The Rho Family GEF FARP2 Is Activated by Apkcι to Control Tight

Total Page:16

File Type:pdf, Size:1020Kb

The Rho Family GEF FARP2 Is Activated by Apkcι to Control Tight © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs223743. doi:10.1242/jcs.223743 SHORT REPORT The Rho family GEF FARP2 is activated by aPKCι to control tight junction formation and polarity Ahmed Elbediwy1,¶,**, Yixiao Zhang2,*,**, Mathias Cobbaut2,**, Philippe Riou2,‡, Ray S. Tan2,§, Selene K. Roberts6, Chris Tynan6, Roger George3, Svend Kjaer3, Marisa L. Martin-Fernandez6, Barry J. Thompson1, Neil Q. McDonald4 and Peter J. Parker2,5,‡‡ ABSTRACT requirement for determining asymmetric/polarised cellular The elaboration of polarity is central to organismal development and behaviours (reviewed in Chen and Zhang, 2013; Suzuki and to the maintenance of functional epithelia. Among the controls Ohno, 2006). This was initially established in Caenorhabditis determining polarity are the PAR proteins, PAR6, aPKCι and PAR3, elegans (Tabuse et al., 1998) where the aPKC orthologue, along regulating both known and unknown effectors. Here, we identify with other PAR proteins, have been shown to play critical roles in FARP2 as a ‘RIPR’ motif-dependent partner and substrate of aPKCι cell polarisation; the same conserved modules, aPKC, PAR6 and that is required for efficient polarisation and junction formation. PAR3, were subsequently shown to operate in mammals (note in Binding is conferred by a FERM/FA domain–kinase domain mammals there are several PAR6 and PAR3 family proteins) interaction and detachment promoted by aPKCι-dependent (Joberty et al., 2000). ι phosphorylation. FARP2 is shown to promote GTP loading of The direct interaction of aPKC with regulatory proteins and Cdc42, which is consistent with it being involved in upstream substrates is a particular feature of its action. In C. elegans there is a ι regulation of the polarising PAR6–aPKCι complex. However, we dynamic cycling between highly localised PAR3-containing aPKC show that aPKCι acts to promote the localised activity of FARP2 complexes (inactive) and dispersed Cdc42 containing complexes through phosphorylation. We conclude that this aPKCι−FARP2 (active) (Rodriguez et al., 2017); the inactivity being determined by complex formation acts as a positive feedback control to drive interaction of the CR3 region of PAR3 with the substrate-binding ι ι polarisation through aPKCι and other Cdc42 effectors. pocket of aPKC (Soriano et al., 2016). Mutation of the aPKC RIPR partner interaction motif, as seen rarely but repeatedly in cancers, This article has an associated First Person interview with the first leads to a failure of the mutant protein to support normal polarisation ι author of the paper. (Linch et al., 2013). In pathophysiological states, aPKC hyperactivation through Ras-dependent mechanisms can also drive KEY WORDS: Cdc42, FARP, Atypical protein kinase C, Polarity a loss of polarity (Linch et al., 2014); such aPKC hyperactivation has been reported to overcome contact inhibition through Hippo/Yap INTRODUCTION signalling (Archibald et al., 2015). This suppression of polarity- Atypical protein kinase Cs (PKC), aPKCζ and aPKCι, are serine/ dependent growth inhibition is consistent with a role in tumorigenesis threonine specific protein kinases that form a distinctive subset of as seen in an inducible lung model of Ras-dependent tumour PKC proteins with characteristic regulatory inputs, outputs and formation (Regala et al., 2009). pharmacology (for a review, see Parker et al., 2014). The most FERM, RhoGEF and pleckstrin domain-containing proteins well-characterised physiological role relates to aPKCι and its (FARPs) are guanine nucleotide exchange factors (GEFs) for Rho family proteins (Kubo et al., 2002; Ni et al., 2003; Toyofuku et al., 2005), and FARP2 is identified here as a protein partner in an aPKCι 1Epithelial Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NE1 