Large Scale Plastomics Approaches for the Study of Evolution and Adaptive Signatures in Angiosperms

Total Page:16

File Type:pdf, Size:1020Kb

Large Scale Plastomics Approaches for the Study of Evolution and Adaptive Signatures in Angiosperms Large scale plastomics approaches for the study of evolution and adaptive signatures in angiosperms Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von Huan Li München, 2017 Diese Dissertation wurde angefertigt unter der Leitung von Prof. Dr. Dario Leister im Bereich von Fakultät für Biologie an der Ludwig-Maximilians-Universität München Erstgutachter: Prof. Dr. Dario Leister Zweitgutachter: Prof. Dr. Wolfgang Frank Tag der Abgabe: 24 August 2017 Tag der mündlichen Prüfung: 9 November 2017 Erklärung Ich versichere hiermit an Eides statt, dass meine Dissertation selbständig und ohne unerlaubte Hilfsmittel angefertigt worden ist. Die vorliegende Dissertation wurde weder ganz, noch teilweise bei einer anderen Prüfungskommission vorgelegt. Ich habe noch zu keinem früheren Zeitpunkt versucht, eine Dissertation einzureichen oder an einer Doktorprüfung teilzunehmen. München, den 24 August 2017 Huan Li Summary Chloroplasts are the centers of photosynthesis in plant cells and harbor their own genome. Until recently, the study of the organization and evolution of chloroplast genomes was limited by the dearth of sequence information. Nowadays, the next generation sequencing (NGS) technology provides the possibility to make use of large sets of sequencing data in phylogenetic and evolutionary studies, especially for chloroplast DNA. However, the molecular mechanisms of plastid genome evolution and its relevance for environmental adaptation remain poorly understood. This study contributes to filling this gap by providing and analyzing a large number of protein coding sequences (CDS) of chloroplasts in flowering plants. More than 1,100 representatives of wild species from an alpine flora were subjected to sequencing of high-copy number genes using a shotgun approach on genomic DNA. The major results obtained are: 1) At the genus level, the phylogenetic reconstruction of 34 taxa of Aquilegia provided a basic assessment of the relationships among Eurasian taxa through two datasets. Thereby, chloroplast genes with lower guanine-cytosine (GC) content and GC content at the third position of codon encoded genes with higher amino acid polymorphisms. 2) At the family level, 71 chloroplast CDS from 95 species in the Brassicaceae family were used to reconstruct their phylogenetic relationships and analyze the patterns of molecular evolution characterizing them. A total of 33 genes were found to be under positive selection. Overall, three major phylogenetic lineages (I-III) were defined in this study. 3) Different computational approaches were used for detection of natural selection in 11 families. The chloroplast CDSs, analyzed family by family, showed patterns of molecular evolution consistent with increased rates of average positive selection for a limited number of genes. Among them, rbcL was inferred as being under positive selection in 8 of the 11 families considered, indicating recurrent functional selection. A total of 46 branches in the 11 family-level phylogenies showed patterns of molecular evolution consistent with positive selection, and in general the patterns of selection were mostly consistent with directional rather than relaxed selection. Five selected families were analyzed to test whether the ratio between non-synonymous and synonymous nucleotide changes significantly differed between low and high altitude taxa, and four genes showed patterns of positive selection differentially associated with altitude. Besides, this study further assessed whether these results might be affected by RNA- editing. Taken together, this thesis provides a successful large-scale application of NGS technology for the elucidation of molecular evolution patterns at different levels of angiosperms phylogeny, and offers a new view on the structural and functional features of the chloroplast genome and its relationships with adaptation in wild plant species. i Zusammenfassung Chloroplasten sind die Zentren der Photosynthese in Pflanzenzellen und besitzen ein eigenes Genom. Bis vor kurzen wurde die Untersuchung der Organisation und Evolution von Plastiden-Genomen durch die eingeschränkte Verfügbarkeit genetischer Information limitiert. Heutzutage bietet die “Next Generation Sequencing (NGS)“ Technologie die Möglichkeit, große Mengen von Sequenzierungsdaten für phylogenetische und evolutionäre Studien zu nutzen, insbesondere von Chloroplasten-DNA. Allerdings sind die molekularen Mechanismen, die die plastidäre Genomevolution vorantreiben, und deren Relevanz für Adaptionsvorgänge weitgehend unverstanden. Das Ziel dieser Arbeit war diese Wissenslücke durch die Identifizierung und Analyse der Protein-kodierenden Sequenzen (CDS) von Chloroplasten aus Blütenpflanzen zu schließen. Mit Hilfe einer “Shot Gun“ Genomsequenzierung wurden von mehr als 1.100 repräsentativen Wildarten aus einer alpinen Flora die Gene mit hoher Kopienzahl sequenziert. Die wichtigsten Ergebnisse waren: 1) Durch die phylogenetische Rekonstruktion von 34 Taxa von Aquilegia mit Hilfe von zwei Datensätzen konnte auf der Gattungsebene die Beziehungen zwischen eurasischen Taxa grundlegend bewertet werden. Dabei kodieren chloroplastidäre Gene mit geringem Guanin-Cytosin (GC)-Gehalt und geringerem GC-Gehalt an der dritten Position des Codons für Proteine mit erhöhtem Anteil von Aminosäurepolymorphismen. 