Reactive Oxygen Species (ROS)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wound Bed Preparation: TIME in Practice
Clinical PRACTICE DEVELOPMENT Wound bed preparation: TIME in practice Wound bed preparation is now a well established concept and the TIME framework has been developed as a practical tool to assist practitioners when assessing and managing patients with wounds. It is important, however, to remember to assess the whole patient; the wound bed preparation ‘care cycle’ promotes the treatment of the ‘whole’ patient and not just the ‘hole’ in the patient. This paper discusses the implementation of the wound bed preparation care cycle and the TIME framework, with a detailed focus on Tissue, Infection, Moisture and wound Edge (TIME). Caroline Dowsett, Heather Newton dependent on one another. Acute et al, 2003). Wound bed preparation wounds usually follow a well-defined as a concept allows the clinician to KEY WORDS process described as: focus systematically on all of the critical Wound bed preparation 8Coagulation components of a non-healing wound to Tissue 8Inflammation identify the cause of the problem, and Infection 8Cell proliferation and repair of implement a care programme so as to Moisture the matrix achieve a stable wound that has healthy 8Epithelialisation and remodelling of granulation tissue and a well vascularised Edge scar tissue. wound bed. In the past this model of healing has The TIME framework been applied to chronic wounds, but To assist with implementing the he concept of wound bed it is now known that chronic wound concept of wound bed preparation, the preparation has gained healing is different from acute wound TIME acronym was developed in 2002 T international recognition healing. Chronic wounds become ‘stuck’ by a group of wound care experts, as a framework that can provide in the inflammatory and proliferative as a practical guide for use when a structured approach to wound stages of healing (Ennis and Menses, managing patients with wounds (Schultz management. -
Understand Your Chronic Wound
Patient Information Leaflet Understanding your Chronic Wound Dressings, management and wound infection In this leaflet Health Care Professional (HCP) refers to any member of the team involved in your wound care. This can include treatment room or practice nurse, community, ward or clinic nurse, GP or hospital doctor, podiatrist etc. Chronic Wounds and Dressings What is a Chronic wound? A wound with slow progress towards healing or shows delayed healing. This may be due to underlying issues such as: • Poor blood flow and less oxygen getting to the wound • Other health conditions • Poor diet, smoking, pressure on the wound e.g. footwear/seating. Can my wound be left open to the air? No, the evidence shows that wounds heal better when the surface is kept moist (not too wet or dry). The moisture provides the correct environment to aid your wound to heal. Does my dressing need changed daily? Not usually, your HCP will explain how often it needs changed. This will depend on the level of fluid leaking from your wound. Some dressings can be left in place up to a week. Most wounds have a slight odour, but if a wound smells bad it could be a sign that something is wrong. See section on wound infection. Your dressing may indicate that it needs changed when the dark area in the centre gets close to the edge of the dressing pad. The dark area is fluid from your wound, this is normal. It will be dry to touch. Let your HCP know if your dressing needs changed before your next visit or appointment is due. -
Guideline: Wound Bed Preparation for Healable and Non Healable Wounds
