Refining the Mass Estimate for the Intermediate-Mass Black Hole Candidate in NGC 3319

Total Page:16

File Type:pdf, Size:1020Kb

Refining the Mass Estimate for the Intermediate-Mass Black Hole Candidate in NGC 3319 Publications of the Astronomical Society of Australia (PASA) doi: 10.1017/pas.2021.xxx. Refining the mass estimate for the intermediate-mass black hole candidate in NGC 3319 Benjamin L. Davis1,2,∗ and Alister W. Graham1 1Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia 2Center for Astro, Particle, and Planetary Physics (CAP3), New York University Abu Dhabi Abstract Recent X-ray observations by Jiang et al. have identified an active galactic nucleus (AGN) in the bulgeless spiral galaxy NGC 3319, located just 14.3 ± 1.1 Mpc away, and suggest the presence of an 2 5 intermediate-mass black hole (IMBH; 10 ≤ M•/M ≤ 10 ) if the Eddington ratios are as high as 3 to 3 × 10−3. In an effort to refine the black hole mass for this (currently) rare class of object, we have explored multiple black hole mass scaling relations, such as those involving the (not previously used) velocity dispersion, logarithmic spiral-arm pitch angle, total galaxy stellar mass, nuclear star cluster mass, rotational velocity, and colour of NGC 3319, to obtain ten mass estimates, of differing accuracy. +7.02 4 5 We have calculated a mass of 3.14−2.20 × 10 M , with a confidence of 84% that it is ≤10 M , based on the combined probability density function from seven of these individual estimates. Our conservative approach excluded two black hole mass estimates (via the nuclear star cluster mass, and the fundamental plane of black hole activity — which only applies to black holes with low accretion rates) that were upper 5 5 limits of ∼10 M , and it did not use the M•–L2−10 keV relation’s prediction of ∼10 M . This target provides an exceptional opportunity to study an IMBH in AGN mode and advance our demographic knowledge of black holes. Furthermore, we introduce our novel method of meta-analysis as a beneficial technique for identifying new IMBH candidates by quantifying the probability that a galaxy possesses an IMBH. Keywords: black hole physics – galaxies: active – galaxies: evolution – galaxies: individual: NGC 3319 – galaxies: spiral – galaxies: structure Original unedited manuscript, accepted for publication by PASA, May 7, 2021. 1 INTRODUCTION Mezcua, 2017; Koliopanos, 2017; Inayoshi et al., 2020; Sahu et al., 2019a). There is a largely-missing population of intermediate- mass black holes (IMBHs) with masses higher than those As yet, there is no consensus as to how SMBHs formed by stable, single stars today (M• . 100 M ) and came to be. While the observed extent of quasar ac- arXiv:2105.04717v1 [astro-ph.GA] 11 May 2021 less massive than the supermassive black holes (SMBHs; tivity over the history of our Universe has revealed that 5 10 1 10 M ≤ M• . 10 M ) known to reside at the cen- the accretion of baryons fattened them up (e.g. Soltan, tres of massive galaxies. Not surprisingly, astronomers 1982; Shankar et al., 2004), we do not know what their around the world have been hotly pursuing the much- (potentially range of) birth masses were. Some theo- anticipated discovery of IMBHs for some time (e.g. Miller ries have speculated that their birth or ‘seed’ masses 5 & Colbert, 2004). In addition to providing a fundamen- were ≈10 M , thereby providing a kick-start to explain tal input to the cosmic inventory of our Universe, the the early-formation of the high-z, active galactic nuclei 9 abundance, or rarity, of IMBHs has implications for the (AGN) with sizeable black hole masses around ≈10 M formation of the Universe’s SMBHs (Graham, 2016b; (e.g. Mortlock et al., 2011; Yang et al., 2020; Mignoli et al., 2020). Theories have included primordial black ∗Author for correspondence: BLD, E-mail: [email protected] holes (e.g. Grobov et al., 