1AT, UK. 2Protein Phosphorylation Laboratory, Francis Crick Institute, 1 Midland interactome screen. FARP2 is shown to act as a GEF for the Road, London NE1 1AT, UK. 3Structural Biology Team, Francis Crick Institute, 1 upstream polarity regulator Cdc42 (Noda et al., 2001); however, we 4 Midland Road, London NE1 1AT, UK. Signalling and Structural Biology Laboratory, demonstrate that FARP2 also acts downstream of aPKCι, where it Francis Crick Institute, 1 Midland Road, London NE1 1AT, UK. 5School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Campus, London controls polarity. The aPKCι–FARP2 module thus comprises a SE1 1UL, UK. 6Central Laser Facility, STFC Rutherford Appleton Laboratory, novel positive feedback control acting to regulate polarity through Harwell Oxford, Didcot, Oxford OX11 0QX, UK. *Present address: 2121 Berkeley Way, University of California, Berkeley, CA 94702, its own assembly and turnover. USA. ‡Present address: Novintum Bioscience, London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK. §Present address: Guy’s and RESULTS AND DISCUSSION ¶ St Thomas’ NHS Foundation Trust, London, SE1 9RT, UK. Present address: ι Kingston University London, School of Life Science, Penrhyn Road, London, aPKC interacts with and phosphorylates FARP proteins KT1 2EE, UK. A proteomics screen for endogenously expressed proteins associating **These authors contributed equally to this work with aPKCι in HCT116 cells revealed that FARP2 is an aPKCι ι ‡‡Author for correspondence ([email protected]) interactor (Fig. S1A). We validated the interaction of aPKC with FARPs by co-expression with aPKCι and immunoprecipitation M.C., 0000-0003-0279-0336; R.S.T., 0000-0001-6338-1080; P.J.P., 0000-0002- (antisera to the endogenous protein was not effective for native 6218-2933 aPKCι recovery). aPKCι efficiently binds to both FARP1 and FARP2 This is an Open Access article distributed under the terms of the Creative Commons Attribution (Fig. 1A,B). Complex formation with FARP2 was corroborated License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, – distribution and reproduction in any medium provided that the original work is properly attributed. in cells employing a fluorescence resonance energy transfer fluorescence-lifetime imaging microscopy (FRET-FLIM)-based Received 9 August 2018; Accepted 28 February 2019 approach (Fig. S1B). Co-expression with aPKCι revealed an Journal of Cell Science 1 SHORT REPORT Journal of Cell Science (2019) 132, jcs223743. doi:10.1242/jcs.223743 Fig. 1. See next page for legend. Journal of Cell Science 2 SHORT REPORT Journal of Cell Science (2019) 132, jcs223743. doi:10.1242/jcs.223743 Fig. 1. FARP2 is a RIPR-dependent substrate of aPKCι that is responsible FARP2 is required for efficient initiation of junction formation for maintaining tight junctions and polarity. (A,B) FARP1 and FARP2 To assess whether FARP2 also had a role in junctional initiation, co-precipitate with aPKC. HCT116 cells were co-transfected with plasmids cells were subjected to a Ca2+ switch (Elbediwy et al., 2012). expressing FLAG-tagged FARP1 (A) or FARP2 (B) and GFP, GFP-tagged aPKCι or GFP-tagged aPKCι containing a RIPR to AIPA mutation (R480A/ Depletion of FARP2 prevented proper junctional establishment, as R483A). Immunoprecipitates were analysed with the indicated antibodies. evident through the disorder of the marker ZO-1; this was seen 2+ Images are of representative blots of n=3. (C) GFP–PKCι phosphorylates prominently at 8 h post Ca re-addition, phenocopying the effects FARP1 and FARP2 in cells. HCT116 cells were co-transfected with plasmids of aPKCι and Cdc42 knockdown (Fig. 2A). Following depletion of expressing FLAG-tagged FARP1 or FARP2, and GFP or GFP-tagged aPKCι. FARP2 with a validated siRNA, we found that the TER was Immunoprecipitates (IP) were analysed via ProQ diamond staining or with the significantly reduced (∼40%), which is a