General Catalogue of the Hemiptera Aatetnma Subfamily EURYOPHTHALMINAE Van Duzee

Total Page:16

File Type:pdf, Size:1020Kb

General Catalogue of the Hemiptera Aatetnma Subfamily EURYOPHTHALMINAE Van Duzee H r GENERAL CATALOGUE GF THE HEMIPTERA G. HORVATH, General Editor H. M. PARSHLEY, Managing Editor FASCICLE III PYRRHOCORIDAE BY ROLAND F. HUSSEY, Sc. D., New York City With Bibliography BY ELIZABETH SHERMAN, A. B., Mt. Vernon, N. Y. PUBLISHED BY SMITH COLLEGE, NORTHAMPTON, MASS., U.S.A. 1929 521 H 68 GENERAL CATALOGUE OF THE HEMIPTERA G. HORVATH, General Editor H. M. PARSHLEY, Managing Editor ru i m CD o =- - r^ i^H FASCICLE III ^=m PYRRHOCORIDAE ^^» BY ^^ ROLAND F. HUSSEY, Sc. D., iVew York City With Bibliography BY ELIZABETH SHERMAN, A. B., Mt. Vernon, N. Y. PUBLISHED BY SMITH COLLEGE, NORTHAMPTON, MASS., V. S. A. 1929 STfjE CoUrgiate ^rcsa GEORGE BANTA PUBLISHING COMPANY MENASHA, WISCONSIN EDITORIAL BOARD Hungerpord H. G. Barber H. B. Knight W. E. China H. H. Z. P. Metcalf C. J. Drake W D. FUNKHOUSER H. M. Parshley DE LA TORRE-BUENO G. HORVATH J. R- PYRRHOCORIDAE BY Roland F. Hussey WITH Bibliography BY Elizabeth Sherman INTRODUCTION Thirty-five years have passed since the publication of the last complete list of the Pyrrhocoridae, in the second volume of the "Catalogue General des Hemipteres" by Lethierry and Severin. From that time until about 1912 this family received considerable attention from Hemipterists and nu- merous species were described, principally by Breddin, Bergroth, Distant and Schouteden. These were listed in Bergroth's second supplement to the Lethierry and Severin Catalogue, which appeared in the Memoires de la Societe Entomologique de Belgique in 1913. Since then, however, entomologists have given scant attention to the Pyrrhocoridae. It is my hope that renewed activity will follow the appearance of the present Catalogue, with its index to the literature on the family. This Catalogue of the Pyrrhocoridae was essentially completed late in 1926. Since then I have not been actively associated with any form of entomological endeavor, and it has not been possible for me to make a care- ful record of the literature which has appeared in the last three years. The citations I have included for 1926, 1927, and 1928 are limited, therefore, to references taken from the "Zoological Record," and to the few papers that have come to my personal attention. The references to the literature prior to 1926 are, I believe, reasonably complete, insofar as they refer to the taxonomy, distribution, and biology of the species. In some cases, notably Pyrrhocoris apterus, 1 have subjected the list of citations to a careful scrutiny and have eliminated a number of non-essential ones. Such omissions were restricted to the local lists which seem to add little of real importance to our knowledge of distribution. It should also be noted that in preparing this Catalogue I have made no attempt to cite the Pyrrhocorid references in the special literature of economic entomology. The few such references included are merely those which I chanced upon in my search of the general literature on this family. Acknowledgments are due to several of my hemipterological confreres for assistance in the preparation of the Catalogue: to Messrs. H. G. Barber and J. R. de la Torre-Bueno, as also to the American Museum of Natural History, for the privilege of utilizing their respective libraries, and Mr. Barber has also very kindly examined the types of several of Kirkaldy's species in the United States National Museum for me; to the late Dr. C. L. Witheycombe, for information regarding the identity of several species of American Dysdercus; to Mr. W. E. China, who has very gen- erously advised me regarding the correct assignments of certain forms de- scribed by Walker, Kirby, and Distant; and to Miss Elizabeth Sherman, student in Smith College, who has undertaken the formal Bibliography 3 4 Introduction printed at the end of the work. To all of these I wish to extend my most sincere thanks. The Pyrrhocoridae constitute one of the smaller families of the Hemip- tera, only 360 species being known at the present time. The majority of these are of medium size or larger, and many of them are brilliantly colored, so it is safe to say that a great number of Pyrrhocorids still await discovery. The family is primarily tropical and subtropical in its distribu- tion; and careful collecting, with attention concentrated on the less con- spicuous forms, will doubtless bring to light many species which thus far have not been detected. The genus Pyrrhocoris alone presents an exception to the general dis- tribution of the family: it is strictly Palaearctic in its range, and several of its species endure the rigorous climate of Siberia. The common Pyr- rhocoris apterus, so abundant in Europe, has also been reported from Madras and New Jersey, and is well established in Costa Rica according to Pittier and Biolley (1895), but its adventitious nature in these localities can not be questioned. Similarly, the Australian Dindymus