2011), massive metal-free Pop- 1The massive central object in the quasar TON 618 is alleged 10 ulation III stars which subsequently collapse (or collide, to have the most massive black hole with a mass of 6.61×10 M , estimated from its Hβ emission line and a virial f-factor of 5.5 e.g. Alister Seguel et al., 2020) to form massive black (Shemmer et al., 2004; Onken et al., 2004). holes (e.g. Madau & Rees, 2001; Schneider et al., 2002), 1 2 Davis & Graham or the direct collapse of massive gas clouds, effectively ideas would place, at least some, IMBHs at the centres by-passing the stellar phase of evolution (e.g. Bromm & of galaxies, where established black hole mass scaling Loeb, 2003; Mayer et al., 2010). relations involving some property of the host galaxy can The suggestion of massive seeds arose from the no- be applied. tion that the ‘Eddington limit’ (Eddington, 1925) of gas Recent Chandra X-ray Observatory (CXO; Weisskopf accretion onto a black hole implied that stellar-mass et al., 2000) observations (Soria, 2016, see also Chilingar- black holes did not have sufficient time to grow into the ian et al. 2018 and Bi et al. 2020), have discovered IMBH SMBHs observed in the young, high-redshift AGN. How- candidates at the centres2 of several nearby, low-mass ever, the Eddington limit on the accretion rate applies galaxies. Long exposures have enabled the discovery of only to (unrealistic) spherical conditions (Nayakshin faint X-ray point-sources (consistent with low-mass black et al., 2012; Alexander & Natarajan, 2014) and can holes accreting with low Eddington ratios) in galaxies be significantly exceeded in real systems. For example, which have been predicted to host a central IMBH based super-critical (super-Eddington) accretion flows onto upon each galaxy’s velocity dispersion, luminosity, and massive black holes can occur when the accretion flow spiral-arm pitch angle (Koliopanos et al., 2017; Graham is mostly confined to the disk plane while most of the & Soria, 2019; Graham et al., 2019). The high-energy radiation emerges in outflows along the rotation axis X-ray photons, originating from the (not so) dead cen- (Abramowicz et al., 1980; Jiang et al., 2014; Pezzulli tres of the galaxies, are likely coming from the accretion et al., 2016). Hyper-Eddington accretion rates can exist disks around black holes because of their point-source in spherically-symmetric accretion flows when energy nature, where emission favours active black holes rather advection reduces radiative efficiency (Inayoshi et al., than spatially extended star formation. 2016). Thus, the practicality of super-critical accretion Several studies have identified IMBH candidates in has been invoked to explain the early existence of SMBHs galaxies based on single, or a few, black hole mass esti- at high redshifts (Volonteri & Rees, 2005; Volonteri, 2012; mates. In this work, we have selected a galaxy, NGC 3319, Volonteri & Bellovary, 2012; Volonteri et al., 2015). Be- where we can apply a wealth of independent black hole sides, most ultra-luminous X-ray sources are nowadays mass estimates. NGC 3319 is a gas-rich, bulgeless, late- explained as stellar-mass X-ray binaries accreting much type galaxy. It is a strongly-barred spiral galaxy classified faster than their Eddington limit (Feng & Soria, 2011; as SBcd(rs) (de Vaucouleurs et al., 1991) and has its bar Kaaret et al., 2017). Such accretion negates the need for aligned with the major axis (Randriamampandry et al., massive black hole seeds. 2015). Moreover, Jiang et al.