British Columbia Provincial Nursing Skin and Wound Committee Guideline: Wound Bed Preparation for Healable and Non Healable Wounds Developed by the BC Provincial Nursing Skin and Wound Committee in collaboration with Wound Clinicians from: / TITLE Guideline: Wound Bed Preparation for Healable and Non-Healable Wounds in Adults & Children1 Practice Level Nurses in accordance with health authority and agency policy. Conservative sharp wound debridement (CSWD) is a restricted activity according to the Nurse’s (Registered) and Nurse Practitioner Regulation. 2 CRNBC states that registered nurses must successfully complete additional education and follow an established guideline when carrying out CSWD. Biological debridement therapy is a restricted activity according to the Nurse’s (Registered) and Nurse Practitioner Regulation. 3 CRNBC states that registered nurses must follow an established guideline when carrying out biological debridement. Clients 4 with wounds needing wound bed preparation require an interprofessional approach to provide comprehensive, evidence-based assessment and treatment. This clinical practice guideline focuses solely on the role of the nurse, as one member of the interprofessional team providing care to these clients. Background Factors affecting wound healability include the presence of adequate circulation in the area of the wound, wound related factors such as the size and duration of the wound, the ability to treat the cause of the wound and the presence of risk factors impacting wound healing. While many wounds heal, others are determined to be non-healing or slow-to-heal based on the presence or absence of these factors. Wound healability must be determined prior to debridement and moist wound healing. Although wound healing normally occurs in a predictable fashion, wound healing trajectories can be heterogeneous and non- uniform resulting is delayed wound healing for some clients. -
The Role of Antioxidants on Wound Healing: a Review of the Current Evidence
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 July 2021 doi:10.20944/preprints202107.0361.v1 Review THE ROLE OF ANTIOXIDANTS ON WOUND HEALING: A REVIEW OF THE CURRENT EVIDENCE. Inés María Comino-Sanz 1*, María Dolores López-Franco1, Begoña Castro2, Pedro Luis Pancorbo-Hidalgo1 1 Department of Nursing, Faculty of Health Sciences, University of Jaén, 23071 Jaén (Spain); [email protected] (IMCS); MDLP ([email protected]); PLPH ([email protected]). 2 Histocell S.L., Bizkaia Science and Technology Park, Derio, Bizkaia (Spain); [email protected] * Correspondence: [email protected]; Tel.: +34-953213627 Abstract: (1) Background: Reactive oxygen species (ROS) play a crucial role in the preparation of the normal wound healing response. Therefore, a correct balance between low or high levels of ROS is essential. Antioxidant dressings that regulate this balance is a target for new therapies. The pur- pose of this review is to identify the compounds with antioxidant properties that have been tested for wound healing and to summarize the available evidence on their effects. (2) Methods: A litera- ture search was conducted and included any study that evaluated the effects or mechanisms of an- tioxidants in the healing process (in vitro, animal models, or human studies). (3) Results: Seven compounds with antioxidant activity were identified (Curcumin, N-acetyl cysteine, Chitosan, Gallic Acid, Edaravone, Crocin, Safranal, and Quercetin) and 46 studies reporting the effects on the healing process of these antioxidants compounds were included. (4) Conclusions: These results highlight that numerous novel investigations are being conducted to develop more efficient systems for wound healing activity. The application of antioxidants is useful against oxidative damage and ac- celerates wound healing. -
Venous Ulcer Assessment and Management: Using the Updated CEAP Classification System
Practice Points Venous Ulcer Assessment and Management: Using the Updated CEAP Classification System Cathy Thomas Hess, BSN, RN, CWCN ylastcolumn,Classification of Pressure Injuries, Although most leg ulcers are venous ulcers, the clini- discussed the importance of documenting the cian should suspect other causes when the wound looks details of pressure injuries using the updated atypical (presence of necrotic tissue, exposed tendon, M pressure injury classification system. This livedo reticularis on surrounding skin, or a deep, column discusses the updated classification system for “punched-out” ulcer), has been present for longer than venous ulcers, namely, the Clinical Etiology Anatomy 6 months, or has not responded to good care. Do not Pathophysiology (CEAP) classification system. To under- hesitate to take a biopsy when in doubt. stand the use of this classification, let’sbrieflydiscussthe Visual and palpable assessment may not be enough etiology, assessment, and management of venous ulcers. to determine the next steps. Objective testing may be needed to confirm the diagnosis, determine the etiology ETIOLOGY of the problem, and identify the anatomic site and sever- Venous ulcers are believed to account for approximately ity of disease pathway (Table). 