similar level of reduction indicated antibodies. (D) FARP2 and not FARP1 is involved in junctional ι establishment after Ca2+ switch. Caco-2 cells were subjected to siRNA to what is seen upon aPKC or Cdc42 depletion (Fig. 2B). These treatment (p represents the use of ON-TARGETplus SMARTpool siRNA, effects were also observed with a second FARP2 siRNA (Fig. S3A). Dharmacon), processed for Ca2+ switch immunofluorescence and stained for To assess the penetrance of this dependence on FARP2 for the junctional marker ZO-1. A representative example of n=3 experiments with de novo junction formation, we employed A431 cells. When these six coverslips per immunofluorescence experiment is shown. (E) FARP1 cells are serum-starved, ZO-1 is lost from cell–cell contacts and 2+ depletion has no effect on junctional permeability as indicated by a Ca switch upon addition of EGF, ZO-1 relocalises in a time-dependent TER assay. A representative example of n=3 experiments is shown. (F) FARP2 fashion as tight junctions (TJs) re-form (Van Itallie et al., 1995). We depletion has a substantial effect on junctional permeability as indicated by a Ca2+ switch transepithelial assay. A representative example of n=3 depleted FARP2 and assessed ZO-1 localisation at time 0 and experiments with six samples per experiment is shown. (G) 3D lumen formation 30 min post EGF addition. We found that the normal coherent in a CaCo2 model is disturbed upon knockdown of either FARP2, Cdc42 or localisation of ZO-1 became severely fragmented upon depletion PKCι. CaCo2 cells were grown on a Matrigel-coated surface as described in the of FARP2, further validating a role for FARP2 in junction Materials and Methods. Cysts were stained for ZO-1 (green), F-actin (red) as establishment (Fig. 2C). By using individual siRNAs directed at ’ indicated and Hoechst 33342 (stained according to manufacturer s FARP2 in Caco-2 cells, we also observed a disruption of ZO-1 instructions; Sigma-Aldrich) (blue). (H) Quantification of the proportion of single lumen cysts for experiments as in G. n≥100 cysts were counted per experiment. localisation (Fig. S3B) and a drop in TER, albeit to a lesser extent Results are mean±s.d. ns, not significant (P>0.05); ***P≤0.001; ****P≤0.0001 than observed in the establishment assay (Fig. S3C). This indicates (unpaired t-test). siCtrl, control siRNA.
Recommended publications
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • Novel Mutation and Three Other Sequence Variants Segregating with Phenotype at Keratoconus 13Q32 Susceptibility Locus
    European Journal of Human Genetics (2012) 20, 389–397 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Novel mutation and three other sequence variants segregating with phenotype at keratoconus 13q32 susceptibility locus Marta Czugala1,6, Justyna A Karolak1,6, Dorota M Nowak1, Piotr Polakowski2, Jose Pitarque3, Andrea Molinari3, Malgorzata Rydzanicz1, Bassem A Bejjani4, Beatrice YJT Yue5, Jacek P Szaflik2 and Marzena Gajecka*,1 Keratoconus (KTCN), a non-inflammatory corneal disorder characterized by stromal thinning, represents a major cause of corneal transplantations. Genetic and environmental factors have a role in the etiology of this complex disease. Previously reported linkage analysis revealed that chromosomal region 13q32 is likely to contain causative gene(s) for familial KTCN. Consequently, we have chosen eight positional candidate genes in this region: MBNL1, IPO5, FARP1, RNF113B, STK24, DOCK9, ZIC5 and ZIC2, and sequenced all of them in 51 individuals from Ecuadorian KTCN families and 105 matching controls. The mutation screening identified one mutation and three sequence variants showing 100% segregation under a dominant model with KTCN phenotype in one large Ecuadorian family. These substitutions were found in three different genes: c.2262A4C (p.Gln754His) and c.720+43A4GinDOCK9; c.2377-132A4CinIPO5 and c.1053+29G4CinSTK24. PolyPhen analyses predicted that c.2262A4C (Gln754His) is possibly damaging for the protein function and structure. Our results suggest that c.2262A4C (p.Gln754His)