versicolor is recorded from New Zealand, but Myers (1925) states that no Pyrrhocorid is es- tablished in those islands; so that this appears also to be an adventitious form insofar as New Zealand is concerned. And Kirkaldy (1902) was unable to confirm earlier reports of the occurrence of a Pyrrhocorid, Dysdercus peruvianus, in Hawaii. About one-third of all the known species, and more than half the genera of the Pyrrhocoridae, occur in the Indo-Malayan region, which thus appears to be the primary center of distribution of the family. Dispersal has occurred northward through the Philippines to Formosa and Japan, eastward and southward through the Moluccas and New Guinea to Aus- tralia and so to Oceanica, and westward to Africa, if not to America as well. There are several genera which occur both in Africa and in Indo-Malaya; and related myrmecoid genera have appeared in both regions. The great majority of the palaeogeic species belong to the subfamily Pyrrhocorinae, which is represented in America only by the wide-ranging genus Dysdercus. Otherwise, the American Pyrrhocoridae constitute a group which is very distinct from the Old World forms of the family, as will appear below. In this subfamily also myrmecoid forms have appeared, notably Arhaphe, Japetus, and the singular Brazilian Thaumastaneis, the latter approaching very near to the Myodochine L3'gaeidae. The affinities of the Pyrrhocoridae with the Lygaeidae have long been recognized. Until the beginning of the present century this family was very generally considered as a mere subfamily of the Lygaeidae, and was placed at the end of that group in numerous catalogues. However, its independent family rank as recognized by Renter, Horvath, Bergroth and other recent writers, can not be denied. I would go even farther than this, as it is my Introduction S belief that the Euryophthalminae and the Pyrrhocorinae are each worthy of elevation into distinct family rank, the two thus constituting the super- family Pyrrhocoroidea. The suggestion made by Singh-Pruthi (1925), to abolish this family entirely and to annex its subfamilies to different groups of Hemiptera, is extremely ill-considered and can not be supported. The two principal subdivisions of this family differ from one another very markedly in genital structure. In this respect the Euryophthalminae approach the Lygaeidae, while the Pyrrhocorinae show distinct evidence of relationship with the Coreidae. This difference in the female genital structure was used long ago by Stal (1866) to subdivide the family, but it was only recently that a similar differential relationship was demonstrated for the males by Singh-Pruthi (op. cit.). I shall not be surprised if future workers find it necessary to divide the Pyrrhocoridae into two families, whose lines of relationship lead respectively to the Lygaeidae on the one hand, and to the Coreoidea on the other. For the present, however, I retain the family Pyrrhocoridae in its standard sense, but the Euryophthalminae must be separated into two tribes, one comprising the American and the other the Old World forms. The basis for this was set forth by Stal (1870, Enum. Hem. I: 90), and the major divisions of the Pyrrhocoridae may be characterized as follows: Subfamily Euryopthalminae. Sixth ventral segment of female divided on the median line. Male genitalia similar to those of Lygaeidae. Tribe Euryophthalmini, nov. Lower surface of the head not sulcate or grooved longitudinally behind the bucculae; anterior femora terete or only very slightly sulcate beneath at base; orifices not auriculate. American forms. Tribe Physopeltini, nov. Lower surface of head longitudinally impressed behind the bucculae, the sulcus often reaching the base of the head; anterior femora sulcate beneath for most or all of their length; orifices auriculate. Old world forms. Subfamily P3nThocorinae. Sixth ventral segment of female entire; male genitalia constructed very much like those of Coreidae. The following new names are proposed in this Catalogue: Dysdercus mimulus, for Dysdercus mimus Stal, auctt., nee Say. var. tergiversans, for Dysdercus superstitiosus var. intermedius Schout., preoccupied, var, vacillans, for Dysdercus poecilus var, simplex Bredd,, preoccupied. The following terminology has been used in referring to the type species of the various genera: Orthotype—The species explicitly named as genotype by the founder of the genus, at the time of its description, when such designation has been made. 6 Introduction Monotype—A unique species named by the founder in connection with the description of the genus, but not explicitly named the type by him. Logotype—A species subsequently selected as the genotype, either by the founder or by another, from several species assigned to the genus at its founding, no orthotype having been designated by the founder of the genus. In accordance with the desire of the Editorial Board, the genera have been arranged as nearly as possible in their true systematic order, but the species are listed alphabetically under each genus.
