Matching Theory-A Sampler: from D&Es Kgnig to The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Vertex Independence Number of Uniform Hypergraphs
Acta Univ. Sapientiae, Informatica, 6, 1 (2014) 132{158 On vertex independence number of uniform hypergraphs Tariq A. CHISHTI Guofei ZHOU University of Kashmir Nanjing University Department of Mathematics Department of Mathematics Srinagar, India Nanjing, China email: [email protected] email: [email protected] Shariefuddin PIRZADA Antal IVANYI´ University of Kashmir E¨otv¨osLor´andUniversity Department of Mathematics Faculty of Informatics Srinagar, India Budapest, Hungary email: email: [email protected] [email protected] Abstract. Let H be an r-uniform hypergraph with r ≥ 2 and let α(H) be its vertex independence number. In the paper bounds of α(H) are given for different uniform hypergraphs: if H has no isolated vertex, then in terms of the degrees, and for triangle-free linear H in terms of the order and average degree. 1 Introduction to independence in graphs Let n be a positive integer. A graph G on vertex set V = fv1; v2; : : : ; vng is a pair (V; E), where the edge set E is a subset of V × V. n is the order of G and jEj is the size of G. Computing Classification System 1998: G.2.2 Mathematics Subject Classification 2010: 05C30, 05C50 Key words and phrases: uniform hypergraph, independence number, lower bound DOI:10.2478/ausi-2014-0022 132 On vertex independence number of uniform hypergraphs 133 Let v 2 V and N(v) be the neighborhood of v, namely, the set of vertices x so that there is an edge which contains both v and x. Let U be a subset of V, then the subgraph of G induced by U is defined as a graph on vertex set U and edge set EU = f(u; v)ju 2 u and v 2 Ug. -
Qualitative Reasoning for Spatial Matching 1 [email protected] Qualitative Reasoning for Spatial Matching
Qualitative Reasoning for Spatial Matching 1 [email protected] Qualitative Reasoning for Spatial Matching Diedrich Wolter Universit¨atBremen, Transregional Collaborative Research Center SFB/TR 8 Spatial Cognition Abstract. Matching two representations against one another is central to many applications, e.g., matching observation against models in ob- ject or scene recognition or matching a local perception against a global map in self-localization if a mobile robot. In both examples, spatial infor- mation structures are associated, i.e., the representation includes spatial arrangement information of individual parts, either in a relative or an absolute frame of reference. In this paper the utility of qualitative configuration information for matching is investigated. Qualitative configuration information expresses relative arrangement information. It is argued that such information is helpful for making side conditions of plausible matchings explicit, which can improve matching efficiency as well as quality of the matching. Keywords. Matching, Qualitative Spatial Information 1 Introduction Many applications involve the task of matching two representations against one another. For example scene recognition involves identifying a set of spatially distributed objects. Many objects bear rich information which can be exploited the recognition task, but it is information about the spatial arrangement of the involved objects that allows for important distinctions. Consider you are observing a scene that contains dishes, glasses, and sets of cutlery. These objects, when nicely arranged on a table, gives rise to the hypothesis that you are about to enjoy a nice meal, whereas piled up dishes, glasses, and clutter of cutlery suggests dish washing to be your destiny. This article investigates into matching tasks which are involved with match- ing spatially embedded representations, i.e. -
Graph Construction Using the Dk-Series Framework
