Analysis of the Genetic Diversity of Grapevine Rupestris Stem Pitting-Associated Virus in Ontarian Vineyards and Construction of a Full-Length Infectious Clone

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of the Genetic Diversity of Grapevine Rupestris Stem Pitting-Associated Virus in Ontarian Vineyards and Construction of a Full-Length Infectious Clone Analysis of the genetic diversity of Grapevine rupestris stem pitting-associated virus in Ontarian vineyards and construction of a full-length infectious clone by Julia C. Hooker A thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Molecular and Cellular Biology ©Julia Hooker, April, 2017 ABSTRACT Analysis of the genetic diversity of Grapevine rupestris stem pitting-associated virus in Ontarian vineyards and construction of a full-length infectious clone Julia Catherine Hooker Advisor: University of Guelph, 2017 Dr. Baozhong Meng Advisory Committee: Dr. Peter Krell Dr. Annette Nassuth Grapevine rupestris stem pitting-associated virus (GRSPaV; Betaflexiviridae, Foveavirus) has been associated with a number of diseases including Syrah decline. Previous findings show GRSPaV sequence variants cluster into three or more main phylogroups, regardless of geographical location. Here, the genetic diversity of GRSPaV isolates from Ontarian vineyards was analyzed using broad-spectrum primers targeting the viral polymerase coding sequence. It was hypothesized that GRSPaV variants in Ontario are diverse and GRSPaV-SY variants are involved in Syrah decline symptoms. In total, 169 cDNA clones from 21 Vitis sources were used for phylogenetic analysis. Similarly to previous reports, four major lineages were observed; GRSPaV-PN, -SG1, -SY, and –GG. Variants of the GRSPaV–SY lineage were confirmed in all 14 sources tested with SY-specific primers. Syrah cultivars expressing red canopy decline symptoms had more clones clustering with the GRSPaV-SY lineage than those without observable decline symptoms. GRSPaV clones from 8 hybrid sources mostly clustered with GRSPaV-SY, followed distantly by GRSPaV-BS. A full-length infectious cDNA clone of a GRSPaV-SY-related variant is being constructed to further investigate this relationship. ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Baozhong Meng, for providing me with the opportunity to delve into the world of grapevine virology and for helping me pursue my passions in molecular virology. I would like to thank my committee members, Dr. Peter Krell and Dr. Annette Nassuth, for their knowledge and guidance throughout my research. I would also like to thank NSERC for funding through the Discovery grant and the NSERC Engage program. A big thank you to all my lab members, past and present. Thank you for years of laughter, dancing, and most importantly for going through the experience of this learning process with me. A special thank you to Dr. Huogen Xiao for all his time, patience, and lab lessons, in addition to assistance in collecting grapevine source material and RNA extractions. Thank you to Sunny Li for all the years of guidance and encouragement, and for help with troubleshooting for the full-length clone and sequencing work. Thank you to Mehdi Shabanian for his help in source material collection and providing cDNA from hybrid sources. A very special thank you to Deb Flett and Paula Russell for their guidance through each TA-ship and thesis writing. I truly do not think I could have made it without you two! Thank you to Erin and Diana at Student Counselling Services for their personal help. I would like to say a special thank you to my loving parents, siblings, friends, and cats for their continued love, encouragement, and support. A special shout out to my partner Nick for being my number 1 fan and for being such an important emotional support through all my research woes and breakthroughs iii iv TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................... viii LIST OF FIGURES ....................................................................................................................... ix LIST OF ABBREVIATIONS ........................................................................................................ xi LIST OF VIRUS ABBREVIATIONS .......................................................................................... xii CHAPTER 1: INTRODUCTION ................................................................................................... 1 1.1 Grapevine history: Cultivation and exchange of viral disease .............................................. 1 1.2 Grapevine viruses .................................................................................................................. 2 1.2.1 Fanleaf degeneration ....................................................................................................... 3 1.2.2 Grapevine leafroll disease complex ................................................................................ 4 1.3 GRSPaV implications in disease ........................................................................................... 6 1.4 GRSPaV taxonomy, genome and virion structure .............................................................. 12 1.5 Replication and life cycle .................................................................................................... 17 1.6 GRSPaV genetic diversity and phylogeny .......................................................................... 21 1.7 GRSPaV phylogroup disease associations .......................................................................... 30 1.8 Full-length infectious clones ............................................................................................... 31 1.9 FLCs in literature ................................................................................................................ 34 1.10 Rationale............................................................................................................................ 