactivity dismutation. This FR is part of several chemical and half-life, but most of them are very unstable reactions with important biological functions, such and can promote the non-enzymatic oxidation of as HO• radical production, by reducing Fe chelates, biomolecules (proteins, carbohydrates, lipids and as well as Fe2+ released from storage proteins nucleic acids) (Halliwell 2009, Buonocore et al. (ferritin and aconitase) and iron-sulfoproteins, in 2010, Hamanaka and Chandel 2010). Within the addition to reacting with the HO• radical producing 1 cells, there are three main sources of FR formation: singlet oxygen ( O2) and reacting with nitric oxide I. Oxidative metabolism in the mitochondria: (NO•) producing peroxynitrite (ONOO−) (Babior In the mitochondrial respiratory chain, electron 1997, Halliwell 2000, Barreiros et al. 2006). transport is responsible for the ROS formation The superoxide radical, in spite of its (Barreiros et al. 2006). deleterious effects, has important function for II. Leukocyte respiratory burst activity: immune defense, because in phagocytic cells, •– neutrophils, monocytes, macrophages, dendritic lymphocytes and fibroblasts, the O2 has the •– cells and B-lymphocyte produce ROS, being capacity to destroy pathogens. The O2 produced a strategy of the immune system for several in the cells can be eliminated by the superoxide pathogens destruction. The “oxidative burst” is a dismutase enzyme, which catalyzes the dismutation •– resting metabolic pathway in the cells, however, it is of two molecules of O2 in oxygen and hydrogen activated after microbial agent detection. It has the peroxide, however, when there is no enzymatic function of producing strong oxidizing compounds elimination (peroxidases and catalase), this FR (burst activity) that act for microorganisms can lead to formation of hydroxyl radicals (Babior destruction (Park 2003, Cathcart 2004, Klebanoff 1997, Halliwell 2000,
Recommended publications
  • Reactive Oxygen Species (ROS)
    EuropeanN Bryan etCells al. and Materials Vol. 24 2012 (pages 249-265) Reactive DOI: 10.22203/eCM.v024a18oxygen species in inflammation and ISSN wound 1473-2262 healing REACTIVE OXYGEN SPECIES (ROS) – A FAMILY OF FATE DECIDING MOLECULES PIVOTAL IN CONSTRUCTIVE INFLAMMATION AND WOUND HEALING Nicholas Bryan1*, Helen Ahswin2, Neil Smart3, Yves Bayon2, Stephen Wohlert2 and John A. Hunt1 1Clinical Engineering, UKCTE, UKBioTEC, The Institute of Ageing and Chronic Disease, University of Liverpool, Duncan Building, Daulby Street, Liverpool, L69 3GA, UK 2Covidien – Sofradim Production, 116 Avenue du Formans – BP132, F-01600 Trevoux, France 3Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK Abstract Introduction Wound healing requires a fine balance between the positive The survival and longevity of any animal requires an active and deleterious effects of reactive oxygen species (ROS); vigilant set of defence mechanisms to combat infection, a group of extremely potent molecules, rate limiting in efficiently repair damaged tissue and remove debris successful tissue regeneration. A balanced ROS response associated with apoptotic/necrotic cells. Compromised will debride and disinfect a tissue and stimulate healthy tissue rapidly results in decreased mobility, organ failures, tissue turnover; suppressed ROS will result in infection hypovolaemia, hypermetabolism, and ultimately infection and an elevation in ROS will destroy otherwise healthy and sepsis. Therefore, mammals have evolved an array stromal tissue. Understanding and anticipating the ROS of physiological pathways and mechanisms that enable niche within a tissue will greatly enhance the potential to damaged tissue to return to a basal homeostatic state. In exogenously augment and manipulate healing. an ideal scenario this occurs without compromise of tissue Tissue engineering solutions to augment successful mechanics, scarring or incorporation of microbial material.
