Dr. John Behrendt 14 March 2000 Brian Shoemaker Interviewer

Total Page:16

File Type:pdf, Size:1020Kb

Dr. John Behrendt 14 March 2000 Brian Shoemaker Interviewer Dr. John Behrendt 14 March 2000 Brian Shoemaker Interviewer (Begin Tape 1 - Side A) (000) BS: This is an oral history interview with Dr. John Behrendt as part of the Polar Oral History Project conducted by the American Polar Society and the Byrd Polar Archival Program of the Ohio State University on a grant from the National Science Foundation. The interview was conducted at Dr. Behrendt's office at the University of Colorado, Boulder, by Brian Shoemaker on the 14th of March 2000. Dr. Behrendt, you were a young man that went to Antarctica as part of the International Geophysical Year. Were you a volunteer? JB: Yes, I was 24 years old. I had just finished my Master's degree at the University of Wisconsin in 1956, when I left Davisville, Rhode Island, on November 9th on the USS Wyandot and we sailed for the Weddell Sea and Filchner Ice Shelf where I spent the winter at Ellsworth Station. I was a field assistant, or assistant seismologist, as my grand title was, to Edward Thiel, who was a young Ph.D. of 28 years old. He was my immediate supervisor and he and Hugo Newberg, co-led the over-snow traverse on the Filchner Ice Shelf the following summer. We left Antarctica on 17th of January 1958. 1 BS: What led you to go into science? What's your background? Did your father encourage you? JB: Yes, my parents encouraged me to be educated and go to college, although I was the first person in my family. My younger brother was the second to get a college degree. My Dad never graduated from high school and my Mother went to a Normal School and taught elementary school. She did this most of her adult life except for 18 years out raising children. I grew up in Stevens Point, Wisconsin, where I was born in 1932, and attended Central State College which is now the Stevens Point Campus of the University of Wisconsin, for two years. I then went to the University of Wisconsin in Madison where I majored in physics. I was interested in the atomic bomb and I thought I would be an experimental physicist. I decided I wasn't smart enough to be a theoretical physicist. But, about the time I was completing my Bachelor's degree, I decided that I didn't want to sit in the lab all my life and I was looking for something to do. Professor George Woollard of the Department of Geology, was a geophysicist at Madison in 1956, and he convinced me to go to graduate school in geophysics. BS: OK. We're talking about your background that led to you going into geology and you originally were physics and now you're into geophysics. JB: So I started out as a geophysical field assistant in the summer of 1954 and traveled around the United States taking gravity readings and magnetic readings with another young geophysicist. Worked on my Master's degree with Ed Thiel as my supervisor in 1955. I went to work in the Uinta Mountains in the summer of '55 - and started my association with Edward Thiel, which lasted for some years. He was one of the people selected to go down to Antarctica in 1956 as a geophysicist, as was I, Charlie Bentley, Ned Ostenso, and Hugh Bennett. All but Bentley were from the University of Wisconsin. 2 Bert Crary, Albert P. Crary, would be the overall charge of the Antarctic Program in the winter, but more specifically the over-snow traverse program which was the only field science program in the 1957 - going down in '56 for the '57-'58 summer. Later, there was an explosion of field programs. But, basically, the over-snow geophysical traverse program to measure the thickness of the Antarctic ice sheet and its snow accumulation, temperature, was the primary objective of this US program. The Soviet Union had a program similarly coordinated under the International Geophysical Year and the French ran a similar program. No other countries were doing that sort of work at that particular time. (50) So, we applied, those of us from the University of Wisconsin and Charles Bentley, who was just finishing his Ph.D. at Columbia University at Lamont Geological Observatory under Morris Ewing as it was called at that time - now it's Lamont Doherty Earth Observatory. But, they originally rejected me and I think most of us young students because we didn't have enough experience in geophysics. I think they wanted to get some industry men, or more renowned university scientists. But these wouldn't go down for a year and a half, and so they ended up getting stuck with the people who Woollard and Ewing and Crary selected in the first place. It was the Old Boys network operating that actually got us our jobs. And there were only boys in those days. No women were in the United States program. BS: Who's Dr. Woollard? 