37 1.11 Hypotheses ........................................................................................................................ 38 1.12 Objectives .......................................................................................................................... 38 CHAPTER 2: MATERIALS AND METHODS .......................................................................... 40 2.1 GRSPaV Diversity .............................................................................................................. 40 2.1.1 Plant Total RNA extraction .......................................................................................... 40 2.1.2 RT-PCR of RdRp fragments for sequencing ................................................................ 40 2.1.3 Cloning of RdRp PCR products into pGEM-T-Easy ................................................... 41 2.1.4 Sanger sequencing of plasmid DNA ............................................................................ 42 2.1.5 Phylogenetic analysis of sequenced fragments ............................................................ 43 2.1.6 CP diversity .................................................................................................................. 43 2.2 Full-Length Clone ............................................................................................................... 45 2.2.1 Primers .......................................................................................................................... 45 2.2.2 PCR Amplification and Cloning of CaMV 35S Promoter ........................................... 45 v 2.2.3 RNA Extraction and RT-PCR of FLC Fragments ........................................................ 49 2.2.4 Cloning FLC fragments into pGEM-T-Easy ................................................................ 50 2.2.5 Overlap PCR of F2 and F3 ........................................................................................... 51 2.2.6 Sanger sequencing of FLC fragments in pGEM-T-Easy.............................................. 53 2.2.7 Cloning F4 and F3 into pBS35S ................................................................................... 56 CHAPTER 3: RESULTS .............................................................................................................. 57 3.1 GRSPaV Diversity .............................................................................................................. 57 3.1.1 Genetic diversity of GRSPaV from Vitis varieties ....................................................... 57 3.1.2 RSP35/RSP36 amino acid sequence alignment............................................................ 64 3.1.3 RSP35-SY/RSP36 to specifically target GRSPaV-SY ................................................. 66 3.1.4 Syrah cultivars with and without red canopy ............................................................... 68 3.1.6 CP Diversity sequencing outcomes .............................................................................. 74 3.2 Full-Length Clone ............................................................................................................... 75 3.2.1 Sequence analysis of CaMV 35S promoter and HDVnos terminator sequences ......... 75 3.2.2 Sequence analysis of pGEM-F2a and pGEM-F2b ....................................................... 76 3.2.3 Sequence analysis of pGEM-RSP13-36, pGEM-F3a and pGEM-F3b ......................... 77 3.2.4 Sequence analysis of pGEM-F4 ................................................................................... 79 3.2.5 Attempt to clone F4 into pBS-35S failed ..................................................................... 79 3.2.6 Attempt to clone F3 into pBS-35S failed ....................................................................
Recommended publications
  • Grapevine Virus Diseases: Economic Impact and Current Advances in Viral Prospection and Management1
    1/22 ISSN 0100-2945 http://dx.doi.org/10.1590/0100-29452017411 GRAPEVINE VIRUS DISEASES: ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT1 MARCOS FERNANDO BASSO2, THOR VINÍCIUS MArtins FAJARDO3, PASQUALE SALDARELLI4 ABSTRACT-Grapevine (Vitis spp.) is a major vegetative propagated fruit crop with high socioeconomic importance worldwide. It is susceptible to several graft-transmitted agents that cause several diseases and substantial crop losses, reducing fruit quality and plant vigor, and shorten the longevity of vines. The vegetative propagation and frequent exchanges of propagative material among countries contribute to spread these pathogens, favoring the emergence of complex diseases. Its perennial life cycle further accelerates the mixing and introduction of several viral agents into a single plant. Currently, approximately 65 viruses belonging to different families have been reported infecting grapevines, but not all cause economically relevant diseases. The grapevine leafroll, rugose wood complex, leaf degeneration and fleck diseases are the four main disorders having worldwide economic importance. In addition, new viral species and strains have been identified and associated with economically important constraints to grape production. In Brazilian vineyards, eighteen viruses, three viroids and two virus-like diseases had already their occurrence reported and were molecularly characterized. Here, we review the current knowledge of these viruses, report advances in their diagnosis and prospection of new species, and give indications about the management of the associated grapevine diseases. Index terms: Vegetative propagation, plant viruses, crop losses, berry quality, next-generation sequencing. VIROSES EM VIDEIRAS: IMPACTO ECONÔMICO E RECENTES AVANÇOS NA PROSPECÇÃO DE VÍRUS E MANEJO DAS DOENÇAS DE ORIGEM VIRAL RESUMO-A videira (Vitis spp.) é propagada vegetativamente e considerada uma das principais culturas frutíferas por sua importância socioeconômica mundial.