    [Show full text]
  • In Vivo Imaging of the Respiratory Burst Response to Influenza a Virus Infection
    The University of Maine DigitalCommons@UMaine Honors College Spring 5-2020 In vivo Imaging of the Respiratory Burst Response to Influenza A Virus Infection James Thomas Seuch Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Immunology of Infectious Disease Commons, and the Virus Diseases Commons This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. IN VIVO IMAGING OF THE RESPIRATORY BURST RESPONSE TO INFLUENZA A VIRUS INFECTION by James Thomas Seuch A Thesis Submitted in Partial Fulfilment of the Requirements for a Degree with Honors (Biochemistry, Molecular & Cellular Biology) The Honors College University of Maine May 2020 Advisory Committee: Benjamin King, Assistant Professor of Bioinformatics, Advisor Edward Bernard, Lecturer in Molecular & Biomedical Sciences Mimi Killinger, Rezendes Preceptor for the Arts in the Honors College Melody Neely, Associate Professor of Molecular and Biomedical Sciences Con Sullivan, Assistant Professor of Biology at University of Maine at Augusta All Rights Reserved James Seuch CC ii ABSTRACT The CDC estimated that seasonal influenza A virus (IAV) infections resulted in 490,600 hospitalizations and 34,200 deaths in the US in the 2018-2019 season. The long- term goal of our research is to understand how to improve innate immune responses to IAV. During IAV infection, neutrophils and macrophages initiate a respiratory burst response where reactive oxygen species (ROS) are generated to destroy the pathogen and recruit additional immune cells.
    [Show full text]
  • 1 Polymorphonuclear Leukocytes Consume Oxygen in Sputum From
    Thorax Online First, published on October 21, 2009 as 10.1136/thx.2009.114512 Thorax: first published as 10.1136/thx.2009.114512 on 21 October 2009. Downloaded from Polymorphonuclear leukocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis Mette Kolpen1, Christine Rønne Hansen2, Thomas Bjarnsholt1,3, Claus Moser1, Louise Dahl Christensen3, Maria van Gennip3, Oana Ciofu3, Lotte Mandsberg3, Arsalan Kharazmi1, Gerd Döring4, Michael Givskov3, Niels Høiby1,3, Peter Østrup Jensen1. 1Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark 2Copenhagen CF center, Rigshospitalet, 2100 Copenhagen, Denmark 3Institute of International Health, Immunology, and Microbiology, University of Copenhagen, 2100 Copenhagen, Denmark 4Institute of Medical Microbiology and Hygiene, University of Tübingen, D-72074 Tübingen, Germany Correspondance to: PØ Jensen, Department of Clinical Microbiology, Juliane Mariesvej 22, Rigshospitalet, 2100 Copenhagen, Denmark. E-mail address: [email protected]. Tel.: +4535457808, Fax: +4535456412. Keywords: Cystic fibrosis, neutrophil biology, bacterial infection, pneumonia. Word count excluding titlepage, abstract, references, figures and tables: 3252 http://thorax.bmj.com/ on September 30, 2021 by guest. Protected copyright. 1 Copyright Article author (or their employer) 2009. Produced by BMJ Publishing Group Ltd (& BTS) under licence. Thorax: first published as 10.1136/thx.2009.114512 on 21 October 2009. Downloaded from ABSTRACT Background: Chronic lung infection with Pseudomonas aeruginosa is the most severe complication for patients with cystic fibrosis (CF). This infection is characterized by endobronchial mucoid biofilms surrounded by numerous polymorphonuclear leukocytes (PMNs). The mucoid phenotype offers protection against the PMNs, which are in general assumed to mount an active respiratory burst leading to lung tissue deterioration.