Recommended publications
  • 5.Characterization of an Insecticidal Protein from Withania Somnifera.Pdf
    Molecular Biotechnology https://doi.org/10.1007/s12033-018-0070-y ORIGINAL PAPER Characterization of an Insecticidal Protein from Withania somnifera Against Lepidopteran and Hemipteran Pest Blessan Santhosh George1 · S. Silambarasan2 · K. Senthil2 · John Prasanth Jacob2 · Modhumita Ghosh Dasgupta1 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Lectins are carbohydrate-binding proteins with wide array of functions including plant defense against pathogens and insect pests. In the present study, a putative mannose-binding lectin (WsMBP1) of 1124 bp was isolated from leaves of Withania somnifera. The gene was expressed in E. coli, and the recombinant WsMBP1 with a predicted molecular weight of 31 kDa was tested for its insecticidal properties against Hyblaea puera (Lepidoptera: Hyblaeidae) and Probergrothius sanguinolens (Hemiptera: Pyrrhocoridae). Delay in growth and metamorphosis, decreased larval body mass and increased mortality was recorded in recombinant WsMBP1-fed larvae. Histological studies on the midgut of lectin-treated insects showed disrupted and difused secretory cells surrounding the gut lumen in larvae of H. puera and P. sanguinolens, implicating its role in disruption of the digestive process and nutrient assimilation in the studied insect pests. The present study indicates that WsMBP1 can act as a potential gene resource in future transformation programs for incorporating insect pest tolerance in susceptible plant genotypes. Keywords Insecticidal lectin · Mannose binding · Secretory cells · Teak defoliator Introduction and sugar-containing substances, without altering covalent structure of any glycosyl ligands. They possess two or more Plants possess complex defense mechanisms to counter carbohydrate-binding sites [27] and display an enormous attacks by pathogens and parasites, ranging from viruses diversity in their sequence, biological activity and mono- or to animal predators.
    [Show full text]
  • Environment Southwest: Africa the Central Namib Desert 'Iext and Photographs by David K
    Environment Southwest: Africa The Central Namib Desert 'Iext and photographs by David K. Faulkner Department of Entomology San Diego Natural History Museum All deserts are the same. All deserts are different. 'TWoseemingly contradic- tory statements, yet to a certain extent both are correct. In early 1988 I was given the opportunity to discover just how similar and different a desert in southwestern Africa, the Namib, was from xeric regions of the southwestern United States and northwestern Mexico. From January to March, during the southern hemisphere's summer months, areas of the central Namib Desert were scale researched by an international group of I I entomologists from South Africa, west- ern Europe, and North America. The primary reason for choosing Namibia BOTSWANA was to study its unique insect fauna, especially the Neuroptera-nerve-winged insects-which attain a high degree of endemism and diversity in this part of the African subcontinent. Atlantic Ocean Extending 1,250 miles south from Angola to the Olifants River of South Africa's northern Cape Province, the Namib Desert is one ofthe driest regions CAPE PROVIDENCE on earth. It lies between the south Atlan- tic Ocean to the west and what is termed the great western escarpment to the east, averaging 125 miles in width. The east- Map inset shows the western Namibian desert of the African subcontinent. ern boundary is also delineated by the Tile Namib Desert Research Institute is located at Gobabeb. 3.9- inch rainfall line which increases to the east and is almost nonexistent along the western coast. the Benguela Current, which developed than permanent.
