Image Compression, Comparison Between Discrete Cosine Transform and Fast Fourier Transform and the Problems Associated with DCT

Total Page:16

File Type:pdf, Size:1020Kb

Image Compression, Comparison Between Discrete Cosine Transform and Fast Fourier Transform and the Problems Associated with DCT Image Compression, Comparison between Discrete Cosine Transform and Fast Fourier Transform and the problems associated with DCT Imdad Ali Ismaili 1, Sander Ali Khowaja 2, Waseem Javed Soomro 3 1Institute of Information and Communication Technology, University of Sindh, Jamshoro, Sindh, Pakistan 2Institute of Information and Communication Technology, University of Sindh, Jamshoro, Sindh, Pakistan Abstract - The research article focuses on the Image much higher than the calculations mentioned above; this Compression techniques such as. Discrete Cosine Transform increases the bandwidth requirement of the channel which is (DCT) and Fast Fourier Transform (FFT). These techniques very costly. This is the challenging part for the researchers to are chosen because of their vast use in image processing field, transmit theses digital signals through limited bandwidth JPEG (Joint Photographic Experts Group) is one of the communication channel, most of the times the way is found to examples of compression technique which uses DCT. The overcome this obstacle but sometimes it is impossible to send Research compares the two compression techniques based on these digital signals in its raw form. Though there has been a DCT and FFT and compare their results using MATLAB revolution in the increased capacity and decreased cost of software, Graphical User Interface (GUI). These results are storage over the past years but the requirement of data storage based on two compression techniques with different rates of and data processing applications is growing explosively to out compression i.e. Compression rates are 90%, 60%, 30% and space this achievement.[8] 5%. The technique allows compressing any picture format to JPG format. The result shows that DCT is better technique 2 Fourier Theory than FFT; however the compression results are same as that of Conversion of Time domain or spatial description 30% compression to 5% compression reflecting not i.e. pixel by pixel description of an image into frequency significant change in visual results excepting the file size domain which applies to the entire image is called the Fourier varying to small fraction. The compression technique works Transform. The conversion of frequency domain to the real fine with the images having little noise but the compression space description is called its inverse Fourier Transform. We technique due to its lossy nature don’t work very well in can easily study the function as it is represented as the series medical images such as CT, X-ray etc. of sum of Sines and Cosines but it has a disadvantage of very complex computation. [4] Keywords: Image Compression, JPEG, Discrete Cosine Transform, Fast Fourier Transform, Image Processing 3 Discrete Fourier Transform The Discrete Fourier Transform (DFT) is the study 1 Introduction of Fourier analysis of finite-domain discrete time signals. The DFT is central to many kinds of signal processing, including As we can analyze that demand for multimedia the analysis of compression of video and sound information. data through the mobile network and conveniently accessing DFT requires large number of multiplications and additions the concerned data through mobile services is growing day by for the calculation. For example a 8-point DFT, there are 8 day. In order to make the multimedia data usage efficient and complex multiplications and 7 complex additions, that’s why insidious it is essential that the data representation and DFT is computed efficiently using a Fast Fourier Transform techniques for encoding the data at different platforms or in (FFT) algorithm. [4] all applications should follow the same standard. In all multimedia data categories image data has got the highest 4 Fast Fourier Transform preference because of its usage and lion’s share in terms of the bandwidth consumption for multimedia communication. Due To find the N-DFT of a given sequence, we only to this it is very necessary as well as a challenge for the need to compute the N/2 complex coefficients, while the researchers to develop efficient methods for image second N/2 complex coefficients can be achieved by compression for effective and efficient use of bandwidth. manipulating the data from the first calculation. Hence N- point DFT requires N2 additions. But with Decimation in In spite of many disadvantages of analog Time algorithms, it requires computing two times N/2-point representation of signals compared to digital counterpart, they DFT. Therefore, number of additions required is need smaller number of bits for storage and transmission. For example, a low-resolution television quality color video of 36 frames/sec where each frame comprises of 800 x 600 pixels need more than 240 Mbps for storage, so the digitized color (1) video for the duration of 1 hour will almost require 96 Gbps for storage. Similarly, the requirement for the HDTV will be Therefore, the complexity is halved. This is how 8 JPEG Algorithm FFT uses Decimation