Graphs and Combinatorics (2008) 24:291–301 Digital Object Identifier (DOI) 10.1007/s00373-008-0795-7 Graphs and Combinatorics © Springer-Verlag 2008 Hadwiger Number and the Cartesian Product of Graphs L. Sunil Chandran1, Alexandr Kostochka2,3 , J.KrishnamRaju4 1 Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012. e-mail:
[email protected],
[email protected] 2 University of Illinois at Urbana-Champaign, IL 61801, USA. 3 Institute of Mathematics, Novosibirsk 630090, Russia. e-mail:
[email protected] 4 David R. Cheriton School of Computer Science, University of Waterloo. e-mail:
[email protected] Abstract. The Hadwiger number η(G) of a graph G is the largest integer n for which the complete graph Kn on n vertices is a minor of G. Hadwiger conjectured that for every graph G, η(G) ≥ χ(G),whereχ(G) is the chromatic number of G.Inthispaper,westudythe Hadwiger number of the Cartesian product G 2 H of graphs. √ As the main result of this paper, we prove that η(G1 2 G2) ≥ h l (1 − o(1)) for any two graphs G1 and G2 with η(G1) = h and η(G2) = l. We show that the above lower bound is asymptotically best possible when h ≥ l. This asymptotically settles a question of Z. Miller (1978). As consequences of our main result, we show the following: 1. Let G be a connected graph. Let G = G 2 G 2 ... 2 G be the (unique) prime factor- 1 2 k ization of G.ThenG satisfies Hadwiger’s conjecture if k ≥ 2 log log χ(G) + c ,wherec is a constant.