UC Berkeley UC Berkeley Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Black Oystercatcher Diet and Provisioning 2014 Annual Report
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Black Oystercatcher Chick Diet and Provisioning 2014 Annual Report Natural Resource Data Series NPS/KEFJ/NRDS—2015/749 ON THIS PAGE Nest camera captures a black oystercatcher provisioning chick on Natoa Island. Photograph Courtesy: NPS/Kenai Fjords National Park ON THE COVER Black oystercatchers at nest in Aialik Bay, Kenai Fjords National Park Photograph by: NPS/Katie Thoresen Black Oystercatcher Diet and Provisioning 2014 Annual Report Natural Resource Data Series NPS/KEFJ/NRDS—2015/749 Sam Stark1, Brian Robinson2 and Laura M. Phillips1 1National Park Service Kenai Fjords National Park PO Box 1727 Seward, AK 99664 2 University of Alaska, Fairbanks Department of Biology and Wildlife PO Box 756100 Fairbanks, AK 99775 January 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs. -
Version of the Manuscript
Accepted Manuscript Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary charac- teristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia, Claudio A. González-Wevar, Elie Poulin, Leyla Cardenas PII: S1055-7903(17)30583-3 DOI: https://doi.org/10.1016/j.ympev.2018.10.036 Reference: YMPEV 6324 To appear in: Molecular Phylogenetics and Evolution Received Date: 15 August 2017 Revised Date: 23 July 2018 Accepted Date: 30 October 2018 Please cite this article as: Gaitán-Espitia, J.D., González-Wevar, C.A., Poulin, E., Cardenas, L., Antarctic and sub- Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda, Molecular Phylogenetics and Evolution (2018), doi: https://doi.org/10.1016/j.ympev.2018.10.036 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Version: 23-07-2018 SHORT COMMUNICATION Running head: mitogenomes Nacella limpets Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia1,2,3*; Claudio A. González-Wevar4,5; Elie Poulin5 & Leyla Cardenas3 1 The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China 2 CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart 7001, TAS, Australia. -
Genetic Evidence for the Cryptic Species Pair, Lottia Digitalis and Lottia Austrodigitalis and Microhabitat Partitioning in Sympatry
Mar Biol (2007) 152:1–13 DOI 10.1007/s00227-007-0621-4 RESEARCH ARTICLE Genetic evidence for the cryptic species pair, Lottia digitalis and Lottia austrodigitalis and microhabitat partitioning in sympatry Lisa T. Crummett · Douglas J. Eernisse Received: 8 June 2005 / Accepted: 3 January 2007 / Published online: 14 April 2007 © Springer-Verlag 2007 Abstract It has been proposed that the common West rey Peninsula, CA to near Pigeon Point, CA, where L. digi- Coast limpet, Lottia digitalis, is actually the northern coun- talis previously dominated. terpart of a cryptic species duo including, Lottia austrodigi- talis. Allele frequency diVerences between southern and northern populations at two polymorphic enzyme loci pro- Introduction vided the basis for this claim. Due to lack of further evi- dence, L. austrodigitalis is still largely unrecognized in the Sibling species are deWned as sister species that are impos- literature. Seven additional enzyme loci were examined sible or extremely diYcult to distinguish based on morpho- from populations in proposed zones of allopatry and symp- logical characters alone (Mayr and Ashlock 1991). Marine atry to determine the existence of L. austrodigitalis as a sibling species are ubiquitous, found from the poles to the sibling species to L. digitalis. SigniWcant allele frequency tropics, in most known habitats, and at depths ranging from diVerences were found at Wve enzyme loci between popula- intertidal to abyssal (Knowlton 1993). We will refer to spe- tions in Laguna Beach, southern California, and Bodega cies that are indistinguishable morphologically, whether or Bay, northern California; strongly supporting the existence not they are sister species, as “cryptic species” and will of separate species. -
The Role of Oxygen in Determining Upper Thermal Limits in Lottia Digitalis Under Air Exposure and Submersion Author(S): Brittany E
Division of Comparative Physiology and Biochemistry, Society for Integrative and Comparative Biology The Role of Oxygen in Determining Upper Thermal Limits in Lottia digitalis under Air Exposure and Submersion Author(s): Brittany E. Bjelde, Nathan A. Miller, Jonathon H. Stillman, and Anne E. Todgham Source: Physiological and Biochemical Zoology, Vol. 88, No. 5 (September/October 2015), pp. 483-493 Published by: The University of Chicago Press. Sponsored by the Division of Comparative Physiology and Biochemistry, Society for Integrative and Comparative Biology Stable URL: http://www.jstor.org/stable/10.1086/682220 . Accessed: 07/08/2015 14:01 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Division of Comparative Physiology and Biochemistry, Society for Integrative and Comparative Biology are collaborating with JSTOR to digitize, preserve and extend access to Physiological and Biochemical Zoology. http://www.jstor.org This content downloaded from 168.150.44.129 on Fri, 7 Aug 2015 14:01:31 PM All use subject to JSTOR Terms and Conditions 483 The Role of Oxygen in Determining Upper Thermal Limits in Lottia digitalis under Air Exposure and Submersion Brittany E. Bjelde1,2,* Keywords: heart rate, intertidal limpet, oxygen limitation, Nathan A. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Lottia Pelta Class: Gastropoda, Patellogastropoda