    [Show full text]
  • Respiratory Burst Oxidase Homologs RBOHD and RBOHF As Key Modulating Components of Response in Turnip Mosaic Virus—Arabidopsis Thaliana (L.) Heyhn System
    International Journal of Molecular Sciences Article Respiratory Burst Oxidase Homologs RBOHD and RBOHF as Key Modulating Components of Response in Turnip Mosaic Virus—Arabidopsis thaliana (L.) Heyhn System Katarzyna Otulak-Kozieł 1,* , Edmund Kozieł 1,* ,Józef Julian Bujarski 2, Justyna Frankowska-Łukawska 1 and Miguel Angel Torres 3,4 1 Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland; [email protected] 2 Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; [email protected] 3 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)— Instituto Nacional de Investigacióny Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain; [email protected] 4 Departamento deBiotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040 Madrid, Spain * Correspondence: [email protected] (K.O.-K.); [email protected] (E.K.) Received: 24 September 2020; Accepted: 10 November 2020; Published: 12 November 2020 Abstract: Turnip mosaic virus (TuMV) is one of the most important plant viruses worldwide. It has a very wide host range infecting at least 318 species in over 43 families, such as Brassicaceae, Fabaceae, Asteraceae, or Chenopodiaceae from dicotyledons. Plant NADPH oxidases, the respiratory burst oxidase homologues (RBOHs), are a major source of reactive oxygen species (ROS) during plant–microbe interactions. The functions of RBOHs in different plant–pathogen interactions have been analyzed using knockout mutants, but little focus has been given to plant–virus responses. Therefore, in this work we tested the response after mechanical inoculation with TuMV in Arabidopsis rbohD and rbohF transposon knockout mutants and analyzed ultrastructural changes after TuMV inoculation.
    [Show full text]
  • 1. Introduction to Immunology Professor Charles Bangham ([email protected])
    MCD Immunology Alexandra Burke-Smith 1. Introduction to Immunology Professor Charles Bangham ([email protected]) 1. Explain the importance of immunology for human health. The immune system What happens when it goes wrong? persistent or fatal infections allergy autoimmune disease transplant rejection What is it for? To identify and eliminate harmful “non-self” microorganisms and harmful substances such as toxins, by distinguishing ‘self’ from ‘non-self’ proteins or by identifying ‘danger’ signals (e.g. from inflammation) The immune system has to strike a balance between clearing the pathogen and causing accidental damage to the host (immunopathology). Basic Principles The innate immune system works rapidly (within minutes) and has broad specificity The adaptive immune system takes longer (days) and has exisite specificity Generation Times and Evolution Bacteria- minutes Viruses- hours Host- years The pathogen replicates and hence evolves millions of times faster than the host, therefore the host relies on a flexible and rapid immune response Out most polymorphic (variable) genes, such as HLA and KIR, are those that control the immune system, and these have been selected for by infectious diseases 2. Outline the basic principles of immune responses and the timescales in which they occur. IFN: Interferon (innate immunity) NK: Natural Killer cells (innate immunity) CTL: Cytotoxic T lymphocytes (acquired immunity) 1 MCD Immunology Alexandra Burke-Smith Innate Immunity Acquired immunity Depends of pre-formed cells and molecules Depends on clonal selection, i.e. growth of T/B cells, release of antibodies selected for antigen specifity Fast (starts in mins/hrs) Slow (starts in days) Limited specifity- pathogen associated, i.e.