70% to 90% of chronic leg ulcers.1 The incidence of ve- nous ulceration increases with age, and women are three times more likely than men to develop venous leg ulcers.2 Table. CLINICAL FINDINGS ASSOCIATED WITH VENOUS In some studies, 50% of patients had venous ulcers that LEG ULCERS persisted for more than 9 months, and 20% had ulcers Wound location 30%–40% occur superior to the medial malleolus (near the that did not heal for more than 2 years. -
In Vivo Imaging of the Respiratory Burst Response to Influenza a Virus Infection
The University of Maine DigitalCommons@UMaine Honors College Spring 5-2020 In vivo Imaging of the Respiratory Burst Response to Influenza A Virus Infection James Thomas Seuch Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Immunology of Infectious Disease Commons, and the Virus Diseases Commons This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. IN VIVO IMAGING OF THE RESPIRATORY BURST RESPONSE TO INFLUENZA A VIRUS INFECTION by James Thomas Seuch A Thesis Submitted in Partial Fulfilment of the Requirements for a Degree with Honors (Biochemistry, Molecular & Cellular Biology) The Honors College University of Maine May 2020 Advisory Committee: Benjamin King, Assistant Professor of Bioinformatics, Advisor Edward Bernard, Lecturer in Molecular & Biomedical Sciences Mimi Killinger, Rezendes Preceptor for the Arts in the Honors College Melody Neely, Associate Professor of Molecular and Biomedical Sciences Con Sullivan, Assistant Professor of Biology at University of Maine at Augusta All Rights Reserved James Seuch CC ii ABSTRACT The CDC estimated that seasonal influenza A virus (IAV) infections resulted in 490,600 hospitalizations and 34,200 deaths in the US in the 2018-2019 season. The long- term goal of our research is to understand how to improve innate immune responses to IAV. During IAV infection, neutrophils and macrophages initiate a respiratory burst response where reactive oxygen species (ROS) are generated to destroy the pathogen and recruit additional immune cells. -
Products & Technology Wound Inflammation and the Role of A
Products & technology Wound inflammation and the role of a multifunctional polymeric dressing Temporary inflammation is a normal response in acute wound healing. However, in chronic wounds, the inflammatory phase is dysfunctional in nature. This results in delayed healing, and causes further problems such as increased pain, odour and Intro high levels of exudate production. It is important to choose a dressing that addresses all of these factors while meeting the patient’s needs. Multifunctional polymeric Authors: Keith F Cutting membrane dressings (e.g. PolyMem®, Ferris) can help to simplify this choice and Authors: Peter Vowden assist healthcare professionals in chronic wound care. The unique actions of xxxxx Cornelia Wiegand PolyMem® have been proven to reduce and prevent inflammation, swelling, bruising and pain to promote rapid healing, working in the deep tissues beneath the skin[1,2]. he mechanism of acute wound healing — the vascular and cellular stages. During is a well-described complex cellular vascular response, immediately on injury there is T interaction[3] that can be divided into an initial transient vasoconstriction that can be several integrated processes: haemostasis, measured in seconds. This is promptly followed inflammation, proliferation, epithelialisation by vasodilation under the influence of histamine and tissue remodeling. Inflammation is a key and nitric oxide (NO) that cause an inflow of blood. component of acute wound healing, clearing An increase in vascular permeability promotes damaged extracellular matrix, cells and debris leakage of serous fluid (protein-rich exudate) into from zones of tissue damage. This is normally a the extravascular compartment, which in turn time-limited orchestrated process. Successful increases the concentration of cells and clotting progression of the inflammatory phase allows factors. -