in Time algorithm to reduce the computational time for DFT computation. So, we can say that Discrete Cosine Transform is the real transform FFT is a faster version of DFT. which makes it more attractive then Fourier Transform. The DCT has excellent energy compaction properties. For a Most of the information is contained in low typical image, most of the visually significant information is frequency components as they are associated with the pattern present in just a few coefficients of the DCT. For this reason, in the image. Details in the image are provided by high the DCT is often used in image compression applications. frequency components, but they are very susceptible to noise DCT is defined for 1-D as well as 2-D signals as shown in which causes spurious effects, it is easier to remove the noise below equations 1 & 4 respectively. in frequency domain by just applying the masks to the image within the frequency domain. Many filters in image processing are based on FFT. (2) 5 Discrete Cosine Transform The transformation of two-dimensional matrix of pixel values into an equivalent matrix of spatial frequency Whereas (3) components can be carried out using a mathematical technique known as the discrete cosine transform (DCT). The transformation operation itself is lossless, apart from some small rounding errors in mathematics but once the equivalent matrix of spatial frequency components, known as (4) coefficients, has been derived then any threshold can be dropped. It is only at this point that the operation becomes lossy. (5) 6 Methodology (6) One of the most popular standards used for compression is JPEG standard. It is also known as baseline Where as a(u) is defined as above in equation (3) & (4) and mode or lossy sequential mode which is based on DCT and is u,v=0,1,…..,N-1 adequate for most compression applications, the input and output images are limited to eight bits, while the quantized DCT coefficient values are restricted to 11 bits. The DCT is a mathematical function that transforms image data from the 9 Quantization spatial (pixel by pixel processing) to the frequency domain. In theory, providing the forward DCT is For an M x N image, the spatial domain represents the color computed to a high precision using say, floating point value of each pixel. The frequency domain considers the arithmetic, there is a very little loss of information during the image data as 2-dimensional waveform and represents the DCT phase. Although in practice small losses occur owing to wave form in terms of its frequency components. use of fixed point arithmetic, the main source of information loss occurs during the quantization and entropy encoding 7 Image Processing stages, where the compression takes place. Image processing is the field in which an image is The sensitivity of the eye varies with spatial processed to extract some of the information or features frequency, which implies that the amplitude threshold below embedded in it. These features or information can be fetched which the eye will detect a particular spatial frequency also by processing photographs or video frames. Digital Image varies. In practice, therefore, the threshold values used vary processing refers to the processing applied on to the digital for each of the 64 DCT coefficients. These are held in a 2- image which contains finite number of elements at a particular dimensional matrix known as the quantization table with the location and value and are referred as Pixel or Picture threshold value to be used with a particular DCT coefficient in elements. Pixel is said to be the smallest element in the image. the corresponding position in the matrix, so the threshold Monochrome images varies in intensity from black to white value is important and in practice it is compromise between and the color image stores 3 numbers for each pixel which are the level of compression that is required and the resulting red, green and blue. amount of information loss that is acceptable. 13 Results Results are shown below in the following figures using DCT and FFT Respectively. (7) 10 Need for Compression The importance of these compression techniques are discussed above. However there are always preferences to these applications. Bandwidth availability is not the same everywhere, sometimes it is very difficult to arrange the internet facility or establish a communication network in an area where the infrastructure is not meeting our needs. By allowing such rates of compression we are giving flexibility as to what extent they can bear the loss of information. These areas may include Flood affected areas, areas which are recently struck by a storm etc. 11 Applications Following are the applications in which these Fig. 1 Image Compression using DCT and FFT compression techniques can be used. 1. E-Health Systems 2. Telemedicine 3. Video Conferencing 4. Monitoring and Surveillance These are the major applications where these compression techniques can be used and the need for using is a compulsion because remote areas have limited resources, bandwidth limitation is one of the limited resources which need more financial requirements.
Recommended publications
  • Nova College-Wide Course Content Summary Ite 170 - Multimedia Software (3 Cr.)