(2018) identify it as pos- An additional motive for starting AGN with massive sessing a low-luminosity AGN with a high-accretion-rate seeds was that black holes with masses intermediate be- signalled by a nuclear X-ray point source and assume 2 5 tween that of stellar-mass black holes and SMBHs had a black hole mass between 3 × 10 M and 3 × 10 M not been directly observed, and therefore seemed not to based on a high Eddington ratio of 1 to 10−3, despite a exist. However, this may be a sample selection bias be- non-detection in the radio. Using the X-ray variability, 5±2 cause the sphere-of-gravitational-influence around such they report an estimate of ∼10 M , and using the IMBHs, where one would directly observe a Keplerian ‘fundamental plane of black hole activity’, they reported 5 rotation curve, is typically too small to resolve spatially. an upper limit of 10 M in the absence of radio data. Furthermore, there is now a rapidly rising number of NGC 3319 had previously been recognised as a possi- IMBH candidates based upon indirect estimates of the ble low-ionisation nuclear emission-line region (LINER) black hole mass (Farrell et al., 2009; Secrest et al., 2012; galaxy (Heckman et al., 1980; Pogge, 1989), or at least Baldassare et al., 2015; Graham et al., 2016; Kızıltan it possessed an uncertain H i i nucleus (Ho et al., 1997). et al., 2017; Nguyen et al., 2017; Chilingarian et al., Recently, Baldi et al.(2018) classified its nuclear type 2018; Mezcua et al., 2018; Jiang et al., 2018; Nguyen as a LINER based on BPT (Baldwin et al., 1981) di- et al., 2019; Graham & Soria, 2019; Graham et al., 2019; agram diagnostics. This classification is of significance Woo et al., 2019; Lin et al., 2020). In addition, there since AGN with black holes are suspected sources of are currently five IMBH candidates in the Milky Way stimulating LINER spectral emission (Heckman, 1980). (Takekawa et al., 2020). In this study, we endeavour to constrain better the There is no shortage of scenarios for how a bridging mass of the potential IMBH in the nucleus of NGC 3319 population of IMBHs may have arisen. Possible path- 2 ways include the runaway collapse of dense ‘nuclear star Some of the off-centre X-ray sources that were detected may also be IMBHs.
Recommended publications
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other.
    [Show full text]
  • For Review Only
    PASA Refining the mass estimate for the intermediate-mass black Forhole Review candidate in NGCOnly 3319 Journal: PASA Manuscript ID Draft Manuscript Type: Research Paper black hole physics < Physical data and processes, galaxies: active < Keyword: Galaxies, galaxies: evolution < Galaxies, galaxies: individual: . < Galaxies, galaxies: spiral < Galaxies, galaxies: structure < Galaxies Recent X-ray observations by Jiang et al.\ have identified an active galactic nucleus (AGN) in the bulgeless spiral galaxy NGC~3319, located just $14.3\pm1.1$\,Mpc away, and suggest the presence of an intermediate-mass black hole (IMBH; $10^2\leq M_\bullet/\mathrm{M_{\odot}}\leq10^5$) if the Eddington ratios are as high as 3 to $3\times10^{-3}$. In an effort to refine the black hole mass for this (currently) rare class of object, we have explored multiple black hole mass scaling relations, such as those involving the (not previously used) velocity dispersion, logarithmic spiral-arm pitch angle, total galaxy stellar mass, nuclear star cluster mass, rotational velocity, and colour of NGC~3319, to obtain ten mass estimates, of differing accuracy. We have calculated a mass of $3.14_{- 2.20}^{+7.02}\times10^4\,\mathrm{M_\odot}$, with a confidence of Abstract: 84\% that it is $\leq$$10^5\,\mathrm{M_\odot}$, based on the combined probability density function from seven of these individual estimates. Our conservative approach excluded two black hole mass estimates (via the nuclear star cluster mass, and the fundamental plane of black hole activity --- which only applies to black holes with low accretion rates) that were upper limits of $\sim$$10^5\,{\rm M}_{\odot}$, and it did not use the $M_\bullet$--$L_{\rm 2-10\,keV}$ relation's prediction of $\sim$$10^5\,{\rm M}_{\odot}$.
    [Show full text]
  • What's in This Issue?