    [Show full text]
  • Estados Inmaduros De Lygaeinae (Hemiptera: Heteroptera
    Disponible en www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 86 (2015) 34-40 www.ib.unam.mx/revista/ Taxonomía y sistemática Estados inmaduros de Lygaeinae (Hemiptera: Heteroptera: Lygaeidae) de Baja California, México Immature instars of Lygaeinae (Hemiptera: Heteroptera: Lygaeidae) from Baja California, Mexico Luis Cervantes-Peredoa,* y Jezabel Báez-Santacruzb a Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351, 91070 Xalapa, Veracruz, México b Laboratorio de Entomología, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Sócrates Cisneros Paz, 58040 Morelia, Michoacán, México Recibido el 26 de mayo de 2014; aceptado el 17 de septiembre de 2014 Resumen Se describen los estados inmaduros de 3 especies de chinches Lygaeinae provenientes de la península de Baja California, México. Se ilustran y describen en detalle todos los estadios de Melacoryphus nigrinervis (Stål) y de Oncopeltus (Oncopeltus) sanguinolentus Van Duzee. Para Lygaeus kalmii kalmii Stål se ilustran y describen los estadios cuarto y quinto. Se incluyen también notas acerca de la biología y distribución de las especies estudiadas. Derechos Reservados © 2015 Universidad Nacional Autónoma de México, Instituto de Biología. Este es un artículo de acceso abierto distribuido bajo los términos de la Licencia Creative Commons CC BY-NC-ND 4.0. Palabras clave: Asclepias; Asteraceae; Plantas huéspedes; Diversidad de insectos; Chinches Abstract Immature stages of 3 species of Lygaeinae from the Peninsula of Baja California, Mexico are described. Illustrations and detailed descriptions of all instars of Oncopeltus (Oncopeltus) sanguinolentus Van Duzee and Melacoryphus nigrinervis (Stål); for Lygaeus kalmii kalmii Stål fourth and fifth instars are described and illustrated.
    [Show full text]
  • (Heteroptera: Miridae) A
    251 CHROMOSOME NUMBERS OF SOME NORTH AMERICAN MIRIDS (HETEROPTERA: MIRIDAE) A. E. AKINGBOHUNGBE Department of Plant Science University of Ife lie-Ife, Nigeria Data are presented on the chromosome numbers (2n) of some eighty species of Miridae. The new information is combined with existing data on some Palearctic and Ethiopian species and discussed. From it, it is suggested that continued reference to 2n - 32A + X + Y as basic mirid karyotype should be avoided and that contrary to earlier suggestions, agmatoploidy rather than poly- ploidy is a more probable mechanism of numerical chromosomal change. Introduction Leston (1957) and Southwood and Leston (1959) gave an account of the available information on chromosome numbers in the Miridae. These works pro- vided the first indication that the subfamilies may show some modalities that might be useful in phylogenetic analysis in the family. Kumar (1971) also gave an ac- count of the karyotype in some six West African cocoa bryocorines. In the present paper, data will be provided on 80 North American mirids, raising to about 131, the number of mirids for which the chromosome numbers are known. Materials and Methods Adult males were collected during the summer of 1970-1972 in Wisconsin and dissected soon after in 0.6% saline solution. The dissected testes were preserved in 3 parts isopropanol: 1 part glacial acetic acid and stored in a referigerator until ready for squashing. Testis squashes were made using Belling's iron-acetocarmine tech- nique as reviewed by Smith (1943) and slides were ringed with either Bennett's zut or Sanford's rubber cement.