    [Show full text]
  • 2846.Full.Pdf
    Augmentation of the Neutrophil Respiratory Burst Through the Action of Advanced Glycation End Products A Potential Contributor to Vascular Oxidant Stress Richard K.M. Wong,1 Andrew I. Pettit,2 Joan E. Davies,1 and Leong L. Ng1 An accelerated accumulation of advanced glycation end patients with diabetes, in whom they have been implicated products (AGEs) occurs in diabetes secondary to the as mediators of a spectrum of pathologies (1,2). This may increased glycemic burden. In this study, we investi- relate to their ability to covalently cross-link proteins (3) gated the contribution of AGEs to intravascular oxidant causing structural changes to tissues, but there has also stress by examining their action on the neutrophil burst been realization that AGEs are able to effect a host of of reactive oxygen species (ROS); this may be a signif- direct cellular responses through interaction with cellular icant donor to the overall vascular redox status and to vasculopathy. AGEs exerted a dose-dependent enhance- receptors recognizing AGE ligands, of which the receptor ment on the neutrophil respiratory burst in response to for AGE (RAGE) is the most well characterized (2). -Induced responses may include cytokine induction, adhe ؍ a secondary mechanical stimulus (up to 265 ؎ 42%, P 0.022) or chemical stimulation with formyl-methyl- sion molecule expression, smooth muscle and fibroblast ,leucylphenylalanine 100 nmol/l (up to 218 ؎ 19%, P < proliferation, and chemoattraction of inflammatory cells 0.001), although they possessed no ability to augment which may influence vascular tissue remodeling (1,2). the neutrophil respiratory burst alone. This phenome- Another key to the progression of much AGE-related non was both immediate and reversible and depended on the simultaneous presence of AGEs with the addi- pathology may be via induction of oxidative stress, reflect- tional stimulus.
    [Show full text]
  • Ch33 WO Pt1.Pdf
    33 Innate Host Resistance 1 33.1 Innate Resistance Overview 1. Identify the major components of the mammalian host immune system 2. Integrate the major immune components and their functions to explain in general terms how the immune system protects the host 2 Host Resistance Overview • Most pathogens (disease causing microbes) – must overcome surface barriers and reach underlying – overcome resistance by host • nonspecific resistance • specific immune response 3 Host Resistance Overview… • Immune system – composed of widely distributed cells, tissues, and organs – recognizes foreign substances or microbes and acts to neutralize or destroy them • Immunity – ability of host to resist a particular disease or infection • Immunology – science concerned with immune responses 4 Immunity • Nonspecific immune response – Aka nonspecific resistance, innate, or natural immunity – acts as a first line of defense – offers resistance to any microbe or foreign material – lacks immunological memory • Specific immune response – Aka acquired, adaptive, or specific immunity – resistance to a particular foreign agent – has “memory” • effectiveness increases on repeated exposure to agent 5 6 Antigens • Recognized as foreign • Invoke immune responses – presence of antigen in body ultimately results in B cell activation production of antibodies • antibodies bind to specific antigens, inactivating or eliminating them • other immune cells also become activated • Name comes from antibody generators 7 White Blood Cells of Innate and Adaptive Immunity • White blood
    [Show full text]
  • Oxidative Stress, Proton Fluxes, and Chloroquine/Hydroxychloroquine Treatment for COVID-19
    antioxidants Review Oxidative Stress, Proton Fluxes, and Chloroquine/Hydroxychloroquine Treatment for COVID-19 Christina B. Klouda and William L. Stone * Department of Pediatrics, East Tennessee State University, Johnson City, TN 37614, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-423-439-8762 Received: 20 August 2020; Accepted: 16 September 2020; Published: 21 September 2020 Abstract: Chloroquine (CQ) and hydroxychloroquine (HCQ) have been proposed as treatments for COVID-19. These drugs have been studied for many decades, primarily in the context of their use as antimalarials, where they induce oxidative stress-killing of the malarial parasite. Less appreciated, however, is evidence showing that CQ/HCQ causes systemic oxidative stress. In vitro and observational data suggest that CQ/HCQ can be repurposed as potential antiviral medications. This review focuses on the potential health concerns of CQ/HCQ induced by oxidative stress, particularly in the hyperinflammatory stage of COVID-19 disease. The pathophysiological role of oxidative stress in acute respiratory distress syndrome (ARDS) has been well-documented. Additional oxidative stress caused by CQ/HCQ during ARDS could be problematic. In vitro data showing that CQ forms a complex with free-heme that promotes lipid peroxidation of phospholipid bilayers are also relevant to COVID-19. Free-heme induced oxidative stress is implicated as a systemic activator of coagulation, which is increasingly recognized as a contributor to COVID-19 morbidity. This review will also provide a brief overview of CQ/HCQ pharmacology with an emphasis on how these drugs alter proton fluxes in subcellular organelles. CQ/HCQ-induced alterations in proton fluxes influence the type and chemical reactivity of reactive oxygen species (ROS).