Phylum: Mollusca Lottia pelta Class: Gastropoda, Patellogastropoda Order: The shield, or helmet limpet Family: Lottioidea, Lottiidae Taxonomy: A major systematic revision of (Sorensen and Lindberg 1991). May be fouled the northeastern Pacific limpet fauna was with a sabellid (Kuris and Culver 1999). undertaken by MacLean in 1966. Notoac- Interior: Blue gray to white, with mea was at first considered a subgenus and subapical brown spot (fig 3), and horseshoe- then later a full genus (MacLean 1969). Col- shaped muscle scar joined by a thin, faint line lisella was synonymized with Lottia, and lat- (fig. 3) (Keen and Coan 1974). Uses suction er Notoacmea was replaced with Tectura to attach to substratum, as well as a glue that (Lindberg 2007). The current practice in may be helpful in maintaining a seal around The Light and Smith Manual is to use only the edge of their feet on irregular surfaces Acmaea and Lottia to describe Pacific North- (Smith 1991). west species (Lindberg 2007). Possible Misidentifications Description Many species of limpets of the family Size: 25mm (Brusca and Brusca 1978); can Acmaeidae occur on our coast, but only about reach 40 mm farther north (Kozloff 1974b four are found in estuarine conditions. Lottia Yanes and Tyler 2009); illustrated specimen, scutum (=Notoacmaea), which, like Lottia pel- 32.5 mm. ta, have a horseshoe-shaped muscle scar on Color: Extremely variable dependent on the shell interior, joined by a thin curved line, substrata (Sorensen and Lindberg 1991); and various coloration, but not pink-rayed or called the brown and white shield limpet by white. These two genera differ in that L. -
Comparing the Mineralization of Two Limpet Species Lottia Pelta and Lottia Digitalis Between Species and Intertidal Location
Comparing the Mineralization of Two Limpet Species Lottia pelta and Lottia digitalis Between Species and Intertidal Location Leo MacLeod1 1Friday Harbor Laboratories, University of Washington Contact: Leo MacLeod Marine Biology, College of the Environment University of Washington Seattle, WA 98195 [email protected] Keywords: Limpet, CT scan, morphology, Lottia digitalis, Lottia pelta Abstract Intertidal gastropods have a variety of behavioral and physical adaptations to help them survive in the environment. One of the most obvious is the evolution of an outer shell for defense, which can protect organisms from dangers such as predators, as well as heat and wave force. The limpet species Lottia pelta and Lottia digitalis are two limpets with different external shell morphologies that live in overlapping habitats in the intertidal environment. In this study I aim to compare whether the visibly different shell morphological traits extend to the amount and distribution of mineralization within the shell and if this changes by tidal height. To do this I CT- scanned 31 limpet shells with phantoms of a known density to map the actual distribution of material densities. I found that while the overall density of each shell across species and intertidal height were not significantly different, the distribution of density differed for L. digitalis in low intertidal vs every other treatment. This difference that sets the low intertidal L. digitalis apart from the rest could be a result of the increased need for defense in a region that is often submerged and vulnerable to predation. Introduction The study of gastropod morphology has found many causes of variation in the size and shape of shells that tie back to the phenotypic plasticity within certain species. -
Life from Information Processing Perspective
www.nikita-tirjatkin.de Life from information processing perspective Archive 2005-2010 www.nikita-tirjatkin.de 2005 Subcellular patterns of information processing 3 Supercellular patterns of information processing 18 Diversity of individual cell progression s in biosphere 27 2007 Diversity of asymmetric cell progressions in Mammalia 104 2008 Complete hierarchy of universal life patterns 105 Patterns of information processing in living world 125 2010 Understanding life, constructing life 137 2 www.nikita-tirjatkin.de Subcellular patterns of information processing Nikita Tirjatkin Structural and functional features of the cell are determined by information stored in DNA. This information is represented by a limited set of genes, a genome. Each gene can be expressed individually to be fully converted into corresponding element of the cell structure or function. During gene expression, the information processing typically involves DNA transcription, RNA translation, and catalysis. This sequence of chemical reactions can be called a gene expression network, abbreviated GEN. Within the cell, GEN is an universal pattern of information processing. It is essentially four-dimensional. From this perspective, the cell can be considered as a highly regular composition of interacting GENs, a GENome. The opportunity to recognize an universal pattern of information processing in the sequence of well-known reactions has been completely overlooked. Here, I draw attention to this pattern and show that its implication yields a powerful conceptual framework suited very well to strongly integrate known subcellular phenomena and reveal their novel emergent features. From the information processing perspective, all reactions within the cell fall into three categories: DNA transcription, RNA translation, and catalysis. -