UNIVERSITY OF CALIFORNIA, IRVINE Graph Construction using the dK-Series Framework DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Networked Systems by Balint Tillman Dissertation Committee: Professor and Chancellor's Fellow Athina Markopoulou, Chair Chancellor's Professor David Eppstein Professor Carter T. Butts 2019 Portion of Chapter 2 and Chapter 3 c 2019 IEEE All other materials c 2019 Balint Tillman DEDICATION To my friends and family who were there to support me through this work and helped me to overcome obstacles along the way. ii TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES ix LIST OF ALGORITHMS x ACKNOWLEDGMENTS xi CURRICULUM VITAE xii ABSTRACT OF THE DISSERTATION xiii 1 Introduction 1 1.1 Motivation . .1 1.2 Problem Statement . .3 1.3 Our Work in Perspective . .5 1.3.1 Prior Work on Undirected Graph Construction . .5 1.3.2 Prior Work on Directed Graph Construction . .9 1.3.3 Dissertation Contributions: The 2K+ Framework . 10 2 Undirected Graph Construction 16 2.1 Introduction . 16 2.2 2K Construction: JDM . 17 2.2.1 Realizability . 17 2.2.2 Algorithm for 2K Construction . 18 2.2.3 Connections to Related Work . 24 2.2.4 Space of Realizations . 25 2.3 2K with additional constraints . 27 2.3.1 2K+S: Target JDM and Clustering . 27 2.3.2 2K+#4: NP-Hardness for JDM with fixed number of triangles . 33 2.3.3 2K+A: Targeting JDM and Node Attributes . 38 2.3.4 2K+CC: Number of Connected Components . -
Curriculum Vitae Prof. Dr. Anand Srivastav Personal Data Name Prof
Curriculum Vitae Prof. Dr. Anand Srivastav Personal Data Name Prof. Dr. Anand Srivastav (Dipl. Math., Dipl. Phys.) Place/Date of Birth Agra (India), in 1958 Affiliation Institution Christian-Albrechts-Universität zu Kiel (CAU) Institute Department of Computer Science Address Christian-Albrechts-Platz 4, D-24118 Kiel, Germany Phone / Fax +49 431 880-7252 / -1725 E-Mail [email protected] Education 1996 Habilitation in Computer Science, Freie Universität zu Berlin, Germany 1988 Dr. rer. nat. (in Mathematics), Westfälische Wilhelms-Universität Münster 1988 Dipl. Phys. degree (Master of Physics), Westfälische Wilhelms-Universität Münster, Germany 1984 Dipl. Math. degree (Master of Mathematics), Westfälische Wilhelms- Universität Münster, Germany 1978 – 1984 Study of Physics and Mathematics at the Westfälische Wilhelms- Universität Münster, Germany 1965 – 1978 School Education in India and Germany Academic Appointments since 1997 Professor for Mathematics (Discrete Optimization), Christian-Albrechts- Universität zu Kiel 1995 – 1997 Assistent Professor at the Computer Science Department, Humboldt- Universität zu Berlin 1994 – 1995 Visiting Professor at the Computer Science Department, Freie Universität Berlin 1993 – 1994 Visiting Professor at IMA (University of Minnesota), Courant Institute for Mathematical Sciences (New York University) and Yale University, USA 1988 – 1993 Assistent Professor, Institute for Discrete Mathematics, Rheinische Friedrich- Wilhelms-Universität Bonn Important Functions since 2008 Co-Speaker of the Research -
Matchings in Balanced Hypergraphs
Matchings in balanced hypergraphs Von der Fakultat¨ fur¨ Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Mathematiker Robert Berthold Scheidweiler aus Duren-Birkesdorf.¨ Berichter: Universitatsprofessor¨ Dr. Eberhard Triesch Universitatsprofessor¨ Dr. Arie M.C.A. Koster Tag der mundlichen¨ Prufung:¨ 19. April 2011 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbar.¨ Danksagung In den letzten funf¨ Jahren habe ich am Lehrstuhl II fur¨ Mathematik der RWTH Aachen Uni- versity die vorliegende Dissertation verfasst. Einigen gebuhrt¨ fur¨ ihre Unterstutzung¨ und Hilfe wahrend¨ dieser Zeit besonderer Dank. Zuallererst mochte¨ ich mich bei dem Betreuer meiner Dissertation und meinem Chef, Eberhard Triesch, bedanken. Durch ihn habe ich das Thema dieser Arbeit erhalten, das mir sehr ans Herz gewachsen ist. Er hat mir bei meinen Forschungen immer mit Rat und Tat zur Seite gestanden und mich auch bei langer¨ andauern- den Durststrecken niemals unter Druck gesetzt. Seine positive Unterstutzung¨ und geduldige Hilfe haben mich motiviert, diese Arbeit zu vollenden. Weiterhin mochte¨ ich mich bei Arie Koster, meinem Zweitgutachter, bedanken. Mehrfach hat er im Verlauf meiner Promotion Anregungen gegeben, die dann in die Dissertation eingeflossen sind. Vor der endgultigen¨ Ab- gabe hat er durch seine Verbesserungsvorschlage,¨ fur¨ die ich sehr dankbar bin, zur jetzigen Form der Arbeit beigetragen. Danken mochte¨ ich außerdem Bert Randerath, der mir half, einige Startschwierigkeiten zu uberwinden,¨ als ich begann, die balancierten Hypergraphen zu erforschen. Hartmut Fuhr¨ hat sehr viel Zeit darauf verwendet, mir die harmonische Analysis naher¨ zu bringen. Seine Bemuhungen¨ haben meine Promotion weiter voran gebracht. -