    Revised 8/2012 NOVA COLLEGE-WIDE COURSE CONTENT SUMMARY ITE 170 - MULTIMEDIA SOFTWARE (3 CR.) Course Description Explores technical fundamentals of creating multimedia projects with related hardware and software. Students will learn to manage resources required for multimedia production and evaluation and techniques for selection of graphics and multimedia software. Lecture 3 hours per week. General Purpose In this course students will learn the concepts, design and implementation of multimedia for the web. Students will create professional websites which incorporate images, sound, video and animation. The materials created will correspond to standards for Web accessibility and copyright issues. Course Prerequisites/Corequisites Prerequisite: ITE 115 Course Objectives Upon completion of this course, the student will be able to: a) Plan and organize a multimedia web site b) Understand the design concepts for creating a multimedia website c) Use a web authoring tool to create a multimedia web site d) Understand the design concepts related to creating and using graphics for the web e) Use graphics software to create and edit images for the web f) Understand the design concepts related to creating and using animation, audio and video for the web g) Use animation software to create and edit animations for the web h) Use software tools to publish and maintain a multimedia web site Major Topics to be Included Plan and organize a multimedia web site User characteristics and their effect upon design considerations Principles of good design
    [Show full text]
  • Network Requirements for High-Speed Real-Time Multimedia
    NETWORK REQUIREMENTS FOR HIGH-SPEED REAL-TIME MULTIMEDIA DATA STREAMS Andrei Sukhov1), Prasad Calyam2), Warren Daly3), Alexander Iliin4) 1) Laboratory of Network Technologies, Samara Academy of Transport Engineering, Samara, Russia 2) Department of Electrical and Computer Engineering, Ohio State University, Ohio USA 4) HEANet Ltd, Dublin, Ireland 4) Russian Institute for Public Network, Moscow, Russia Abstract High-speed real-time multimedia applications such as Videoconferencing and HDTV have already become popular in many end-user communities. Developing better network protocols and systems that support such applications requires a sound understanding of the voice and video traffic characteristics and factors that ultimately affect end-user perception of audiovisual quality. In this paper we attempt to propose an analytical model for the various network factors whose interdependencies need to be modeled for characterizing end- user perception of audiovisual quality for high-speed real-time multimedia data streams. Towards validating our theory presented in this paper, we describe our initial results and future plans that consist of conducting a series of experiments and potential modifications to our proposed model. As the portion of middle and high-speed RTP (Real-Time Protocols) applications in the total communication over the Internet grows, it is important to understand the behavior of such traffic over the TCP/IP networks. The impetuous growth of traffic volumes and the rapid advances in the technologies of new-generation networks like IPv6 have made it possible for use of such high-speed applications, but with new demands on the network to deliver superior Quality of Service (QoS) to these applications. Our research focuses on the area of quality criteria for middle and high-speed network applications like • Video Conferencing / Streaming • Grid applications • P2P applications Audio- and Videoconferencing are two major multimedia communications that are defined by various international standards such as H.320, H.323 and SIP.
    [Show full text]
  • Multimedia in Teacher Education: Perceptions & Uses
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 1, 2012 Multimedia in Teacher Education: Perceptions & Uses Gourav Mahajan* Sri Sai College of Education, Badhani, Pathankot,Punjab, India * E-mail of the corresponding author: [email protected] Abstract Educational systems around the world are under increasing pressure to use the new technologies to teach students the knowledge and skills they need in the 21st century. Education is at the confluence of powerful and rapidly shifting educational, technological and political forces that will shape the structure of educational systems across the globe for the remainder of this century. Many countries are engaged in a number of efforts to effect changes in the teaching/learning process to prepare students for an information and technology based society. Multimedia provide an array of powerful tools that may help in transforming the present isolated, teacher-centred and text-bound classrooms into rich, student-focused, interactive knowledge environments. The schools must embrace the new technologies and appropriate multimedia approach for learning. They must also move toward the goal of transforming the traditional paradigm of learning. Teacher education institutions may either assume a leadership role in the transformation of education or be left behind in the swirl of rapid technological change. For education to reap the full benefits of multimedia in learning, it is essential that pre-service and in-service teachers have basic skills and competencies required for using multimedia.
    [Show full text]
  • History of Computer Game Design Our Collaboration Will Build on Projects That We Two Have Been Engaged in for Some Time
    How They Got Game: The History and Culture of Interactive Simulations and Video Games http://www.stanford.edu/dept/HPS/VideoGameProposal/ Principal Investigators Tim Lenoir, History of Science, email: [email protected] Henry Lowood, Stanford University Libraries, email: [email protected] Research and Development Team Carlos Seligo, ATS Freshman Sophomore Programs, email: [email protected] Carlos co-designed the Word and the World sites. His Blade Runner site is one of the most innovative interactive educational sites on the web Rosemary Rogers, Program Administrator, HPS, email: [email protected] Rosemary has designed the Mousesite, the HPS sites, and the Sloan Science and Technology in the Making sites. She has won numerous awards for her website designs. Undergraduate Interns Zachary Pogue, sophomore, email: [email protected] Zach is part of the DMZ design team that won the VPUE website design contract. He has extensive experience in interactive website design John Eric Fu, senior, email: [email protected] As a Presidential Scholar John has completed an outstanding research project comparing British and American video game products and culture. Since his early teens he has been a video game reviewer for Macworld. Grad Students Casey Alt, History of Science and Film Studies, email: [email protected] Casey has worked with Scott Bukatman, Pamela Lee, and Lenoir. He is working on Japanese Manga film and has extensive media experience. Yorgos Panzaris, History of Science, email: [email protected] Yorgos has a master's degree in educational technologies from the MIT MediaLab and has extensive experience with databases and online design. He has worked with Lenoir on several recent projects.