2) Auf Familienebene wurden 71 Chloroplasten CDS von 95 Arten in der Familie Brassicaceae verwendet, um ihre phylogenetischen Beziehungen zu rekonstruieren und die Muster der zugrundeliegenden molekularen Evolution zu analysieren. Dabei wurden insgesamt 33 Gene gefunden, die positiver Selektion ausgesetzt sind. Insgesamt wurden in dieser Studie drei große phylogenetische Linien (I-III) definiert. 3) Verschiedene bioinformatische Ansätze wurden verwendet, um natürliche Selektion bei 11 verschiedenen Familien nachzuweisen. Jede Familie wurde bezüglich ihrer chloroplastidären CDS untersucht und eine Reihe von Gene mit erhöhter positiver Selektion gefunden. Darunter war das rbcL Gen, das bei 8 der 11 Familien positiver Selektion ausgesetzt ist, was auf eine wiederkehrende funktionale Selektion hinweist. Insgesamt 46 Äste in den 11 Familien-Phylogenien zeigten Muster molekularer Evolution auf, die mit positiver Selektion übereinstimmten, und im Allgemeinen waren die Selektionsmuster meist im Einklang mit gerichteter Selektion. Fünf ausgewählte Familien wurden daraufhin untersucht, ob das Verhältnis zwischen nicht-synonymer und synonymer Nukeotidaustausche sich signifikant zwischen Taxa aus unterschiedlicher Höhenlagen unterscheidet und es wurden vier solcher Gene gefunden. Außerdem wurde untersucht, ob diese Ergebnisse durch RNA-Editierung beeinflusst werden könnten. Zusammengefasst leistet diese Arbeit eine erfolgreiche groß angelegte Anwendung der NGS-Technologie zur Aufklärung von molekularen Evolutionsmustern auf ii verschiedenen Ebenen der Angiospermen-Phylogenie und bietet neue Einsichten in strukturelle und funktionellen Merkmale des Chloroplastengenoms und seiner Beziehungen zur Adaption bei Wildpflanzen. iii iv Contents Summary .............................................................................................................................. i Zusammenfassung............................................................................................................... ii List of figures ................................................................................................................... viii List of tables ....................................................................................................................... ix Abbreviations ...................................................................................................................... x 1. Introduction ..................................................................................................................... 1 1.1 The angiosperms .................................................................................................... 1 1.1.1 Description of angiosperms ........................................................................... 1 1.1.2 Important genera and families in angiosperms for this study ........................ 2 1.1.2.1 The Aquilegia genus ............................................................................... 2 1.1.2.2 The Brassicaceae family ........................................................................ 2 1.1.2.1 Other important families ........................................................................ 3 1.2 The chloroplast ...................................................................................................... 4 1.2.1 Description of the chloroplast ........................................................................ 4 1.2.2 General characteristics of the chloroplast genome ........................................ 5 1.2.3 Advance in chloroplast genome sequencing technology ............................... 7 1.3 Phylogenetic studies of plastomes ......................................................................... 9 1.3.1 Systematic phylogeny studies in angiosperms............................................... 9 1.3.2 Current phylogenetic studies in the Aquilegia genus................................... 11 1.3.3 Current phylogenetic studies in the Brassicaceae family ............................ 11 1.4 Molecular evolutionary studies of plastomes ...................................................... 12 1.4.1 The driving forces of evolution ..................................................................