Deep-Sea Video Technology Tracks a Monoplacophoran to the End of Its Trail (Mollusca, Tryblidia)
Deep-sea video technology tracks a monoplacophoran to the end of its trail (Mollusca, Tryblidia) Sigwart, J. D., Wicksten, M. K., Jackson, M. G., & Herrera, S. (2018). Deep-sea video technology tracks a monoplacophoran to the end of its trail (Mollusca, Tryblidia). Marine Biodiversity, 1-8. https://doi.org/10.1007/s12526-018-0860-2 Published in: Marine Biodiversity Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2018 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:06. Oct. 2021 Deep-sea video technology tracks a monoplacophoran to the end of its trail (Mollusca, Tryblidia) Sigwart, J. -
Endocladia/Mastocarpus Assemblage
Mussel recovery and species dynamics at four California rocky intertidal sites: 1992 data report Item Type monograph Publisher Minerals Management Service, Pacific OCS Region Download date 04/10/2021 11:42:05 Link to Item http://hdl.handle.net/1834/33064 0 OCS Study • J MMS 96-0009 0 n Mussel Recovery and Species Dynamics at Four California 0 Rocky Intertidal Sites D 1992 Data Report 0 0 0 J 0 u u J J J u U.S. Department of the Interior J ••..:! Minerals Management Service ····~ Pacific OCS Region n OCS Study MMS 96-0009 0 Mussel Recovery and Species n Dynamics at Four California [J Rocky Intertidal Sites 0 1992 Data Report 0 D 0 Prepared by: n : I Minerals Management Service ~-) Maurice Hill [_] Lynnette Vesco Mary Elaine Dunaway Mike McCrary 0 Mark Pierson and D · Kinnetic Laboratories. Inc: 0 Eric Nigg [J [J MMS Reference No. PC 94-1 u i l U.S. Department of the Interior lJ Minerals Management Service Pacific OCS Region May 1996 [] r L r r L L It is suggested that this report be cited as follows: Minerals Management Service and Kinnetic Laboratories, Inc. 1996. Mussel recovery and L species dynamics at four California rocky intertidal sites. 1992 data report. U.S. Department of the Interior, Minerals Management Service, Pacific OCS Region. OCS Study MMS 96-0009. 151 pp. L ii L n !] PROJECT ORGANIZATION [j CONTRACTING OFFICER'S TECHNICAL REPRESENTATIVE Fred Piltz, Chief, Environmental Studies Section PROJECT/REPORT TEAM 0 Mary Elaine Dunaway Maurice Hill [! Mike McCrary Eric Nigg Mark Pierson [) Lynnette Vesco FIELD SURVEY TEAM [J Mary Elaine Dunaway Michael Foster lj Bob Gillard l~ Maurice Hill Mike McCrary EricNigg Sallie Nigg Mark Pierson Diana Stellar 0 Lynnette Vesco n PROJECT SUPPORT u Mertis Baffoe-Harding Debbie Eidson Nollie Gildow-Owens Joann Golden Janice Madison Tammy Miller Rochelle Williams-Hooks MMS ENVIRONMENTAL STUDIES PROGRAM LIAISON TomAhlfeld [] iii 11 l..J [J [] 0 ACKNOWLEDGMENTS This study was funded by the MMS Pacific OCS Regional Office in Camarillo, California. -
A Comparison of Intertidal Species Richness and Composition Between Central California and Oahu, Hawaii
Marine Ecology. ISSN 0173-9565 ORIGINAL ARTICLE A comparison of intertidal species richness and composition between Central California and Oahu, Hawaii Chela J. Zabin1,2, Eric M. Danner3, Erin P. Baumgartner4, David Spafford5, Kathy Ann Miller6 & John S. Pearse7 1 Smithsonian Environmental Research Center, Tiburon, CA, USA 2 Department of Environmental Science and Policy, University of California, Davis, CA, USA 3 Southwest Fisheries Science Center, Santa Cruz, CA, USA 4 Department of Biology, Western Oregon University, Monmouth, OR, USA 5 Department of Botany, University of Hawaii, Manoa, HI, USA 6 University Herbarium, University of California, Berkeley, CA, USA 7 Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA Keywords Abstract Climate change; range shifts; rocky shores; temporal comparisons; tropical islands; The intertidal zone of tropical islands is particularly poorly known. In contrast, tropical versus temperate. temperate locations such as California’s Monterey Bay are fairly well studied. However, even in these locations, studies have tended to focus on a few species Correspondence or locations. Here we present the results of the first broadscale surveys of Chela J. Zabin, Smithsonian Environmental invertebrate, fish and algal species richness from a tropical island, Oahu, Research Center, 3152 Paradise Drive, Hawaii, and a temperate mainland coast, Central California. Data were gath- Tiburon, CA 94920, USA. ered through surveys of 10 sites in the early 1970s and again in the mid-1990s E-mail: [email protected] in San Mateo and Santa Cruz counties, California, and of nine sites in 2001– Accepted: 18 August 2012 2005 on Oahu. Surveys were conducted in a similar manner allowing for a comparison between Oahu and Central California and, for California, a com- doi: 10.1111/maec.12007 parison between time periods 24 years apart.