Learning from Networked Examples
Learning from Networked Examples∗ Yuyi Wang ETH Zurich,¨ Switzerland Zheng-Chu Guo Zhejiang University, P.R. China Jan Ramon Inria, France & KULeuven, Belgium Editor: The correct dates will be entered by the editor Abstract Many machine learning algorithms are based on the assumption that training examples are drawn independently. However, this assumption does not hold anymore when learning from a networked sample because two or more training examples may share some common objects, and hence share the features of these shared objects. We show that the classic approach of ignoring this problem potentially can have a harmful effect on the accuracy of statistics, and then consider alternatives. One of these is to only use independent examples, discarding other information. However, this is clearly suboptimal. We analyze sample error bounds in this networked setting, providing signifi- cantly improved results. An important component of our approach is formed by efficient sample weighting schemes, which leads to novel concentration inequalities. Keywords: Networked Examples, Non-i.i.d. Sample, Concentration Inequality, Sample Error Bound, Generalization Error Bound 1. Introduction Recently, there has been an increasing interest in network-structured data, such as data in social net- works (Leinhardt, 2013), economic networks (Knoke, 2014), citation networks (Nykl et al., 2014) and chemical interaction networks (Szklarczyk et al., 2014). An important challenge is that data concerning related objects cannot be assumed to be independent. More precisely, a key assump- arXiv:1405.2600v4 [cs.AI] 3 Jun 2017 tion made by many approaches in the field of statistics and machine learning is that observations are drawn independently and identically (i.i.d.) from a fixed distribution. -
Deterministic Distributed Edge-Coloring Via Hypergraph Maximal Matching
Deterministic Distributed Edge-Coloring via Hypergraph Maximal Matching Manuela Fischer Mohsen Ghaffari Fabian Kuhn ETH Zurich ETH Zurich University of Freiburg manuela.fi[email protected] ghaff[email protected] [email protected] Abstract We present a deterministic distributed algorithm that computes a (2∆ 1)-edge-coloring, or even list-edge-coloring, in any n-node graph with maximum degree ∆, in O(log− 7 ∆ log n) rounds. This answers one of the long-standing open questions of distributed graph algorithms· from the late 1980s, which asked for a polylogarithmic-time algorithm. See, e.g., Open Problem 4 in the Distributed Graph Coloring book of Barenboim and Elkin. The previous best round complexities O(√log n) were 2 by Panconesi and Srinivasan [STOC’92] and O˜(√∆) + O(log∗ n) by Fraigniaud, Heinrich, and Kosowski [FOCS’16]. A corollary of our deterministic list-edge-coloring also improves the randomized complexity of (2∆ 1)-edge-coloring to poly(log log n) rounds. − The key technical ingredient is a deterministic distributed algorithm for hypergraph maximal matching, which we believe will be of interest beyond this result. In any hypergraph of rank r — where each hyperedge has at most r vertices — with n nodes and maximum degree ∆, this algorithm computes a maximal matching in O(r5 log6+log r ∆ log n) rounds. · This hypergraph matching algorithm and its extensions also lead to a number of other results. In particular, we obtain a polylogarithmic-time deterministic distributed maximal independent set (MIS) algorithm for graphs with bounded -
Tur\'An Numbers for Forests of Paths in Hypergraphs