    [Show full text]
  • The Role of the C-Terminus Merlin in Its Tumor Suppressor Function Vinay Mandati
    The role of the C-terminus Merlin in its tumor suppressor function Vinay Mandati To cite this version: Vinay Mandati. The role of the C-terminus Merlin in its tumor suppressor function. Agricultural sciences. Université Paris Sud - Paris XI, 2013. English. NNT : 2013PA112140. tel-01124131 HAL Id: tel-01124131 https://tel.archives-ouvertes.fr/tel-01124131 Submitted on 19 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 TABLE OF CONTENTS Abbreviations ……………………………………………………………………………...... 8 Resume …………………………………………………………………………………… 10 Abstract …………………………………………………………………………………….. 11 1. Introduction ………………………………………………………………………………12 1.1 Neurofibromatoses ……………………………………………………………………….14 1.2 NF2 disease ………………………………………………………………………………15 1.3 The NF2 gene …………………………………………………………………………….17 1.4 Mutational spectrum of NF2 gene ………………………………………………………..18 1.5 NF2 in other cancers ……………………………………………………………………...20 2. ERM proteins and Merlin ……………………………………………………………….21 2.1 ERMs ……………………………………………………………………………………..21 2.1.1 Band 4.1 Proteins and ERMs …………………………………………………………...21 2.1.2 ERMs structure ………………………………………………………………………....23 2.1.3 Sub-cellular localization and tissue distribution of ERMs ……………………………..25 2.1.4 ERM proteins and their binding partners ……………………………………………….25 2.1.5 Assimilation of ERMs into signaling pathways ………………………………………...26 2.1.5. A. ERMs and Ras signaling …………………………………………………...26 2.1.5. B. ERMs in membrane transport ………………………………………………29 2.1.6 ERM functions in metastasis …………………………………………………………...30 2.1.7 Regulation of ERM proteins activity …………………………………………………...31 2.1.7.
    [Show full text]
  • And EPB41L3 (Protein 4.1B) Genes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 86 (2005) 701 – 707 www.elsevier.com/locate/ygeno Evolutionarily conserved coupling of transcription and alternative splicing in the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes Jeff S. Tan a, Narla Mohandas b, John G. Conboy a,* a Life Sciences Division and Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA b Red Cell Physiology Group, New York Blood Center, New York, NY 10021, USA Received 20 April 2005; accepted 11 August 2005 Available online 20 October 2005 Abstract Recent studies have shown that transcription and alternative splicing can be mechanistically coupled. In the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes, we showed previously that promoter/alternative first exon choice is coupled to downstream splicing events in exon 2. Here we demonstrate that this coupling is conserved among several vertebrate classes from fish to mammals. The EPB41 and EPB41L3 genes from fish, bird, amphibian, and mammal genomes exhibit shared features including alternative first exons and differential splice acceptors in exon 2. In all cases, the 5V-most exon (exon 1A) splices exclusively to a weaker internal acceptor site in exon 2, skipping a fragment designated as exon 2V. Conversely, alternative first exons 1B and 1C always splice to the stronger first acceptor site, retaining exon 2V. These correlations are independent of cell type or species of origin. Since exon 2V contains a translation initiation site, splice variants generate protein isoforms with distinct N-termini.
    [Show full text]
  • The Genetics of Bipolar Disorder
    Molecular Psychiatry (2008) 13, 742–771 & 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00 www.nature.com/mp FEATURE REVIEW The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions A Serretti and L Mandelli Institute of Psychiatry, University of Bologna, Bologna, Italy Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome ‘hot regions’ for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF.