    [Show full text]
  • Lecture 11 : Discrete Cosine Transform Moving Into the Frequency Domain
    Lecture 11 : Discrete Cosine Transform Moving into the Frequency Domain Frequency domains can be obtained through the transformation from one (time or spatial) domain to the other (frequency) via Fourier Transform (FT) (see Lecture 3) — MPEG Audio. Discrete Cosine Transform (DCT) (new ) — Heart of JPEG and MPEG Video, MPEG Audio. Note : We mention some image (and video) examples in this section with DCT (in particular) but also the FT is commonly applied to filter multimedia data. External Link: MIT OCW 8.03 Lecture 11 Fourier Analysis Video Recap: Fourier Transform The tool which converts a spatial (real space) description of audio/image data into one in terms of its frequency components is called the Fourier transform. The new version is usually referred to as the Fourier space description of the data. We then essentially process the data: E.g . for filtering basically this means attenuating or setting certain frequencies to zero We then need to convert data back to real audio/imagery to use in our applications. The corresponding inverse transformation which turns a Fourier space description back into a real space one is called the inverse Fourier transform. What do Frequencies Mean in an Image? Large values at high frequency components mean the data is changing rapidly on a short distance scale. E.g .: a page of small font text, brick wall, vegetation. Large low frequency components then the large scale features of the picture are more important. E.g . a single fairly simple object which occupies most of the image. The Road to Compression How do we achieve compression? Low pass filter — ignore high frequency noise components Only store lower frequency components High pass filter — spot gradual changes If changes are too low/slow — eye does not respond so ignore? Low Pass Image Compression Example MATLAB demo, dctdemo.m, (uses DCT) to Load an image Low pass filter in frequency (DCT) space Tune compression via a single slider value n to select coefficients Inverse DCT, subtract input and filtered image to see compression artefacts.
    [Show full text]
  • Image Compression Using Discrete Cosine Transform Method
    Qusay Kanaan Kadhim, International Journal of Computer Science and Mobile Computing, Vol.5 Issue.9, September- 2016, pg. 186-192 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IMPACT FACTOR: 5.258 IJCSMC, Vol. 5, Issue. 9, September 2016, pg.186 – 192 Image Compression Using Discrete Cosine Transform Method Qusay Kanaan Kadhim Al-Yarmook University College / Computer Science Department, Iraq [email protected] ABSTRACT: The processing of digital images took a wide importance in the knowledge field in the last decades ago due to the rapid development in the communication techniques and the need to find and develop methods assist in enhancing and exploiting the image information. The field of digital images compression becomes an important field of digital images processing fields due to the need to exploit the available storage space as much as possible and reduce the time required to transmit the image. Baseline JPEG Standard technique is used in compression of images with 8-bit color depth. Basically, this scheme consists of seven operations which are the sampling, the partitioning, the transform, the quantization, the entropy coding and Huffman coding. First, the sampling process is used to reduce the size of the image and the number bits required to represent it. Next, the partitioning process is applied to the image to get (8×8) image block. Then, the discrete cosine transform is used to transform the image block data from spatial domain to frequency domain to make the data easy to process.
    [Show full text]
  • Hybrid Multimedia Room — System User Instructions
    Office of Information Technology and Resources Customer Services 516.877.3340 [email protected] Hybrid Multimedia Room — System User Instructions POWER ON/OFF To begin using the system, select the PWR button. Note: PWR button will blink to confirm selection while powering up and powering down. The button will stop blinking when system is ready for use. (Source buttons will light to confirm selections.) When the power light remains solid, the system is ready for use. To turn system off later, simply select the PWR button again. CONNECTING TO THE DESKTOP COMPUTER To use the computer, push the power button and select the COMP button on the control panel. Once this is done the computer power button should light up green and you should see the computer boot up screen displayed on the projector. After the computer finishes booting up, the desktop will be displayed on the screen and you will have full use of the computer. CONNECTING TO A LAPTOP Using the VGA cable provided, connect your laptop to the system. Make sure the COMP button on the control panel is selected and power on your laptop. Once the laptop is on, its signal will automatically override the built-in computer signal and you will be able to see the laptop screen through the projector. If the projector is not showing the laptop screen, confirm that the laptop is set to display external video (depress key combination Fn + F8 on most Adelphi laptops; Fn + F5 on HPs). Note: If you need to play audio from your laptop, plug the provided audio cable in the headphone jack on your laptop.