    [Show full text]
  • Rodondo Island
    BIODIVERSITY & OIL SPILL RESPONSE SURVEY January 2015 NATURE CONSERVATION REPORT SERIES 15/04 RODONDO ISLAND BASS STRAIT NATURAL AND CULTURAL HERITAGE DIVISION DEPARTMENT OF PRIMARY INDUSTRIES, PARKS, WATER AND ENVIRONMENT RODONDO ISLAND – Oil Spill & Biodiversity Survey, January 2015 RODONDO ISLAND BASS STRAIT Biodiversity & Oil Spill Response Survey, January 2015 NATURE CONSERVATION REPORT SERIES 15/04 Natural and Cultural Heritage Division, DPIPWE, Tasmania. © Department of Primary Industries, Parks, Water and Environment ISBN: 978-1-74380-006-5 (Electronic publication only) ISSN: 1838-7403 Cite as: Carlyon, K., Visoiu, M., Hawkins, C., Richards, K. and Alderman, R. (2015) Rodondo Island, Bass Strait: Biodiversity & Oil Spill Response Survey, January 2015. Natural and Cultural Heritage Division, DPIPWE, Hobart. Nature Conservation Report Series 15/04. Main cover photo: Micah Visoiu Inside cover: Clare Hawkins Unless otherwise credited, the copyright of all images remains with the Department of Primary Industries, Parks, Water and Environment. This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgement of the source and no commercial use or sale. Requests and enquiries concerning reproduction and rights should be addressed to the Branch Manager, Wildlife Management Branch, DPIPWE. Page | 2 RODONDO ISLAND – Oil Spill & Biodiversity Survey, January 2015 SUMMARY Rodondo Island was surveyed in January 2015 by staff from the Natural and Cultural Heritage Division of the Department of Primary Industries, Parks, Water and Environment (DPIPWE) to evaluate potential response and mitigation options should an oil spill occur in the region that had the potential to impact on the island’s natural values. Spatial information relevant to species that may be vulnerable in the event of an oil spill in the area has been added to the Australian Maritime Safety Authority’s Oil Spill Response Atlas and all species records added to the DPIPWE Natural Values Atlas.
    [Show full text]
  • Cotton Stainer, Dysdercus Koenigii (Heteroptera: Pyrrhocoridae) Eggs Laying Preference and Its Ecto-Parasite, Hemipteroseius Spp Levels of Parasitism on It
    APPL. SCI. BUS. ECON. ISSN 2312-9832 APPLIED SCIENCES AND BUSINESS ECONOMICS OPEN ACCESS Cotton stainer, Dysdercus koenigii (Heteroptera: Pyrrhocoridae) eggs laying preference and its ecto-parasite, Hemipteroseius spp levels of parasitism on it Qazi Muhammad Noman1*, Syed Ishfaq Ali Shah2, Shafqat Saeed1, Abida Perveen1, Faheem Azher1 and Iqra Asghar1 1Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan 2Central Cotton Research Institute, Old Shujabad Road, Multan, Pakistan *Corresponding author email Abstract [email protected] Cotton is one of the important and main cash crop of Pakistan as listed in top four crops i.e. wheat, rice, sugarcane and maize. Its contribution is 1.4% in GDP and 6.7% in Keywords agriculture value addition. Insect pests are causing a key role in term of qualitative and Mass rearing,Different mediums, Eggs batches, Mortality quantitative losses. In 2010, cotton stainer was thought to be a minor insect pest in Pakistan, while, currently it becomes the most prominent among the sucking insects with piercing sucking mouthparts as causing serious economic losses in the cotton growing areas of Pakistan. Many control tactics were to be studied including biological and chemical. But keeping the drawbacks of insecticides, a biological control is to be highly recommended control tool. The newly introduced predator the Antilochus coqueberti (Heteroptera: Pyrrhocoridae) is being reared in the Central Cotton Research Institute (CCRI), Multan against the cotton stainer. This predator, repaid mass rearing in the laboratory completely depends on its natural host because; we don’t find the literatures on its artificial diets rearing.
    [Show full text]
  • \\Sanjaymolur\F\ZOOS'p~1\2005
    CATALOGUE ZOOS' PRINT JOURNAL 20(8): 1955-1960 Fauna of Protected Areas - 23: INSECT FAUNA OF PEECHI-VAZHANI WILDLIFE SANCTUARY, KERALA, INDIA George Mathew 1,2, R.S.M. Shamsudeen 1 and Rashmi Chandran 1 1 Division of Forest Protection, Kerala Forest Research Institute, Peechi, Kerala 680653, India Email: 2 [email protected] ABSTRACT transition zone between moist deciduous and evergreen forests. In a study on the insect fauna of Peechi-Vazhani Wildlife The vegetation of moist deciduous forests is characteristic in Sanctuary, 374 species of insects mostly belonging to that the trees of the upper canopy shed their leaves during the Lepidoptera, Coleoptera and Hemiptera were recorded. The fauna was rich and diverse and contained several rare and dry season from February to April. Xylia xylocarpa, Terminalia protected species. Among butterflies, of the 74 species bellerica, Terminalia tomentosa, Garuga pinnata, recorded, six species (Chilasa clytia, Appias lyncida, Appias Cinnamomum spp., Bridelia retusa, Grewia tiliaefolia and libythea, Mycalesis anaxias, Hypolimnas misippus and Haldina cordifolia are the common tree species. In the lower Castalius rosimon) are protected under the Indian Wildlife canopy, Ixora spp., Lantana camara and Clerodendrum spp. (Protection) Act. Similarly, four species of butterflies, Papilio buddha, Papilio polymnestor, Troides minos, and Cirrochroa occur as undergrowth. A considerable portion of the forest thais, recorded in this study are rare and restricted in area in this region has been converted to teak and eucalyptus distribution. The moth fauna is rich in arboreal feeding plantations by the Forest Department. A variety of wild animals forms indicating an undisturbed forest patch in the area.