1 Polymorphonuclear Leukocytes Consume Oxygen in Sputum From
Thorax Online First, published on October 21, 2009 as 10.1136/thx.2009.114512 Thorax: first published as 10.1136/thx.2009.114512 on 21 October 2009. Downloaded from Polymorphonuclear leukocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis Mette Kolpen1, Christine Rønne Hansen2, Thomas Bjarnsholt1,3, Claus Moser1, Louise Dahl Christensen3, Maria van Gennip3, Oana Ciofu3, Lotte Mandsberg3, Arsalan Kharazmi1, Gerd Döring4, Michael Givskov3, Niels Høiby1,3, Peter Østrup Jensen1. 1Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark 2Copenhagen CF center, Rigshospitalet, 2100 Copenhagen, Denmark 3Institute of International Health, Immunology, and Microbiology, University of Copenhagen, 2100 Copenhagen, Denmark 4Institute of Medical Microbiology and Hygiene, University of Tübingen, D-72074 Tübingen, Germany Correspondance to: PØ Jensen, Department of Clinical Microbiology, Juliane Mariesvej 22, Rigshospitalet, 2100 Copenhagen, Denmark. E-mail address: [email protected]. Tel.: +4535457808, Fax: +4535456412. Keywords: Cystic fibrosis, neutrophil biology, bacterial infection, pneumonia. Word count excluding titlepage, abstract, references, figures and tables: 3252 http://thorax.bmj.com/ on September 30, 2021 by guest. Protected copyright. 1 Copyright Article author (or their employer) 2009. Produced by BMJ Publishing Group Ltd (& BTS) under licence. Thorax: first published as 10.1136/thx.2009.114512 on 21 October 2009. Downloaded from ABSTRACT Background: Chronic lung infection with Pseudomonas aeruginosa is the most severe complication for patients with cystic fibrosis (CF). This infection is characterized by endobronchial mucoid biofilms surrounded by numerous polymorphonuclear leukocytes (PMNs). The mucoid phenotype offers protection against the PMNs, which are in general assumed to mount an active respiratory burst leading to lung tissue deterioration. -
Peripheral Arterial Occlusive Disease
Peripheral Arterial Occlusive Disease - ACOI Chicago Hospitalist Meeting Davin Haraway DO,FACOI,FACCWS,RPhS Diplomate – American Board of Venous and Lymphatic Medicine Arterial Issues – Lower extremity encountered by Hospitalists • Acute arterial occlusion • More commonly however • Chronic peripheral vascular disease and manifestations • Ulcers toes, heels,ankles, legs, • Infected ulcers • Cellulitis • Diabetic foot ulcers • Claudication • Edema • Calciphylaxis • Non healing surgical wounds including , BKA,AKA,foot and ankle procedures, • Differentiating from Gout and Charcot Foot Atheroma Prevalence • Dx of PAD ranges from 1–22%, depending on population, risk factors, diagnostic tests • Asymptomatic PAD up to 6 times more common than symptomatic PAD • 8.4 million Americans >40 years old have PAD • High overlap of PAD with CAD and CVD • Prevalence of PAD in persons >70 years 5 times greater than in persons <40 years • Claudication 3-4 times more common in diabetics and 3 times more common in smokers Peripheral Arterial Disease and Intermittent Claudication • Peripheral Arterial Disease (PAD) A disorder caused by atherosclerosis that limits blood flow to the limbs. • Intermittent Claudication (IC) A symptom of PAD characterized by pain, aching, or fatigue in working skeletal muscles. IC arises when there is insufficient blood flow to meet the metabolic demands in leg muscles of ambulating patients. Pathophysiology of Intermittent Claudication • Intermittent claudication is associated with – Metabolic abnormalities stemming from reduced 1 blood flow and O2 delivery – Significant reduction (50%) in muscle fibers compared with controls2 – Smaller type I and II muscle fibers with greater arterial ischemia2 – Hyperplastic mitochondria and demyelination of nerve fibers3 1 Lundgren et al Am J Physiol. 1988;255:H1156-64. -
Wound Bed Preparation in Practice