    [Show full text]
  • MOLECULAR BIOLOGY and EPIDEMIOLOGY of GRAPEVINE LEAFROLL- ASSOCIATED VIRUSES by BHANU PRIYA DONDA a Dissertation Submitted in Pa
    MOLECULAR BIOLOGY AND EPIDEMIOLOGY OF GRAPEVINE LEAFROLL- ASSOCIATED VIRUSES By BHANU PRIYA DONDA A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology MAY 2016 © Copyright by BHANU PRIYA DONDA, 2016 All Rights Reserved THANKS Bioengineering MAY 2014 © Copyright by BHANU PRIYA DONDA, 2016 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of BHANU PRIYA DONDA find it satisfactory and recommend that it be accepted. Naidu A. Rayapati, Ph.D., Chair Dennis A. Johnson, Ph.D. Duroy A. Navarre, Ph.D. George J. Vandemark, Ph.D. Siddarame Gowda, Ph.D. ii ACKNOWLEDGEMENT I would like to express my respect and deepest gratitude towards my advisor and mentor, Dr. Naidu Rayapati. I am truly appreciative of the opportunity to pursue my doctoral degree under his guidance at Washington State University (WSU), a challenging and rewarding experience that I will value the rest of my life. I am thankful to my doctoral committee members: Dr. Dennis Johnson, Dr. George Vandemark, Dr. Roy Navarre and Dr. Siddarame Gowda for helpful advice, encouragement and guidance. I would like to thank Dr. Sandya R Kesoju (USDA-IAREC, Prosser, WA) and Dr. Neil Mc Roberts (University of California, Davis) for their statistical expertise, suggestions and collaborative research on the epidemiology of grapevine leafroll disease. To Dr. Gopinath Kodetham (University of Hyderabad, Hyderabad, India), thank you for believing in me and encouraging me to go the extra mile. I thank Dr. Sridhar Jarugula (Ohio State University Agricultural Research and Development Center, Wooster, University of Ohio, Ohio, USA), Dr.
    [Show full text]
  • Kaistella Soli Sp. Nov., Isolated from Oil-Contaminated Soil
    A001 Kaistella soli sp. nov., Isolated from Oil-contaminated Soil Dhiraj Kumar Chaudhary1, Ram Hari Dahal2, Dong-Uk Kim3, and Yongseok Hong1* 1Department of Environmental Engineering, Korea University Sejong Campus, 2Department of Microbiology, School of Medicine, Kyungpook National University, 3Department of Biological Science, College of Science and Engineering, Sangji University A light yellow-colored, rod-shaped bacterial strain DKR-2T was isolated from oil-contaminated experimental soil. The strain was Gram-stain-negative, catalase and oxidase positive, and grew at temperature 10–35°C, at pH 6.0– 9.0, and at 0–1.5% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence analysis suggested that the strain DKR-2T was affiliated to the genus Kaistella, with the closest species being Kaistella haifensis H38T (97.6% sequence similarity). The chemotaxonomic profiles revealed the presence of phosphatidylethanolamine as the principal polar lipids;iso-C15:0, antiso-C15:0, and summed feature 9 (iso-C17:1 9c and/or C16:0 10-methyl) as the main fatty acids; and menaquinone-6 as a major menaquinone. The DNA G + C content was 39.5%. In addition, the average nucleotide identity (ANIu) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain DKR-2T and phylogenically closest members were below the threshold values for species delineation. The polyphasic taxonomic features illustrated in this study clearly implied that strain DKR-2T represents a novel species in the genus Kaistella, for which the name Kaistella soli sp. nov. is proposed with the type strain DKR-2T (= KACC 22070T = NBRC 114725T). [This study was supported by Creative Challenge Research Foundation Support Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2020R1I1A1A01071920).] A002 Chitinibacter bivalviorum sp.