    [Show full text]
  • Characterisation of an Oxidative Response Inhibitor Produced by Streptococcus Pneumoniae Thorax: First Published As 10.1136/Thx.49.7.676 on 1 July 1994
    676 Thorax 1994;49:676-683 Characterisation of an oxidative response inhibitor produced by Streptococcus pneumoniae Thorax: first published as 10.1136/thx.49.7.676 on 1 July 1994. Downloaded from F E Perry, C J Elson, T J Mitchell, P W Andrew, J R Catterall Abstract hospital' with an overall mortality of 5_13%,2 Background - Pneumonia caused by whilst meningitis caused by Str pneumoniae infection with Streptococcus pneumo- carries a mortality of 30%.' Furthermore, the niae is still a major clinical problem. worldwide increase in penicillin resistance and Reactive oxygen species contribute to the multiple antibiotic resistance among pneumo- killing of these bacteria by polymorpho- cocci,7 and the limited use of pneumococcal nuclear leucocytes (PMNs). Defence vaccine,8 suggest that pneumococcal infection mechanisms of Str pneumoniae which may cause increasing morbidity and mortality counter reactive oxygen species are char- in future years. acterised. In the host's defence against Str pneumoniae Methods - PMNs were stimulated with killing by phagocytes has a key role.9'0 The phorbol myristate acetate (PMA) in the mechanism of killing is incompletely under- presence and absence of Str pneumoniae stood, but there is evidence that, as with the and supernatants from them, and super- killing of many other microorganisms,"-"3 the oxide (02 ) production was measured by release of oxygen species by phagocytes is the reduction of ferricytochrome c. important. For example, Str pneumoniae is Results - Streptococcus pneumoniae, but killed by reactive oxygen species;'415 poly- not Klebsiella pneumoniae or Staphylo- morphonuclear leucocytes (PMNs) incubated coccus aureus, inhibited PMA stimulated anaerobically have a diminished capacity to kill superoxide production by PMNs.
    [Show full text]
  • Respiratory Burst and TNF-Α Receptor Expression of Neutrophils After Sepsis and Severe Injury-Induced Inflammation in Children
    International Journal of Environmental Research and Public Health Article Respiratory Burst and TNF-α Receptor Expression of Neutrophils after Sepsis and Severe Injury-Induced Inflammation in Children Janusz P. Sikora 1,*, Jarosław Sobczak 1,2, Dariusz Zawadzki 1, Przemysław Przewratil 3, Anna Wysocka 3 and Monika Burzy ´nska 4 1 Department of Pediatric Emergency Medicine, 2nd Chair of Pediatrics, Central Clinical Hospital, Medical University of Łód´z,36/50 Sporna St., 91-738 Łód´z,Poland; [email protected] (J.S.); [email protected] (D.Z.) 2 Department of Management and Logistics in Healthcare, Medical University of Łód´z,6 Lindleya St., 90-131 Łód´z,Poland 3 Department of Pediatric Surgery and Oncology, Chair of Surgical Pediatrics, Central Clinical Hospital, Medical University of Łód´z,36/50 Sporna St., 91-738 Łód´z,Poland; [email protected] (P.P.); [email protected] (A.W.) 4 Department of Epidemiology and Biostatistics, Chair of Social and Preventive Medicine, Medical University of Łód´z,7/9 Zeligowskiego˙ St., 90-752 Łód´z,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-698861043 Citation: Sikora, J.P.; Sobczak, J.; Zawadzki, D.; Przewratil, P.; Abstract: Systemic inflammatory response syndrome (SIRS) is defined as the systemic host response Wysocka, A.; Burzy´nska,M. to infection or a non-infectious factor. The purpose of this study was to evaluate the involvement of Respiratory Burst and TNF-α reactive oxygen species (ROS) in severe inflammation and to assess the discrimination strength of the Receptor Expression of Neutrophils neutrophil BURSTTEST assay regarding its etiology in three groups of patients (sepsis, burns, and after Sepsis and Severe bone fractures) who met the SIRS criteria.