POSITION DOCUMENT Wound bed preparation in practice Wound bed preparation: science applied to practice Wound bed preparation for diabetic foot ulcers Wound bed preparation for venous leg ulcers MANAGING EDITOR Suzie Calne SENIOR EDITORIAL ADVISOR Christine Moffatt Professor and Co-director, Centre for Research and Implementation of Clinical Practice, Wolfson Institute of Health Sciences, Thames Valley University, London, UK CONSULTANT EDITOR Madeleine Flanagan Principal Lecturer, Department of Continuing Professional Development, Faculty of Health and Human Sciences, University of Hertfordshire, UK EDITORIAL ADVISORS Vincent Falanga Professor of Dermatology and Biochemistry, Boston University; Chairman and Training Program Director, Roger Williams Medical Centre, Providence, Rhode Island, USA Marco Romanelli Consultant Dermatologist, Department of Dermatology, University of Pisa, Italy J Javier Soldevilla Ágreda Professor of Geriatric Care, EUE University of La Rioja, Logroño, Spain Supported by an educational Luc Téot grant from Smith & Nephew. Assistant Professor of Surgery, University Hospital, Montpellier, France Peter Vowden Consultant in General Surgery, Department of Vascular Surgery, Bradford Royal Infirmary, UK Ulrich E Ziegler The views expressed in this Senior Consultant and Plastic Surgeon, Department of Plastic and Hand Surgery, University of publication are those of the Wuerzburg, Germany authors and do not necessarily reflect those of Smith & Nephew. EDITORIAL PROJECT MANAGER Kathy Day SUB-EDITOR Ann Shuttleworth DESIGNER -
Chronic Venous Ulcers: a Comparative Effectiveness Review of Treatment Modalities Comparative Effectiveness Review Number 127
Comparative Effectiveness Review Number 127 Chronic Venous Ulcers: A Comparative Effectiveness Review of Treatment Modalities Comparative Effectiveness Review Number 127 Chronic Venous Ulcers: A Comparative Effectiveness Review of Treatment Modalities Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. 290-2007-10061-I Prepared by: Johns Hopkins University Evidence-based Practice Center Baltimore, MD Investigators Jonathan Zenilman, M.D. M. Frances Valle, D.N.P., M.S. Mahmoud B. Malas, M.D., M.H.S. Nisa Maruthur, M.D., M.H.S. Umair Qazi, M.P.H. Yong Suh, M.B.A., M.Sc. Lisa M. Wilson, Sc.M. Elisabeth B. Haberl, B.A. Eric B. Bass, M.D., M.P.H. Gerald Lazarus, M.D. AHRQ Publication No. 13(14)-EHC121-EF December 2013 Erratum January 2014 This report is based on research conducted by the Johns Hopkins University Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-2007-10061-I). The findings and conclusions in this document are those of the author(s), who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. -
Respiratory Burst Oxidase Homologs RBOHD and RBOHF As Key Modulating Components of Response in Turnip Mosaic Virus—Arabidopsis Thaliana (L.) Heyhn System
International Journal of Molecular Sciences Article Respiratory Burst Oxidase Homologs RBOHD and RBOHF as Key Modulating Components of Response in Turnip Mosaic Virus—Arabidopsis thaliana (L.) Heyhn System Katarzyna Otulak-Kozieł 1,* , Edmund Kozieł 1,* ,Józef Julian Bujarski 2, Justyna Frankowska-Łukawska 1 and Miguel Angel Torres 3,4 1 Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland; [email protected] 2 Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; [email protected] 3 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)— Instituto Nacional de Investigacióny Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain; [email protected] 4 Departamento deBiotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040 Madrid, Spain * Correspondence: [email protected] (K.O.-K.); [email protected] (E.K.) Received: 24 September 2020; Accepted: 10 November 2020; Published: 12 November 2020 Abstract: Turnip mosaic virus (TuMV) is one of the most important plant viruses worldwide. It has a very wide host range infecting at least 318 species in over 43 families, such as Brassicaceae, Fabaceae, Asteraceae, or Chenopodiaceae from dicotyledons. Plant NADPH oxidases, the respiratory burst oxidase homologues (RBOHs), are a major source of reactive oxygen species (ROS) during plant–microbe interactions. The functions of RBOHs in different plant–pathogen interactions have been analyzed using knockout mutants, but little focus has been given to plant–virus responses. Therefore, in this work we tested the response after mechanical inoculation with TuMV in Arabidopsis rbohD and rbohF transposon knockout mutants and analyzed ultrastructural changes after TuMV inoculation.