Recommended publications
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Taxa Named in Honor of Ihsan A. Al-Shehbaz
    TAXA NAMED IN HONOR OF IHSAN A. AL-SHEHBAZ 1. Tribe Shehbazieae D. A. German, Turczaninowia 17(4): 22. 2014. 2. Shehbazia D. A. German, Turczaninowia 17(4): 20. 2014. 3. Shehbazia tibetica (Maxim.) D. A. German, Turczaninowia 17(4): 20. 2014. 4. Astragalus shehbazii Zarre & Podlech, Feddes Repert. 116: 70. 2005. 5. Bornmuellerantha alshehbaziana Dönmez & Mutlu, Novon 20: 265. 2010. 6. Centaurea shahbazii Ranjbar & Negaresh, Edinb. J. Bot. 71: 1. 2014. 7. Draba alshehbazii Klimeš & D. A. German, Bot. J. Linn. Soc. 158: 750. 2008. 8. Ferula shehbaziana S. A. Ahmad, Harvard Pap. Bot. 18: 99. 2013. 9. Matthiola shehbazii Ranjbar & Karami, Nordic J. Bot. doi: 10.1111/j.1756-1051.2013.00326.x, 10. Plocama alshehbazii F. O. Khass., D. Khamr., U. Khuzh. & Achilova, Stapfia 101: 25. 2014. 11. Alshehbazia Salariato & Zuloaga, Kew Bulletin …….. 2015 12. Alshehbzia hauthalii (Gilg & Muschl.) Salariato & Zuloaga 13. Ihsanalshehbazia Tahir Ali & Thines, Taxon 65: 93. 2016. 14. Ihsanalshehbazia granatensis (Boiss. & Reuter) Tahir Ali & Thines, Taxon 65. 93. 2016. 15. Aubrieta alshehbazii Dönmez, Uǧurlu & M.A.Koch, Phytotaxa 299. 104. 2017. 16. Silene shehbazii S.A.Ahmad, Novon 25: 131. 2017. PUBLICATIONS OF IHSAN A. AL-SHEHBAZ 1973 1. Al-Shehbaz, I. A. 1973. The biosystematics of the genus Thelypodium (Cruciferae). Contrib. Gray Herb. 204: 3-148. 1977 2. Al-Shehbaz, I. A. 1977. Protogyny, Cruciferae. Syst. Bot. 2: 327-333. 3. A. R. Al-Mayah & I. A. Al-Shehbaz. 1977. Chromosome numbers for some Leguminosae from Iraq. Bot. Notiser 130: 437-440. 1978 4. Al-Shehbaz, I. A. 1978. Chromosome number reports, certain Cruciferae from Iraq.
    [Show full text]
  • Intro Outline
    THE REPRODUCTIVE ECOLOGY OF TWO TERRESTRIAL ORCHIDS, CALADENIA RIGIDA AND CALADENIA TENTACULATA RENATE FAAST Submitted for the degree of Doctor of Philosophy School of Earth and Environmental Sciences The University of Adelaide, South Australia December, 2009 i . DEcLARATION This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Renate Faast and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines. Published works contained within this thesis: Faast R, Farrington L, Facelli JM, Austin AD (2009) Bees and white spiders: unravelling the pollination' syndrome of C aladenia ri gída (Orchidaceae). Australian Joumal of Botany 57:315-325. Faast R, Facelli JM (2009) Grazrngorchids: impact of florivory on two species of Calademz (Orchidaceae). Australian Journal of Botany 57:361-372. Farrington L, Macgillivray P, Faast R, Austin AD (2009) Evaluating molecular tools for Calad,enia (Orchidaceae) species identification.
    [Show full text]
  • The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution
    The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution Dissertation submitted to the Combined Faculties for Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Liza Paola Ding born in Mosbach, Baden-Württemberg, Germany Oral examination: 22.12.2014 Referees: Prof. Dr. Marcus A. Koch Prof. Dr. Claudia Erbar Table of contents INTRODUCTION ............................................................................................................. 18 1 THE MUSTARD FAMILY ....................................................................................... 19 2 THE TRIBAL SYSTEM OF THE BRASSICACEAE ........................................... 22 3 CHALCONE SYNTHASE ........................................................................................ 23 PART 1: TROUBLE WITH THE OUTGROUP............................................................ 27 4 MATERIAL AND METHODS ................................................................................. 28 4.1 Experimental set-up ......................................................................................................................... 28 4.1.1 Plant material and data composition .............................................................................................. 28 4.1.2 DNA extraction and PCR amplification ........................................................................................