TURAN´ NUMBERS FOR FORESTS OF PATHS IN HYPERGRAPHS NEAL BUSHAW AND NATHAN KETTLE Abstract. The Tur´an number of an r-uniform hypergraph H is the maximum number of edges in any r-graph on n vertices which does not contain H as a (r) subgraph. Let Pℓ denote the family of r-uniform loose paths on ℓ edges, F(k,l) (r) (r) denote the family of hypergraphs consisting of k disjoint paths from Pℓ , and Lℓ denote an r-uniform linear path on ℓ edges. We determine precisely exr(n; F(k,l)) (r) and exr(n; k · Lℓ ), as well as the Tur´an numbers for forests of paths of differing lengths (whether these paths are loose or linear) when n is appropriately large dependent on k,l,r, for r ≥ 3. Our results build on recent results of F¨uredi, Jiang, and Seiver who determined the extremal numbers for individual paths, and provide more hypergraphs whose Turan numbers are exactly determined. 1. Introduction and Background Extremal graph theory is that area of combinatorics which is concerned with find- ing the largest, smallest, or otherwise optimal structures with a given property. Often, the area is concerned with finding the largest (hyper)graph avoiding some subgraph. We build on earlier work of F¨uredi, Jiang, and Seiver [19], who deter- mined the extremal numbers when the forbidden hypergraph is a single linear path or a single loose path. In this paper, we determine precisely the exact Tur´an numbers when the forbidden hypergraph is a forest of loose paths, or a forest of linear paths; our main results appear in Section 2. -
Distributed Algorithms for Covering, Packing and Maximum Weighted Matching
Noname manuscript No. (will be inserted by the editor) Distributed Algorithms for Covering, Packing and Maximum Weighted Matching Christos Koufogiannakis · Neal E. Young Received: date / Accepted: date Abstract This paper gives poly-logarithmic-round, dis- 1 Background and results tributed δ-approximation algorithms for covering prob- lems with submodular cost and monotone covering con- Many distributed systems are composed of components straints (Submodular-cost Covering). The approx- that can only communicate locally, yet need to achieve a imation ratio δ is the maximum number of variables in global (system-wide) goal involving many components. any constraint. Special cases include Covering Mixed The general possibilities and limitations of such sys- Integer Linear Programs (CMIP), and Weighted tems are widely studied [42,49,54,38,39,12]. It is of Vertex Cover (with δ = 2). specific interest to see which fundamental combinato- Via duality, the paper also gives poly-logarithmic- rial optimization problems admit efficient distributed round, distributed δ-approximation algorithms for Frac- algorithms that achieve approximation guarantees that tional Packing linear programs (where δ is the max- are as good as those of the best centralized algorithms. imum number of constraints in which any variable oc- Research in this spirit includes works on Set Cover curs), and for Max Weighted c-Matching in hy- (Dominating Set) [26,40,41], capacitated domi- pergraphs (where δ is the maximum size of any of the nating set [37], Capacitated Vertex Cover [16, hyperedges; for graphs δ = 2). 17], and many other problems. This paper presents dis- The paper also gives parallel (RNC) 2-approximation tributed approximation algorithms for some fundamen- algorithms for CMIP with two variables per constraint tal covering and packing problems. -
On Derandomizing Local Distributed Algorithms
On Derandomizing Local Distributed Algorithms Mohsen Ghaffari David G. Harris Fabian Kuhn∗ ETH Zurich University of Maryland, College Park University of Freiburg [email protected] [email protected] [email protected] Abstract The gap between the known randomized and deterministic local distributed algorithms underlies ar- guably the most fundamental and central open question in distributed graph algorithms. In this paper, we develop a generic and clean recipe for derandomizing randomized LOCAL algorithms and transform- ing them into efficient deterministic LOCAL algorithm. We also exhibit how this simple recipe leads to significant improvements on a number of problems, in cases resolving known open problems. Two sample end-results are as follows: • An improved