    [Show full text]
  • Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies
    viruses Review Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies Varvara I. Maliogka 1,* ID , Angelantonio Minafra 2 ID , Pasquale Saldarelli 2, Ana B. Ruiz-García 3, Miroslav Glasa 4 ID , Nikolaos Katis 1 and Antonio Olmos 3 ID 1 Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 2 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy; [email protected] (A.M.); [email protected] (P.S.) 3 Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain; [email protected] (A.B.R.-G.); [email protected] (A.O.) 4 Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovak Republic; [email protected] * Correspondence: [email protected]; Tel.: +30-2310-998716 Received: 23 July 2018; Accepted: 13 August 2018; Published: 17 August 2018 Abstract: Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches.
    [Show full text]
  • Viruscollect Fulfilling the Need for a Common Reference Collection of Plant Viruses and Viroids
    Final Report VirusCollect Fulfilling the need for a common reference collection of plant viruses and viroids Project Duration: 2 years Start date: 2013/11/01 End date: 2015/11/01 Contents 1 Research consortium partners 3 2 Executive summary 5 3 Report 7 3.1 Introduction 7 3.2 Objectives and tasks of the project 9 3.3 Methods and results obtained 10 3.3.1 - Work package 1 Coordination of the VirusCollect project 11 3.3.2 - Work package 2 Identification of gaps in Q-bank 12 3.3.3 - Work package 3 Description of quality standards 13 3.3.4 - Work package 4 AGES 15 3.3.5 - Work package 5 DSMZ 16 3.3.6 - Work package 6 WUR 19 3.3.7 - Work package 7 SASA 23 3.3.8 - Work package 8 Data and isolates in Q-bank 30 4 Discussion of results and their reliability 31 5 Main conclusions 34 6 Dissemination activities 35 References 37 Annexes 39 1 Summary 1st year meeting at DSMZ 2014 39 2 Summary 2nd year and final meeting at NPPO-NL, 2015 42 3 Quality standards for Q-bank collections of viruses and viroids 45 VirusCollect Page 2 of 46 1. Research Consortium Partners Coordinator – Partner 1 Organisation NVWA (NPPO) Name of Contact Dr. J.W. Roenhorst Gender: F (incl. Title) Job Title Senior Scientist Plant Virology Postal Address P.O. Box 9102, 6700 HC Wageningen, the Netherlands E-mail [email protected] Phone +31 882232256 Partner 2 Organisation Wageningen University and Research Name of Contact Prof.
    [Show full text]
  • Identyfikacja Domen WG/GW Zaangażowanych W Wiązanie Białek Argonaute Oraz Analiza Mechanizmów Molekularnych Odpowiedzialnych Za Ich Zmienność
    Wydział Biologii Uniwersytet im. Adama Mickiewicza w Poznaniu Rozprawa doktorska Identyfikacja domen WG/GW zaangażowanych w wiązanie białek Argonaute oraz analiza mechanizmów molekularnych odpowiedzialnych za ich zmienność Andrzej Zieleziński Praca napisana pod kierunkiem Prof. dr. hab. Wojciecha Karłowskiego w Pracowni Bioinformatyki Instytutu Biologii Molekularnej i Biotechnologii Poznań, 2014 Podziękowania Składam serdeczne podziękowania mojemu Promotorowi Panu prof. dr. hab. Wojciechowi Karłowskiemu za intelektualne inspiracje oraz wiedzę, jaką przekazał mi w okresie studiów doktoranckich, a także twórcze rozwinięcie moich zainteresowań naukowych, tak abym mógł przygotować niniejszą dysertację Dziękuję również Koleżankom i Kolegom z Pracowni Bioinformatyki, w szczególności dr. Maciejowi Szymańskiemu, dr. Markowi Żywickiemu oraz mgr Sylwii Alabie za pomoc w kwestiach naukowych, a także pouczające dyskusje Finansowanie Niniejsza praca powstała przy finansowym udziale: 1. Narodowego Centrum Nauki (grant 2011/03/N/NZ2/01440 dla A.Z.) 2. Wydziału Biologii Uniwersytetu im. Adama Mickiewicza w Poznaniu (grant GDWB-09/2011, dla A.Z.) 3. Wojewódzkiego Urzędu Pracy (stypendium w ramach projektu „Wsparcie stypendialne dla doktorantów na kierunkach uznanych za strategiczne z punktu widzenia rozwoju Wielkopolski” w ramach programu 8.2.2. Programu Operacyjnego Kapitał Ludzki) Publikacje autora związane z pracą doktorską 1. Zielezinski A & Karlowski WM. Tyrosine-tryptophan substitution switches on the rapid evolution of WG/GW domain in RRM AGO-binding proteins from Arabidopsis and rice. [publikacja w przygotowaniu] 2. Zielezinski A & Karlowski WM. Whub: a comprehensive knowledgebase portal for AGO-binding protein research Nucleic Acids Research [artykuł wysłany do redakcji] 3. Zielezinski A & Karlowski WM. Agos - -a universal web tool for GW Argonaute-binding domain prediction. Bioinformatics. 27(9). 2011 4.