    [Show full text]
  • M.Sc Sem Ii :Mbotcc 9, Practical( Virtual Lab E –Content )
    M.SC SEM II :MBOTCC 9, PRACTICAL( VIRTUAL LAB E –CONTENT ) FACULTY MEMBER : Dr Tanuja, University Department of Botany,Patliputra University Aim: Study and describe flowering plant of family Crucifeare(Brassicaceae) Principle: Taxonomy deals with identification, nomenclature and classification of organisms. Bentham and Hooker's system of classification is universally used for classification of plants. Field identification of plants is based primarily on morphological features particularly the floral characters. Requirement: Locally available plant specimen of cruciferae. Each specimen should have at least a small branch with a few inter nodes, leaves, flowers and fruits; glass slides, cover glass, water, 100 ml beakers, petridish, razor, blade, needles, brush, hand lens, dissecting microscope and compound microscope. Keep the twigs in beakers containing water. Make yourself familiar with the terms given to describe the habit of plant, its root system, stem and leaf, inflorescence and flowers. Describe the vegetative and floral features of the plant in the same sequence using terms described therein. Observe the flower bud under dissection microscope or a hand lens and note the aestivation patterns of calyx and corolla, number of sepals and petals (tri, tetra, pentamerous), number of stamens. Cut LS of the flower, place it on a slide and observe under the dissecting microscope to study: •• • • • Position (attachment) of stamens – opposite/alternate to petals; free or epipetalous; extrorse/ introrse anthers (anther lobes in the bud face away from axis – extrorse; anther lobes in the bud face towards the main axis – introrse). • • •• • Number of carpels (mono, bi, tri- carpellary); Position of the ovary (epigynous, perigynous, hypogynous). Mount a stamen on a slide and study the attachment of filament to anther (basifixed, dorsifixed, versatile, adnate), dehiscence pattern of anther (porous, longitudinal), number of anther lobes (monothecous, dithecous).
    [Show full text]
  • HANDBOOK of Medicinal Herbs SECOND EDITION
    HANDBOOK OF Medicinal Herbs SECOND EDITION 1284_frame_FM Page 2 Thursday, May 23, 2002 10:53 AM HANDBOOK OF Medicinal Herbs SECOND EDITION James A. Duke with Mary Jo Bogenschutz-Godwin Judi duCellier Peggy-Ann K. Duke CRC PRESS Boca Raton London New York Washington, D.C. Peggy-Ann K. Duke has the copyright to all black and white line and color illustrations. The author would like to express thanks to Nature’s Herbs for the color slides presented in the book. Library of Congress Cataloging-in-Publication Data Duke, James A., 1929- Handbook of medicinal herbs / James A. Duke, with Mary Jo Bogenschutz-Godwin, Judi duCellier, Peggy-Ann K. Duke.-- 2nd ed. p. cm. Previously published: CRC handbook of medicinal herbs. Includes bibliographical references and index. ISBN 0-8493-1284-1 (alk. paper) 1. Medicinal plants. 2. Herbs. 3. Herbals. 4. Traditional medicine. 5. Material medica, Vegetable. I. Duke, James A., 1929- CRC handbook of medicinal herbs. II. Title. [DNLM: 1. Medicine, Herbal. 2. Plants, Medicinal.] QK99.A1 D83 2002 615′.321--dc21 2002017548 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • Jill C. Preston 2,4 , Lena C. Hileman 2 , and Pilar Cubas 3
    American Journal of Botany 98(3): 397–403. 2011. R EDUCE, REUSE, AND RECYCLE: 1 D EVELOPMENTAL EVOLUTION OF TRAIT DIVERSIFICATION 3 Jill C. Preston 2,4 , Lena C. Hileman 2 , and Pilar Cubas 2 Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045 USA; and 3 Departamento de Gen é tica Molecular de Plantas, Centro Nacional de Biotecnolog í a/CSIC, Campus Universidad Aut ó noma de Madrid 28049 Madrid, Spain A major focus of evolutionary developmental (evo-devo) studies is to determine the genetic basis of variation in organismal form and function, both of which are fundamental to biological diversifi cation. Pioneering work on metazoan and fl owering plant systems has revealed conserved sets of genes that underlie the bauplan of organisms derived from a common ancestor. However, the extent to which variation in the developmental genetic toolkit mirrors variation at the phenotypic level is an active area of re- search. Here we explore evidence from the angiosperm evo-devo literature supporting the frugal use of genes and genetic pathways in the evolution of developmental patterning. In particular, these examples highlight the importance of genetic pleiotropy in dif- ferent developmental modules, thus reducing the number of genes required in growth and development, and the reuse of particular genes in the parallel evolution of ecologically important traits. Key words: CRABS CLAW ; CYCLOIDEA ; evo-devo; FRUITFULL ; independent recruitment; KNOX1; parallelism; trait evolution. Organisms show remarkable variation in phenotypic form in metazoan animals and nonfl owering plants (e.g., Rensing and function, both of which are fundamental to biological di- et al., 2008 ; Sakakibara et al., 2008 ; reviewed in Ca ñ estro versifi cation.