    [Show full text]
  • Specifications Multimedia Keyboard
    Multimedia Keyboard - Notebook/Laptop Highlights ● USB connection provides plug- Computer Peripheral Devices and-play convenience ● Perfect size for any notebook or MODEL NUMBER: IN3005KB desktop environment ● Sleep hot key puts your notebook or desktop computer to sleep with a touch of the button ● Internet hot keys deliver one- touch instant access to a variety Internet functions ● Multimedia hot keys allow you to control music, videos and other media System Requirements ● Windows 98/ME/2000/XP/NT ● Macintosh OS 8.5 and above ● CD-ROM drive ● USB port Description Package Includes Tripp Lite's Multimedia Keyboard provides one-touch access to the Internet, email and all of your favorite ● Multimedia keyboard programs with 12 customized hot keys. ● CD-ROM with iKeyWorks Software Features ● User's guide ● One-touch access to the Internet, email and all of your favorite programs with 12 customized hot keys Specifications OVERVIEW UPC Code 037332126917 PRODUCT OVERVIEW Product Overview Multimedia Keyboard USER INTERFACE, ALERTS & CONTROLS Diagnostic LED Details 3 (Num Lock, Caps Lock, Scroll Lock) PHYSICAL Color Black; Silver Programmable Buttons / Hot Keys 12 (sleep hot key, multimedia hot keys and Internet hot keys Shipping Dimensions (hwd / cm) 20.83 x 4.44 x 45.47 Shipping Dimensions (hwd / in.) 8.20 x 1.75 x 17.90 1 / 2 Shipping Weight (kg) 1.00 Shipping Weight (lbs.) 2.20 Unit Dimensions (hwd / cm) 42.55 x 20.32 x 1.91 Unit Dimensions (hwd / in.) 16.75 x 8 x 0.75 Unit Weight (kg) 0.71 Unit Weight (lbs.) 1.57 FEATURES & SPECIFICATIONS USB 1.1 Compatible Yes USB 2.0 Compatible Yes USB Powered Yes STANDARDS & COMPLIANCE Certifications FCC and CE WARRANTY Product Warranty Period (Worldwide) 1-year limited warranty © 2021 Tripp Lite.
    [Show full text]
  • An Overview of Multimedia Content Protection in Consumer Electronics Devices
    An overview of multimedia content protection in consumer electronics devices Ahmet M. Eskicioglu* and Edward J. Delp‡ *Thomson Consumer Electronics Corporate Research 101 W. 103rd Street Indianapolis, Indiana 46290-1102 USA ‡ Video and Image Processing Laboratory (VIPER) School of Electrical and Computer Engineering Purdue University West Lafayette, Indiana 47907-1285 USA ABSTRACT A digital home network is a cluster of digital audio/visual (A/V) devices including set-top boxes, TVs, VCRs, DVD players, and general-purpose computing devices such as personal computers. The network may receive copyrighted digital multimedia content from a number of sources. This content may be broadcast via satellite or terrestrial systems, transmitted by cable operators, or made available as prepackaged media (e.g., a digital tape or a digital video disc). Before releasing their content for distribution, the content owners may require protection by specifying access conditions. Once the content is delivered to the consumer, it moves across home the network until it reaches its destination where it is stored or displayed. A copy protection system is needed to prevent unauthorized access to bit streams in transmission from one A/V device to another or while it is in storage on magnetic or optical media. Recently, two fundamental groups of technologies, encryption and watermarking, have been identified for protecting copyrighted digital multimedia content. This paper is an overview of the work done for protecting content owners’ investment in intellectual property. Keywords: multimedia, copy protection, cryptography, watermarking, consumer electronics, digital television, digital video disc, digital video cassette, home networks. 1. INTRODUCTION In the entertainment world, original multimedia content (e.g., text, audio, video and still images) is made available for consumers through a variety of channels.