    [Show full text]
  • Mouse Farp1 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Farp1 Knockout Project (CRISPR/Cas9) Objective: To create a Farp1 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Farp1 gene (NCBI Reference Sequence: NM_134082 ; Ensembl: ENSMUSG00000025555 ) is located on Mouse chromosome 14. 27 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 27 (Transcript: ENSMUST00000026635). Exon 2 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from the coding region. Exon 2 covers 5.44% of the coding region. The size of effective KO region: ~194 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 27 Legends Exon of mouse Farp1 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 2 is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • Cell-Deposited Matrix Improves Retinal Pigment Epithelium Survival on Aged Submacular Human Bruch’S Membrane
    Retinal Cell Biology Cell-Deposited Matrix Improves Retinal Pigment Epithelium Survival on Aged Submacular Human Bruch’s Membrane Ilene K. Sugino,1 Vamsi K. Gullapalli,1 Qian Sun,1 Jianqiu Wang,1 Celia F. Nunes,1 Noounanong Cheewatrakoolpong,1 Adam C. Johnson,1 Benjamin C. Degner,1 Jianyuan Hua,1 Tong Liu,2 Wei Chen,2 Hong Li,2 and Marco A. Zarbin1 PURPOSE. To determine whether resurfacing submacular human most, as cell survival is the worst on submacular Bruch’s Bruch’s membrane with a cell-deposited extracellular matrix membrane in these eyes. (Invest Ophthalmol Vis Sci. 2011;52: (ECM) improves retinal pigment epithelial (RPE) survival. 1345–1358) DOI:10.1167/iovs.10-6112 METHODS. Bovine corneal endothelial (BCE) cells were seeded onto the inner collagenous layer of submacular Bruch’s mem- brane explants of human donor eyes to allow ECM deposition. here is no fully effective therapy for the late complications of age-related macular degeneration (AMD), the leading Control explants from fellow eyes were cultured in medium T cause of blindness in the United States. The prevalence of only. The deposited ECM was exposed by removing BCE. Fetal AMD-associated choroidal new vessels (CNVs) and/or geo- RPE cells were then cultured on these explants for 1, 14, or 21 graphic atrophy (GA) in the U.S. population 40 years and older days. The explants were analyzed quantitatively by light micros- is estimated to be 1.47%, with 1.75 million citizens having copy and scanning electron microscopy. Surviving RPE cells from advanced AMD, approximately 100,000 of whom are African explants cultured for 21 days were harvested to compare bestro- American.1 The prevalence of AMD increases dramatically with phin and RPE65 mRNA expression.
    [Show full text]
  • An Epigenome-Wide Association Study Based on Cell Type
    Integrative Molecular Medicine Research Article ISSN: 2056-6360 An epigenome-wide association study based on cell type- specific whole-genome bisulfite sequencing: Screening for DNA methylation signatures associated with bone mass Shohei Komaki1, Hideki Ohmomo1,2, Tsuyoshi Hachiya1, Ryohei Furukawa1, Yuh Shiwa1,2, Mamoru Satoh1,2, Ryujin Endo3,4, Minoru Doita5, Makoto Sasaki6,7 and Atsushi Shimizu1 1Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan 2Division of Biobank and Data Management, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan 3Division of Public Relations and Planning, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan 4Division of Medical Fundamentals for Nursing, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan 5Department of Orthopaedic Surgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-8505, Japan 6Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan 7Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan Abstract Bone mass can change intra-individually due to aging or environmental factors. Understanding the regulation of bone metabolism by epigenetic factors, such as DNA methylation, is essential to further our understanding of bone biology and facilitate the prevention of osteoporosis. To date, a single epigenome-wide association study (EWAS) of bone density has been reported, and our knowledge of epigenetic mechanisms in bone biology is strictly limited.