    [Show full text]
  • Duplications and Expression of DIVARICATA-Like Genes in Dipsacales
    Duplications and Expression of DIVARICATA-Like Genes in Dipsacales Dianella G. Howarth* and Michael J. Donoghue *Department of Biological Sciences, St. John’s University, Queens, NY; and Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT The genetics underlying flower symmetry shifts between radial and bilateral symmetry has been intensively studied in the model Antirrhinum majus. Understanding the conservation or diversification of this genetic pathway in other plants is of special interest in understanding angiosperm evolution and ecology. Evidence from Antirrhinum indicates that TCP and MYB transcription factors, especially CYCLOIDEA (CYC), DICHOTOMA (DICH), DIVARICATA (DIV), and RADIALIS (RAD) play a role in specifying dorsal identity (CYC, DICH, and RAD) and ventral identity (DIV) in the corolla and androecium of monosymmetric (bilateral) flowers. Previous data indicate that the ECE clade of TCP genes (including CYC and DICH) underwent two duplication events around the diversification of the core eudicots. In this study, we examined the duplication events within Dipsacales, which contains both radially and bilaterally symmetrical flowered species. Additionally, we report here the phylogenetic relationships of the DIV-like genes across core eudicots. Like TCP genes, we found three core eudicot clades of DIV-like genes, with duplications occurring around the diversification of the core eudicots, which we name DIV1, DIV2, and DIV3. The Antirrhinum genes, DIVARICATA and its sister DVL1, fall into the DIV1 clade. We also found additional duplications within these clades in Dipsacales. Specifically, the Caprifoliaceae (bilaterally symmetrical clade) duplicated independently in each of the three core eudicot DIV clades. Downloaded from Using reverse transcription polymerase chain reaction (rtPCR), we showed that most of these copies are expressed across floral tissues in the Dipsacales species Heptacodium miconioides.