3 JB: George P. Woollard was a well-known geophysicist for 30 or 40 years. He was professor in the University of Wisconsin in the Department of Geology and later went to Hawaii where he started the Hawaii Institute of Geophysics. BS: He was big in oceanography too, wasn't he? JB: That's right. But primarily although, his oceanographic work had a geologic bent, he and Crary and Ewing worked in the 1930s, doing geophysical work on the Atlantic coastal plain and continental shelf of the United States. And so they continued to be close and arranged the over snow geophysical traverse program. There were many fewer geophysicists in those days than now. So everybody knew each other. And as I said earlier, the Old Boys network is sort of what put this part of the IGY program in Antarctica together. BS: OK. What did you do to prepare to go? JB: Nothing in particular except I was finishing my Master's degree in the Uinta Mountains - gravity and magnetic survey of the Uinta Mountains, with Ed Thiel. He, by that time, had gone to the University of Utah, but eventually came back to Wisconsin. I was a mountain climber and worked on the Juneau Ice Field the summer of 1956. I guess that was a specific preparation. After I had been selected to go, Ed Thiel and I went up and worked with Ed LaChapelle and some other people on Lemon Creek Glacier where we measured the ice thickness. Attempted to do it with seismic methods, but ultimately made a gravity survey. So this was where I first became familiar with crevasses, although I had quite a bit of rock climbing and mountaineering experience, primarily rock climbing, prior to this time. And winter camping experience, but nothing exactly training me for Antarctica other than my general scientific education. 4 BS: Crevasse work? JB: Yes. We encountered many crevasses on the Filchner Ice Shelf traverse in Antarctica, but my first experiences with them were on the Juneau Ice Field on the Lemon Creek Glacier where I had the opportunity to spend 8 weeks watching a small mountain temperate glacier go through the annual melt ice cycle. So, when you went up there in June, you would barely see any crevasses and then as the summer glacier season progressed, they would open up and we learned to deal with them either roped up or not roped up, walking all over this small glacier. BS: How many people who were in the over snow traverse program had prior ice experience, I mean on ice? JB: Well, Charles Bentley had done his Ph.D. thesis on Greenland and part of the group that were going down to Antarctica worked in Greenland that same season that Ed and I were in Alaska. Hugh Bennett, Ned Ostenso and Nolan Aughenbaugh, who also was in Ellsworth Station, worked at Greenland. Bentley had finished his Ph.D. thesis by this time, but was continuing doing seismic reflection work in Greenland. But I don't think they had the crevasse experience, or crevasse problems, such as we were encountering in the Lemon Creek Glacier, although Greenland is more analogous to Antarctica and better training for Antarctica than a small mountain glacier in Alaska might be in other ways. (100) BS: So, you were off. How did you get down there? 5 JB: Well, we sailed away from Davisville, Rhode Island, adjacent to Quonset Point Naval Air Station on November 9th, 1956 - sailed out of Narragansett Bay on a cold November day. I remember two IGY secretaries standing with a sign as our ship pulled away saying, "Is this trip really necessary?" I've told this story in several talks and no one under 50 even understands the humor in that. BS: Which ship was it? JB: The Wyandot. We went down the Windward and Leeward Islands, through the Panama Canal, spent a few days in Panama City, then continued off the coast of South America, crossing the equator and going through the initiation rites on a Navy ship of "crossing the line," and then stopped in Valparaiso, Chile, for a few days. Most of us civilians went up to Santiago and saw the sights. We were joined in Panama by the icebreaker Staten Island, a Navy icebreaker, in those days. A Wind Class icebreaker. We went south, encountered heavy seas and entered the Gulf of Penas and went through the Chilean inside passage. A Chilean Navy officer acted as a pilot through the English Narrows, to Punta Arenas, Chile, where we again stopped for two nights, or three nights.
Recommended publications
  • The Commonwealth Trans-Antarctic Expedition 1955-1958
    THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword ..................................................................................................................................
    [Show full text]
  • Analysis of Glacier Flow Dynamics from Preliminary RADARSAT Insar Data of the Antarctic Mapping Mission
    Analysis of Glacier Flow Dynamics from Preliminary RADARSAT InSAR Data of the Antarctic Mapping Mission Richard R. Forster, Kenneth C. Jezek, Hong Gyoo Soh Byrd Polar Research Center, The Ohio State Universtiy 1090 Carmack Rd., Columbus, OH 43210 tel. (614)292-1063, fax: (614)292-4697, [email protected] A. Laurence Gray and Karim E. Matter Canada Centre for Remote Sensing 588 Booth St., Ottawa, Ont., Canada K1A OY7 tel. (613)995-3671, fax: (613)947-1383,[email protected] INTRODUCTION The entire continent of Antarctica was mapped at a 25- meter resolution with synthetic aperture radar (SAR) during the Radarsat Antarctic Mapping Project (RAMP) over a 30- day period in the fall of 1997 providing a static “snapshot” of the ice sheet [l]. Since Radarsat-1 has a 24-day orbit cycle, repeat-pass interferometric SAR (InSAR) data was also acquired. The extensive InSAR data [1,2] will provide a view of ice sheet kinematics, for use in studies of glacier dynamics over vast unexplored areas. This information is required to determine the response of the Antarctic Ice Sheet to present and future climate change. In this paper we present the results of analysis of an InSAR pair for the Recovery Glacier, East Antarctica. Figure1. RADARSAT mosaic of the East Antarctic Ice streams centered on Recovery Glacier. Box is InSAR scene RECOVERY GLACIER The Recovery Glacier is a major outlet draining a portion of Queen Maud Land to the Filchner Ice Shelf. Feeding the glacier is a large ice stream and tributaries, the extent of which, are easily observable from the RAMP mosaic (Fig.