    A JPL Image of surface of Mars, and JPL Ingenuity Helicioptor illustration. July 11th at 4:00 PM, a family barbeque at HRPO!!! This is in lieu of our regular monthly meeting.) (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory) This is a pot-luck. Club will provide briskett and beverages, others will contribute as the spirit moves. What's In This Issue? President’s Message Member Meeting Minutes Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night SubReddit and Discord BRAS Member Astrophotos ARTICLE: Astrophotography with your Smart Phone Observing Notes: Canes Venatici – The Hunting Dogs Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society BRAS YouTube Channel Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 23 July 2021 President’s Message Hey everybody, happy fourth of July. I hope ya’ll’ve remembered your favorite coping mechanism for dealing with the long hot summers we have down here in the bayou state, or, at the very least, are making peace with the short nights that keep us from enjoying both a good night’s sleep and a productive observing/imaging session (as if we ever could get a long enough break from the rain for that to happen anyway). At any rate, we figured now would be as good a time as any to get the gang back together for a good old fashioned potluck style barbecue: to that end, we’ve moved the July meeting to the Sunday, 11 July at 4PM at HRPO.
    [Show full text]
  • Black Hole /1
    black hole /1 Black holes are a kind of celestial body in the universe of modern general relativity. The gravity of a black hole is large, so that the escape velocity in the horizon is greater than the speed of light. A black hole cannot be directly observed, but its existence and quality can be learned indirectly, and its influence on other things is observed.. black hole /1 The odd point is a form of the universe before the Big Bang. infinite material density, infinitely curved spacetime and infinite entropy values approaching zero. Installation art /2 Moisture temperature odor (slightly hot and humid River smell) Wooden iron pvc Big belly button /3 a flesh-colored hole, like the slow gaze of the origin of life No picture frame, even transition with white wall cement /4 The depression of the concrete floor shakes the impression of a solid flat land, representing the hidden and potentially dangerous Fear of the hole in distant memory Large sculpture /1 Huge spiral sag, in the fields, deserts, river banks... The spire-shaped above-ground part, built of excavated soil, replaces part of the ground and underground, mountains and sea, and expresses the same borderless concept. Black hole model/1 /1 The only difference between a black hole and us is that the center is made up of ultra-dense matter. If we narrow our sun to 6 . kilometers wide, then the sun becomes a black hole. The same theory can be applied to the earth and our bodies 6 Black hole /1 001. 002. 003.
    [Show full text]
  • Classification of Galaxies Using Fractal Dimensions
    UNLV Retrospective Theses & Dissertations 1-1-1999 Classification of galaxies using fractal dimensions Sandip G Thanki University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Thanki, Sandip G, "Classification of galaxies using fractal dimensions" (1999). UNLV Retrospective Theses & Dissertations. 1050. http://dx.doi.org/10.25669/8msa-x9b8 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
    TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques.
    [Show full text]
  • Gas Accretion from Minor Mergers in Local Spiral Galaxies⋆
    A&A 567, A68 (2014) Astronomy DOI: 10.1051/0004-6361/201423596 & c ESO 2014 Astrophysics Gas accretion from minor mergers in local spiral galaxies? E. M. Di Teodoro1 and F. Fraternali1;2 1 Department of Physics and Astronomy, University of Bologna, 6/2, Viale Berti Pichat, 40127 Bologna, Italy e-mail: [email protected] 2 Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands Received 7 February 2014 / Accepted 28 May 2014 ABSTRACT We quantify the gas accretion rate from minor mergers onto star-forming galaxies in the local Universe using Hi observations of 148 nearby spiral galaxies (WHISP sample). We developed a dedicated code that iteratively analyses Hi data-cubes, finds dwarf gas-rich satellites around larger galaxies, and estimates an upper limit to the gas accretion rate. We found that 22% of the galaxies have at least one detected dwarf companion. We made the very stringent assumption that all satellites are going to merge in the shortest possible time, transferring all their gas to the main galaxies. This leads to an estimate of the maximum gas accretion rate of −1 0.28 M yr , about five times lower than the average star formation rate of the sample. Given the assumptions, our accretion rate is clearly an overestimate. Our result strongly suggests that minor mergers do not play a significant role in the total gas accretion budget in local galaxies. Key words. galaxies: interactions – galaxies: evolution – galaxies: kinematics and dynamics – galaxies: star formation – galaxies: dwarf 1. Introduction structures in the Universe grow by several inflowing events and have increased their mass content through a small number of The evolution of galaxies is strongly affected by their capabil- major mergers, more common at high redshifts, and through an ity of retaining their gas and accreting fresh material from the almost continuous infall of dwarf galaxies (Bond et al.