    [Show full text]
  • Steerable Discrete Cosine Transform
    Politecnico di Torino Porto Institutional Repository [Proceeding] Steerable Discrete Cosine Transform Original Citation: Fracastoro, G.; Magli, E. (2015). Steerable Discrete Cosine Transform. In: 2015 IEEE International Workshop on Multimedia Signal Processing, 2015. pp. 1-6 Availability: This version is available at : http://porto.polito.it/2638898/ since: April 2016 Publisher: IEEE Published version: DOI:10.1109/MMSP.2015.7340827 Terms of use: This article is made available under terms and conditions applicable to Open Access Policy Article ("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions. html Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters. (Article begins on next page) Steerable Discrete Cosine Transform Giulia Fracastoro #1, Enrico Magli #2 # Department of Electronics and Telecommunications, Politecnico di Torino, Italy 1 [email protected] 2 [email protected] Abstract—Block-based separable transforms tend to be inef- the use of symmetry to reduce the number of transform ficient when blocks contain arbitrarily shaped discontinuities. matrices needed [7]–[9]. However, the main problem of this For this reason, transforms incorporating directional information methods is that training sets must be processed to obtain are an appealing alternative. In this paper, we propose a new approach to this problem, designing a new transform that can transforms that are optimal for a given mode. be steered in any chosen direction and that is defined in a Recently, a new approach in image and video coding is rigorous mathematical way.
    [Show full text]
  • Specifications Wireless Multimedia Flexible Keyboard
    Wireless Multimedia Flexible Keyboard - Highlights ● Wireless capability with USB Notebook/Laptop Computer Peripheral Devices receiver ● Flexible, indestructible silicone MODEL NUMBER: IN3010KB material is perfect for healthcare applications and other clean or dirty environments-can be rolled, washed, disinfected and more ● Lightweight, ultra-slim design provides maximum portability while traveling ● 2.4 GHz allows operation up to 30 feet away from a computer ● 18 multimedia/Internet hot keys plus USB compatibility System Requirements ● Windows 98/2000/ME/XP ● CD-ROM drive ● Available USB port Package Includes Description ● Wireless multimedia flexible This wireless, flexible keyboard is made of an indestructible silicone material perfect for healthcare keyboard applications and other clean or dirty environments. Wireless capability adds freedom of movement to any ● USB receiver notebook or desktop environment. ● CD-ROM with Windows 98 driver (Driver not required with Features Windows 2000/ME/XP (plug- and-play) ● This wireless, flexible keyboard is made of an indestructible silicone material perfect for healthcare ● applications and other clean or dirty environments Two AAA alkaline batteries ● ● Wireless capability adds freedom of movement to any notebook or desktop environment User's guide Specifications OVERVIEW UPC Code 037332135834 Accessories Type Keyboard PRODUCT OVERVIEW Product Overview Wireless Multimedia Flexible Keyboard PHYSICAL Color White Material of Construction Silicone Programmable Buttons / Hot Keys 18 pre-programmed
    [Show full text]
  • The Transistor, Fundamental Component of Integrated Circuits
    D The transistor, fundamental component of integrated circuits he first transistor was made in (SiO2), which serves as an insulator. The transistor, a name derived from Tgermanium by John Bardeen and In 1958, Jack Kilby invented the inte- transfer and resistor, is a fundamen- Walter H. Brattain, in December 1947. grated circuit by manufacturing 5 com- tal component of microelectronic inte- The year after, along with William B. ponents on the same substrate. The grated circuits, and is set to remain Shockley at Bell Laboratories, they 1970s saw the advent of the first micro- so with the necessary changes at the developed the bipolar transistor and processor, produced by Intel and incor- nanoelectronics scale: also well-sui- the associated theory. During the porating 2,250 transistors, and the first ted to amplification, among other func- 1950s, transistors were made with sili- memory. The complexity of integrated tions, it performs one essential basic con (Si), which to this day remains the circuits has grown exponentially (dou- function which is to open or close a most widely-used semiconductor due bling every 2 to 3 years according to current as required, like a switching to the exceptional quality of the inter- “Moore's law”) as transistors continue device (Figure). Its basic working prin- face created by silicon and silicon oxide to become increasingly miniaturized. ciple therefore applies directly to pro- cessing binary code (0, the current is blocked, 1 it goes through) in logic cir- control gate cuits (inverters, gates, adders, and memory cells). The transistor, which is based on the switch source drain transport of electrons in a solid and not in a vacuum, as in the electron gate tubes of the old triodes, comprises three electrodes (anode, cathode and gate), two of which serve as an elec- transistor source drain tron reservoir: the source, which acts as the emitter filament of an electron gate insulator tube, the drain, which acts as the col- source lector plate, with the gate as “control- gate drain ler”.
    [Show full text]