    [Show full text]
  • Preliminary Checklist of Extant Endemic Species and Subspecies of the Windward Dutch Caribbean (St
    Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos, P.A.J. Bakker, R.J.H.G. Henkens, J. A. de Freitas, A.O. Debrot Wageningen University & Research rapport C067/18 Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos1, P.A.J. Bakker2, R.J.H.G. Henkens3, J. A. de Freitas4, A.O. Debrot1 1. Wageningen Marine Research 2. Naturalis Biodiversity Center 3. Wageningen Environmental Research 4. Carmabi Publication date: 18 October 2018 This research project was carried out by Wageningen Marine Research at the request of and with funding from the Ministry of Agriculture, Nature and Food Quality for the purposes of Policy Support Research Theme ‘Caribbean Netherlands' (project no. BO-43-021.04-012). Wageningen Marine Research Den Helder, October 2018 CONFIDENTIAL no Wageningen Marine Research report C067/18 Bos OG, Bakker PAJ, Henkens RJHG, De Freitas JA, Debrot AO (2018). Preliminary checklist of extant endemic species of St. Martin, St. Eustatius, Saba and Saba Bank. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C067/18 Keywords: endemic species, Caribbean, Saba, Saint Eustatius, Saint Marten, Saba Bank Cover photo: endemic Anolis schwartzi in de Quill crater, St Eustatius (photo: A.O. Debrot) Date: 18 th of October 2018 Client: Ministry of LNV Attn.: H. Haanstra PO Box 20401 2500 EK The Hague The Netherlands BAS code BO-43-021.04-012 (KD-2018-055) This report can be downloaded for free from https://doi.org/10.18174/460388 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified.
    [Show full text]
  • FNCV Register of Photos
    FNCV Register of photos - natural history (FNCVSlideReg is in Library computer: My computer - Local Disc C - Documents and settings - Library) [Square brackets] - added or updated name Slide number Title Place Date Source Plants SN001-1 Banksia marginata Grampians 1974 001-2 Xanthorrhoea australis Labertouche 17 Nov 1974 001-3 Xanthorrhoea australis Anglesea Oct 1983 001-4 Regeneration after bushfire Anglesea Oct 1983 001-5 Grevillea alpina Bendigo 1975 001-6 Glossodia major / Grevillea alpina Maryborough 19 Oct 1974 001-7 Discarded - out of focus 001-8 [Asteraceae] Anglesea Oct 1983 001-9 Bulbine bulbosa Don Lyndon 001-10 Senecio elegans Don Lyndon 001-11 Scaevola ramosissima (Hairy fan-flower) Don Lyndon 001-12 Brunonia australis (Blue pincushion) Don Lyndon 001-13 Correa alba Don Lyndon 001-14 Correa alba Don Lyndon 001-15 Calocephalus brownii (Cushion bush) Don Lyndon 001-16 Rhagodia baccata [candolleana] (Seaberry saltbush) Don Lyndon 001-17 Lythrum salicaria (Purple loosestrife) Don Lyndon 001-18 Carpobrotus sp. (Pigface in the sun) Don Lyndon 001-19 Rhagodia baccata [candolleana] Inverloch Don Lyndon 001-20 Epacris impressa Don Lyndon 001-21 Leucopogon virgatus (Beard-heath) Don Lyndon 001-22 Stackhousia monogyna (Candles) Don Lyndon 001-23 Correa reflexa (yellow) Don Lyndon 001-24 Prostanthera sp. Don Lyndon Fungi 002-1 Stinkhorn fungus Aseroe rubra Buckety Plains 30/12/1974 Margarey Lester 002-2 Fungi collection: Botany Group excursion Dom Dom Saddle 28 May 1988 002-3 Aleuria aurantia Aug 1966 R&M Jennings Bairnsdale FNC 002-4
    [Show full text]
  • Annotated Checklist of the Plant Bug Tribe Mirini (Heteroptera: Miridae: Mirinae) Recorded on the Korean Peninsula, with Descriptions of Three New Species