distributed hypergraph maximal matching algorithm, which improves on that of Fis- cher, Ghaffari, and Kuhn [FOCS’17], and leads to improved algorithms for edge-coloring, maxi- mum matching approximation, and low out-degree edge orientation. The first gives an improved algorithm for Open Problem 11.4 of the book of Barenboim and Elkin, and the last gives the first positive resolution of their Open Problem 11.10. • An improved distributed algorithm for the Lovasz´ Local Lemma, which gets closer to a conjec- ture of Chang and Pettie [FOCS’17], and moreover leads to improved distributed algorithms for problems such as defective coloring and k-SAT. ∗Supported by ERC Grant No. 336495 (ACDC). 1 Introduction and Related Work The gap between the best known deterministic and randomized local distributed algorithms constitutes a central open question in the area of distributed graph algorithms. For many of the classic problems (e.g., maximal independent set (MIS) and (∆ + 1)-vertex coloring), O(log n)-time randomized algorithms have been known since the pioneering work of Luby [Lub86] and Alon, Babai, and Itai [ABI86]. -
Review of Literature
Review of Literature Harmonious and Feliticious Labeling. Corona graphs Cn*K1 are highly symmetrical graphs. They are unicyclic graphs. Cycle-related graphs are of major importance for labeling. Some labelings are already defined for unicyclic graphs. Rosa [1] showed that Cn is graceful if and only if n ≡ 0 or 3 (mod 4). Graham and Sloane [2] proved that Cn is harmonious if and only if n ≡ 1 or 3 (mod 4). Lee, Schmeichel and.Shee [3] give some necessary conditions for a graph to be feliticious. The generalization of harmonious graph is feliticious graph is shown. They show that some families of graph like cycles of order 4k, complete bipartite graphs, generalized Petersen graphs etc. are feliticious while some graphs like cycles of order 4k+2, complete graph Kn when n ≥ 5 are not feliticious. Cordial labeling and Divisor cordial labeling Cahit [4] introduced a new vertex labeling for graphs called cordial labeling. He has proved the results of cordial labeling on trees. The cordial labeling of corona Cn*K1 is not yet undertaken. The 2-equitable graphs were called cordial graphs by Cahit [5]. He has shown that the cycle Cn with n-vertices is 3-equitable iff n ≠ 3 (mod 6). The k-angular cactus, Tk,t, is a connected graph whose all blocks are cycles with k-vertices. Cahit showed that Tk,t is cordial iff k.t ≠ 2 (mod 4). Some special classes of graphs such as dragon, corona, wheel, full binary trees, G*K2,n and G*K3,n are shown to be divisor cordial by Varatharajan at. -
New Applications of the Nearest-Neighbor Chain Algorithm
UC Irvine UC Irvine Electronic Theses and Dissertations Title New Applications of the Nearest-Neighbor Chain Algorithm Permalink https://escholarship.org/uc/item/6nt3g7d4 Author Mamano Grande, Nil Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE New Applications of the Nearest-Neighbor Chain Algorithm DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Nil Mamano Grande Dissertation Committee: Professor Michael T. Goodrich, Chair Professor David Eppstein Professor Sandy Irani 2019 c 2019 Nil Mamano Grande TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES vii LIST OF ALGORITHMS viii ACKNOWLEDGMENTS ix CURRICULUM VITAE x ABSTRACT OF THE DISSERTATION xii 1 Introduction 1 1.1 Greedy algorithms . 3 1.2 Local greedy . 4 1.3 Global–local equivalence . 6 1.4 Background . 8 1.4.1 Hierarchical clustering . 8 1.4.2 Nearest-neighbor chain algorithm . 10 2 Global–Local Equivalence 13 2.1 Combinatorial optimization problems . 16 2.1.1 Maximum-weight independent set . 22 2.2 Multi-fragment TSP . 25 2.3 Shortest common superstring . 28 2.4 Conclusions . 36 3 Nearest-Neighbor Chain Algorithms 37 3.1 Preliminaries: nearest-neighbor data structures . 37 3.2 Soft nearest-neighbor data structure . 40 3.2.1 Implementation . 41 3.2.2 Choice of parameters . 43 3.2.3 The m-way soft nearest-neighbor data structure . 47 3.2.4 The closest pair problem . 47 3.3 Geometric TSP . 48 ii 3.3.1 Related work .