    [Show full text]
  • Evolutionary Genetics of Core Eudicot Inflorescence and Flower Development
    ® International Journal of Plant Developmental Biology ©2010 Global Science Books Evolutionary Genetics of Core Eudicot Inflorescence and Flower Development Jill C. Preston* Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA Corresponding author : * [email protected] ABSTRACT The genetic basis of flowering is best understood in the model core eudicot species Arabidopsis thaliana (Brassicaceae), and involves the genetic reprogramming of shoot apical meristems, ending in the production of flowers. Although inflorescences and flowers of core eudicots share a common ground plan, variation in architecture, shape and ornamentation suggests repeated modifications to this ancestral plan. Comparative studies, primarily in Brassicaceae and Leguminoseae (rosids), and Asteraceae, Plantaginaceae and Solanaceae (asterids), have revealed a common developmental framework for flowering across core eudicots. This serves as a basis for understanding genetic changes that underlie the diversification of inflorescence and floral form. Recent work is starting to reveal the relative importance of regulatory versus protein coding changes in genes involved in diversification of inflorescence and flower development across core eudicots. Furthermore, these studies highlight the importance of phylogenetic history for understanding functional conservation of duplicated genes. _____________________________________________________________________________________________________________ Keywords: Antirrhinum
    [Show full text]
  • Checklist of Gypsophilous Vascular Flora in Italy
    A peer-reviewed open-access journal PhytoKeys 103: 61–82 (2018) Checklist of gypsophilous vascular flora in Italy 61 doi: 10.3897/phytokeys.103.25690 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Checklist of gypsophilous vascular flora in Italy Carmelo Maria Musarella1,*, Antonio Jesús Mendoza-Fernández2,*, Juan Francisco Mota2,*, Alessandro Alessandrini3, Gianluigi Bacchetta4,5, Salvatore Brullo6, Orazio Caldarella7, Giampiero Ciaschetti8, Fabio Conti9, Luciano Di Martino8, Amedeo Falci10, Lorenzo Gianguzzi11, Riccardo Guarino12, Aurelio Manzi13, Pietro Minissale6, Sergio Montanari14, Salvatore Pasta15, Lorenzo Peruzzi16, Lina Podda4, Saverio Sciandrello17, Leonardo Scuderi18, Angelo Troia12, Giovanni Spampinato1,* 1 Department of AGRARIA, Mediterranean University of Reggio Calabria, Loc. Feo di Vito, 89122 Reggio Calabria, Italy 2 Department of Biology and Geology, CECOUAL, University of Almeria, Desp. 1.101. Edificio Cientifico Tecnico II – B. Ctra. Sacramento s/n. La Cañada de San Urbano, 04120 Almeria, Spain3 Regional Institute for Cultural Heritage. Via Galliera 21 40121 Bologna Italy 4 Centre for the Conservation of Biodiversity (CCB), Life and Environmental Sciences Department, University of Cagliari,Viale S. Ignazio da Laconi 11- 13, 09123 – Cagliari, Italy 5 Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale S. Ignazio da Laconi 9-11, 09123 Cagliari, Italy 6 Department of Biological, Geological and Environmental Sciences, University of Catania, Via A. Longo 19, 95125 Catania, Italy 7 Via Maria SS. Mediatrice n° 38, 90129 Palermo, Italy 8 Majella National Park, Via Badia 28 I-67039 Sulmona (AQ), Italy 9 Center of floristic research of the Apennine – School of Biosciences and Veterinary Medicine, University of Camerino, Italy 10 Via Libertà n° 200, 93100 Caltanissetta, Italy 11 Department of Agricultural and Forest Sciences.
    [Show full text]
  • Appendix O20309
    Oikos o20309 Soliveres, S., Torices, R. and Maestre, F. T. 2012. Evolutionary relationships can be more important than abiotic conditions in predicting the outcome of plant–plant interactions. – Oikos 121: 1638-1648. Appendix 1 Table A1. Summary of the outcomes of the pairwise interactions found at each site. Plot name Stipa tenacissima Quercus coccifera Neutral/negative Positive Neutral/negative Positive · Atractylis humilis · Atractylis humilis · Biscutella valentina · Biscutella valentina · Coris monspeliensis · Cynodon dactylon · Coris monspeliensis · Fumana thymifolia · Helianthemum violaceum · Cynodon dactylon · Fumana thymifolia · Helianthemum violaceum · Polygala rupestris · Polygala rupestris Barrax · Teucrium pseudochamaepytis · Sedum sediforme · Sedum sediforme · Stipa parviflora · Teucrium sp. · Teucrium sp · Stipa parviflora · Teucrium pseudochamaepytis · Thesium divaricatum · T. capitatum · Teucrium capitatum · Thesium divaricatum ·Thymus vulgaris · Thymus vulgaris · T. zygis · T. zygis · Genista scorpius · Genista scorpius · Helianthemum cinereum · Rosmarinus officinalis · Helianthemum cinereum Camporreal · Rosmarinus officinalis · Teucrium pseudochamaepytis · Teucrium pseudochamaepytis · Thymus vulgaris · Thymus vulgaris · Anthyllis citisoides · Asparagus horridus · Fumana sp. · Anthyllis citisoides · Asphodelus ramosus · Fumana thymifolia · F. thymifolia · Asparagus horridus Carrascoy · Brachypodium retusum · Globularia allipum · Globularia allipum · Asphodelus ramosus · Cistus clusii · Helianthemum marifolium · Helianthemum
    [Show full text]