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 115: 467–492, 2018 http://www.eje.cz doi: 10.14411/eje.2018.048 ORIGINAL ARTICLE Annotated checklist of the plant bug tribe Mirini (Heteroptera: Miridae: Mirinae) recorded on the Korean Peninsula, with descriptions of three new species MINSUK OH 1, 2, TOMOHIDE YASUNAGA3, RAM KESHARI DUWAL4 and SEUNGHWAN LEE 1, 2, * 1 Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; e-mail: [email protected] 2 Research Institute of Agriculture and Life Sciences, Seoul National University, Korea; e-mail: [email protected] 3 Research Associate, Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA; e-mail: [email protected] 4 Visiting Scientists, Agriculture and Agri-food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A, 0C6, Canada; e-mail: [email protected] Key words. Heteroptera, Miridae, Mirinae, Mirini, checklist, key, new species, new record, Korean Peninsula Abstract. An annotated checklist of the tribe Mirini (Miridae: Mirinae) recorded on the Korean peninsula is presented. A total of 113 species, including newly described and newly recorded species are recognized. Three new species, Apolygus hwasoonanus Oh, Yasunaga & Lee, sp. n., A. seonheulensis Oh, Yasunaga & Lee, sp. n. and Stenotus penniseticola Oh, Yasunaga & Lee, sp. n., are described. Eight species, Apolygus adustus (Jakovlev, 1876), Charagochilus (Charagochilus) longicornis Reuter, 1885, C. (C.) pallidicollis Zheng, 1990, Pinalitopsis rhodopotnia Yasunaga, Schwartz & Chérot, 2002, Philostephanus tibialis (Lu & Zheng, 1998), Rhabdomiris striatellus (Fabricius, 1794), Yamatolygus insulanus Yasunaga, 1992 and Y. pilosus Yasunaga, 1992 are re- ported for the fi rst time from the Korean peninsula.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Stage Preference and Functional Response of Rhynocoris Longifrons (Stål) (Hemiptera: Reduviidae) on Three Hemipteran Cotton Pests
    733 Vol.55, n. 5: pp.733-740, September-October 2012 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Stage Preference and Functional Response of Rhynocoris longifrons (Stål) (Hemiptera: Reduviidae) on Three Hemipteran Cotton Pests Kitherian Sahayaraj *, Subramanian Kalidas and Majesh Tomson Crop Protection Research Centre; Department of Advanced Zoology and Biotechnology; St. Xavier’s College (Autonomous); Palayamkottai 627 002; Tamil Nadu - India ABSTRACT In this work, the stage preference and functional response of the indigenous reduviid bug Rhynocoris longifrons feeding on five different densities of the cotton aphid Aphis gossypii , Phenacoccus solenopsis , and Dysdercus cingulatus was examined in Petri dish arenas containing cotton leaves under laboratory conditions. The reduviid predator exhibited a Type II functional response at all hemipteran pests evaluated when data were fit to Holling’s disc equation. Predatory rate gradually increased while the predator grew older and adults consumed maximum number of D. cingulatus and P. solenopsis . An opposite trend was observed, while the reduviid was provided with Aphis gossypii . The rate of attack on P. solenopsis was quite low but fairly consistent, with the different life stages of the predator generally more effective. Further investigation of the biological control potential of R. longifrons against cotton pests under pot and controlled filed should be done due to the predator’s ability to kill adult stages of all prey species evaluated. These results indicated that R. longifrons could eat more aphids at high prey densities; however, predators also considerably reduced other cotton pests too so it could be considered a prospective candidate for use as a commercial biological control agent for cotton hemipteran pests in India.
    [Show full text]