    [Show full text]
  • Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily
    Membranes 2015, 5, 646-663; doi:10.3390/membranes5040646 OPEN ACCESS membranes ISSN 2077-0375 www.mdpi.com/journal/membranes Article Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily Marc Lenoir 1, Irina Kufareva 2, Ruben Abagyan 2, and Michael Overduin 3,* 1 School of Cancer Sciences, Faculty of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; E-Mail: [email protected] 2 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; E-Mails: [email protected] (I.K.); [email protected] (R.A.) 3 Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada * Author to whom correspondence should be addressed: E-Mail: [email protected]; Tel.: +1-780-492-3357; Fax: +1-780-492-0886. Academic Editor: Shiro Suetsugu Received: 15 September 2015 / Accepted: 16 October 2015 / Published: 23 October 2015 Abstract: The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants.
    [Show full text]
  • Robles JTO Supplemental Digital Content 1
    Supplementary Materials An Integrated Prognostic Classifier for Stage I Lung Adenocarcinoma based on mRNA, microRNA and DNA Methylation Biomarkers Ana I. Robles1, Eri Arai2, Ewy A. Mathé1, Hirokazu Okayama1, Aaron Schetter1, Derek Brown1, David Petersen3, Elise D. Bowman1, Rintaro Noro1, Judith A. Welsh1, Daniel C. Edelman3, Holly S. Stevenson3, Yonghong Wang3, Naoto Tsuchiya4, Takashi Kohno4, Vidar Skaug5, Steen Mollerup5, Aage Haugen5, Paul S. Meltzer3, Jun Yokota6, Yae Kanai2 and Curtis C. Harris1 Affiliations: 1Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 2Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 3Genetics Branch, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 4Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 5Department of Chemical and Biological Working Environment, National Institute of Occupational Health, NO-0033 Oslo, Norway. 6Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), 08916 Badalona (Barcelona), Spain. List of Supplementary Materials Supplementary Materials and Methods Fig. S1. Hierarchical clustering of based on CpG sites differentially-methylated in Stage I ADC compared to non-tumor adjacent tissues. Fig. S2. Confirmatory pyrosequencing analysis of DNA methylation at the HOXA9 locus in Stage I ADC from a subset of the NCI microarray cohort. 1 Fig. S3. Methylation Beta-values for HOXA9 probe cg26521404 in Stage I ADC samples from Japan. Fig. S4. Kaplan-Meier analysis of HOXA9 promoter methylation in a published cohort of Stage I lung ADC (J Clin Oncol 2013;31(32):4140-7). Fig. S5. Kaplan-Meier analysis of a combined prognostic biomarker in Stage I lung ADC.
    [Show full text]
  • Protein 4.1, a Component of the Erythrocyte Membrane Skeleton and Its Related Homologue Proteins Forming the Protein 4.1/FERM Superfamily
    FOLIA HISTOCHEMICA Review article ET CYTOBIOLOGICA Vol. 44, No. 4, 2006 pp. 231-248 Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily Witold Diakowski, Micha³ Grzybek and Aleksander F. Sikorski Faculty of Biotechnology, University of Wroc³aw, Wroc³aw, Poland Abstract: The review is focused on the domain structure and function of protein 4.1, one of the proteins belonging to the mem- brane skeleton. The protein 4.1 of the red blood cells (4.1R) is a multifunctional protein that localizes to the membrane skele- ton and stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability, via lateral inter- actions with spectrin, actin, glycophorin C and protein p55. Protein 4.1 binding is modulated through the action of kinases and/or calmodulin-Ca2+. Non-erythroid cells express the 4.1R homologues: 4.1G (general type), 4.1B (brain type), and 4.1N (neuron type), and the whole group belongs to the protein 4.1 superfamily, which is characterized by the presence of a highly conserved FERM domain at the N-terminus of the molecule. Proteins 4.1R, 4.1 G, 4.1 N and 4.1 B are encoded by different genes. Most of the 4.1 superfamily proteins also contain an actin-binding domain. To date, more than 40 members have been identified. They can be divided into five groups: protein 4.1 molecules, ERM proteins, talin-related molecules, protein tyrosine phosphatase (PTPH) proteins and NBL4 proteins. We have focused our attention on the main, well known representatives of 4.1 superfamily and tried to choose the proteins which are close to 4.1R or which have distinct functions.
    [Show full text]