    [Show full text]
  • Stimulation of the Innate Immune System of Carp: Role of Toll-Like Receptors
    Stimulation of the innate immune system of carp: role of Toll-like receptors Danilo Pietretti Thesis committee Promotors Prof. Dr. ir. Geert F. Wiegertjes Personal chair at the Cell Biology and Immunology Group Prof. Dr. ir. Huub F. J. Savelkoul Professor of Cell Biology and Immunology Co-promotor Dr. Maria Forlenza Assistent Professor of Cell Biology and Immunology Group Other members Prof. Dr. Jerry M. Wells, Wageningen University, The Netherlands Prof. Dr. Victoriano Mulero, University of Murcia, Spain Prof. Dr. Giuseppe Scapigliati, Tuscia University, Italy Prof. Dr. Herman P. Spaink, Leiden University, The Netherlands This research was conducted under the auspices of the Graduate School of the Wageningen Institute of Animal Sciences. Stimulation of the innate immune system of carp: role of Toll-like receptors Danilo Pietretti Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr. M. J. Kropff, in the presence of the Academic Board to be defended in public in the Aula on Wednesday 18 December 2013 at 1:30 p.m. in the Aula. Danilo Pietretti Stimulation of the innate immune system of carp: role of Toll-like receptors, 216 pages PhD thesis, Wageningen University, Wageningen, NL (2013) With references, with summaries in English and Dutch ISBN 978-94-6173-787-8 Alla mia Famiglia Babbo, Mamma and Alessia To Branislava Contents Chapter 1 General Introduction 9 Chapter 2 Comparative study of β-glucan induced respi-ratory burst measured by nitroblue
    [Show full text]
  • The Significance of the Patient Innate Immune Oxidative Burst for Drug
    The Significance of the Patient Innate Immune Oxidative Burst for Drug Delivery Vectors and Biomaterials (Implanted Medical Devices) Koerselman M.# Eleoterio R.* Hunt JA Musculoskeletal Biology, Institute of Ageing and Chronic Disease, The William Henry Duncan Building, West Derby Street, University of Liverpool, Liverpool, L7 8TX, U.K. #University of Twente, Developmental Bioengineering, MIRA, The Netherlands *Veterinary Department, Federal University of Viçosa, University of São Paulo, Brazil Introduction An enormous variety of biomaterials are used within the field of tissue engineering and regenerative medicine (TERM) and then further as vectors in degradable controlled drug delivery Biomaterials are tested for biocompatibility and degradation, but causing reactive oxygen species systems (DDS). Their interaction with the immune defence mechanism of the patient is important (ROS) to be formed is often overlooked; but this may be important for the efficacy of the biomaterial. for the performance of the device. After implantation leukocytes will infiltrate the graft, initiated by ROS are short‐lived but very active cytotoxic chemical species; they consist of both molecules that acute inflammation and reactive oxygen species (ROS) are formed. When a graft induces a high contain unstable oxygen or radicals. There are different ways for ROS to be formed in the human degree of cell activation and ROS formation is triggered, this may lead to an accelerated body, among them the respiratory burst of inflammatory cells such as PMNs and monocytes to kill degradation rate of the material. With biocompatibility testing only, it is still hard to predict the microbes. There are various cell types that can produce ROS but phagocytes are the main type, like exact immune reaction when implanted, since a reaction is patient specific.
    [Show full text]