bioRxiv preprint doi: https://doi.org/10.1101/2020.03.25.004614; this version posted March 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Transcriptomic and proteomic dynamics during metamorphosis of Pacific oyster Crassostrea gigas Fei Xu1,2*, Guofan Zhang1,2 1 Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China 2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China *Authors for correspondence:
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.03.25.004614; this version posted March 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Many marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic adults via settlement and metamorphosis, which contributes to the adaption to the marine environment. Studying the biological process of metamorphosis is thus a key to understand the origin and evolution of indirect development. Numerous studies have been conducted on the relationships of metamorphosis with the marine environment, microorganisms, as well as the neurohormones, however, little is known on the gene regulation network (GRN) dynamics during metamorphosis.