    [Show full text]
  • Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases
    viruses Review Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases Krin S. Mann † and Hélène Sanfaçon ,* Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-250-494-6393 † Current Address: University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada. Received: 21 December 2018; Accepted: 12 January 2019; Published: 15 January 2019 Abstract: Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses. Keywords: proteolytic processing; viral proteases; protease specificity; protease structure; virus evolution 1. Introduction Eukaryotic RNA viruses have a long evolution history, which is driven by their necessary adaptation to their hosts [1].
    [Show full text]
  • Exploring the Tymovirids Landscape Through Metatranscriptomics Data
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452586; this version posted July 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Exploring the tymovirids landscape through metatranscriptomics data 2 Nicolás Bejerman1,2, Humberto Debat1,2 3 4 1 Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias – Instituto Nacional de 5 Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, 6 Argentina 7 2 Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización 8 Agrícola, Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina 9 10 Corresponding author: Nicolás Bejerman, [email protected] 11 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452586; this version posted July 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 Tymovirales is an order of viruses with positive-sense, single-stranded RNA genomes that mostly infect 14 plants, but also fungi and insects. The number of tymovirid sequences has been growing in the last few 15 years with the extensive use of high-throughput sequencing platforms. Here we report the discovery of 31 16 novel tymovirid genomes associated with 27 different host plant species, which were hidden in public 17 databases.
    [Show full text]
  • Note to Users
    NOTE TO USERS This reproduction is the best copy available. UMI* SUB-CELLULAR LOCALIZATION OF THE GRAPEVINE RUPESTRIS STEMPITTING-ASSOCIATED VIRUS REPLICASE A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph By SEAN PROSSER In partial fulfillment of requirements for the degree of Master of Science November, 2009 ©Sean Prosser, 2009 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 OttawaONK1A0N4 Canada Canada Vour Tile Votre reference ISBN: 978-0-494-58413-2 Our file Notre reference ISBN: 978-0-494-58413-2 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Small Hydrophobic Viral Proteins Involved in Intercellular Movement of Diverse Plant Virus Genomes Sergey Y
    AIMS Microbiology, 6(3): 305–329. DOI: 10.3934/microbiol.2020019 Received: 23 July 2020 Accepted: 13 September 2020 Published: 21 September 2020 http://www.aimspress.com/journal/microbiology Review Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes Sergey Y. Morozov1,2,* and Andrey G. Solovyev1,2,3 1 A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia 2 Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia 3 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia * Correspondence: E-mail: [email protected]; Tel: +74959393198. Abstract: Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Genetic Variability of Hosta Virus X in Hosta
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2009 Genetic variability of Hosta virus X in hosta Oluseyi Lydia Fajolu University of Tennessee Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Fajolu, Oluseyi Lydia, "Genetic variability of Hosta virus X in hosta. " Master's Thesis, University of Tennessee, 2009. https://trace.tennessee.edu/utk_gradthes/5711 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Oluseyi Lydia Fajolu entitled "Genetic variability of Hosta virus X in hosta." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology. Reza Hajimorad, Major Professor We have read this thesis and recommend its acceptance: Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Oluseyi Lydia Fajolu entitled “Genetic variability of Hosta virus X in Hosta”. I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science, with a major in Entomology and Plant Pathology.
    [Show full text]