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Arxiv:1910.07760V3 [Astro-Ph.EP] 21 Jan 2020
    What Would Happen If We Were About 1 pc Away from a Supermassive Black Hole? Lorenzo Iorio1 Ministero dell’Istruzione, dell’Universit`ae della Ricerca (M.I.U.R.), Viale Unit`adi Italia 68, I-70125, Bari (BA), Italy [email protected] Received ; accepted arXiv:1910.07760v3 [astro-ph.EP] 21 Jan 2020 –2– Abstract We consider a hypothetical planet with the same mass m, radius R, angular mo- mentum S, oblateness J2, semimajor axis a, eccentricity e, inclination I, and obliquity ε of the Earth orbiting a main-sequence star with the same mass M⋆ and radius R⋆ of the Sun at a distance r 1 parsec pc from a supermassive black hole in the center of • ≃ the hosting galaxy with the same mass M of, say, M87∗. We preliminarily investigate some dynamical consequences of its presence• in the neighborhood of such a stellar system on the planet’s possibility of sustaining complex life over time. In particu- lar, we obtain general analytic expressions for the long-term rates of change, doubly averaged over both the planetary and the galactocentric orbital periods Pb and P , of e, I, ε, which are the main quantities directly linked to the stellar insolation. We• find that, for certain orbital configurations, the planet’s perihelion distance q = a (1 e) may greatly shrink and even lead to, in some cases, an impact with the star. I may− also notably change, with variations even of the order of tens of degrees. On the other hand, ε does not seem to be particularly affected, being shifted, at most, by 0◦.02 over 1 Myr.
    [Show full text]
  • Deprojecting Spiral Galaxies Using Fourier Analysis. Application to the Frei Sample?
    A&A 415, 849–861 (2004) Astronomy DOI: 10.1051/0004-6361:20034186 & c ESO 2004 Astrophysics Deprojecting spiral galaxies using Fourier analysis. Application to the Frei sample? C. Barber`a1, E. Athanassoula2, and C. Garc´ıa-G´omez1 1 D.E.I.M., Campus Sescelades, Avd. dels Pa¨ısos Catalans 26, 43007 Tarragona, Spain 2 Observatoire de Marseille, 2 Place Le Verier, 13248 Marseille cedex 04, France Received 12 August 2003 / Accepted 30 September 2003 Abstract. We present two methods that can be used to deproject spirals, based on Fourier analysis of their images, and discuss their potential and restrictions. Our methods perform particularly well for galaxies more inclined than 50◦ or for non-barred galaxies more inclined than 35◦. They are fast and straightforward to use, and thus ideal for large samples of galaxies. Moreover, they are very robust for low resolutions and thus are appropriate for samples of cosmological interest. The relevant software is available from us upon request. We use these methods to determine the values of the position and inclination angles for a sample of 79 spiral galaxies contained in the Frei et al. (1996) sample. We compare our results with the values found in the literature, based on other methods. We find statistically very good agreement Key words. galaxies: structure – galaxies: spiral 1. Introduction while the IA is the angle between the perpendicular to the plane of the galaxy and the line of sight. Several methods have been Disc galaxies are observed projected on the sky. Yet for many proposed so far to obtain these angles, the most commonly used purposes one needs to be able to deproject them.
    [Show full text]