    [Show full text]
  • Preliminary Science Flight Report Operation Icebridge Antarctica 2011
    Preliminary Science Flight Report Operation IceBridge Antarctica 2011 Flight: F07 Mission: Slessor 1 Flight Report Summary Aircraft DC-8 (N817NA) Flight Number 120111 Flight Request 128008 Date Friday, October 21, 2011 (Z), Day of Year 294 Purpose of Flight Operation IceBridge Mission Slessor 1 Take off time 12:00:12 Zulu from Punta Arenas (SCCI) Landing time 23:23:40 Zulu at Punta Arenas (SCCI) Flight Hours 11.5 hours Aircraft Status Airworthy. Sensor Status All installed sensors operational. Significant Issues None Accomplishments Low-altitude survey (1,500 ft AGL) Bailey IceStream, Slessor Glacier and Recovery Glacier. Completed entire mission as planned. Collected data over an ice core site on Berkner Island. ATM, MCoRDS, snow and Ku-band radars, gravimeter, and DMS were operated on the survey lines. Conducted two ramp passes (2000 ft AGL) at Punta Arenas airport for ATM and DMS instrument calibration. Geographic Keywords Bailey Ice Stream, Slessor Glacier, Recovery Glacier, Berkner Island, Thyssen Höhe, Shackleton Range, Theron Mountains, Antarctica ICESat Tracks 0404 Repeat Mission None. Page | 1 Science Data Report Summary Instrument Instrument Operational Data Volume Instrument Issues Survey Entire High-alt. Area Flight Transit ATM 42 GB None MCoRDS 1.5 TB None Snow Radar 200 GB None Ku-band Radar 200 GB None DMS 98 GB None Gravimeter 2 GB None DC-8 Onboard Data 40 MB None Mission Report (Michael Studinger, Mission Scientist) Today’s mission is a new design. The intention is to sample the grounding line and lower part of Slessor Glacier and Bailey Ice Stream using all IceBridge low-altitude sensors.
    [Show full text]
  • Observing the Antarctic Ice Sheet Using the Radarsat-1 Synthetic Aperture Radar1
    OBSERVING THE ANTARCTIC ICE SHEET USING THE RADARSAT-1 SYNTHETIC APERTURE RADAR1 Kenneth C. Jezek Byrd Polar Research Center, The Ohio State University Columbus, Ohio 43210 Abstract: This paper discusses the RADARSAT-1 Antarctic Mapping Project (RAMP). RAMP is a collaboration between NASA and the Canadian Space Agency (CSA) to map Antarctica using the RADARSAT -1 synthetic aperture radar. The project was conducted in two parts. The first part, which had the data acquisition phase in 1997, resulted in the first high-resolution radar map of Antarctica. The second part, which occurred in 2000, remapped the continent below 80°S Latitude and is now using interfer- ometric repeat-pass observations to compute glacier surface velocities. Project goals and objectives are reviewed here along with several science highlights. These highlights include observations of ice sheet margin change using both RAMP and historical data sets and the derivation of surface velocities on an East Antarctic outlet glacier using interferometric data collected in 2000. INTRODUCTION Carried aloft by a NASA rocket launched from Vandenburg Air Force Base on November 4, 1995, the Canadian RADARSAT-1 is equipped with a C-band (5.3 GHz) synthetic aperture radar (SAR) capable of acquiring high-resolution (25 m) images of the Earth’s surface day or night and under all weather conditions. Along with the attributes familiar to researchers working with SAR data from the European Space Agency’s Earth Remote Sensing Satellite and ENVISAT as well as the Japa- nese Earth Resources Satellite, RADARSAT-1 has enhanced flexibility to collect data using a variety of swath widths, incidence angles, and resolutions.
    [Show full text]
  • November 1960 I Believe That the Major Exports of Antarctica Are Scientific Data
    JIET L S. Antarctic Projects OfficerI November 1960 I believe that the major exports of Antarctica are scientific data. Certainly that is true now and I think it will be true for a long time and I think these data may turn out to be of vastly, more value to all mankind than all of the mineral riches of the continent and the life of the seas that surround it. The Polar Regions in Their Relation to Human Affairs, by Laurence M. Gould (Bow- man Memorial Lectures, Series Four), The American Geographiql Society, New York, 1958 page 29.. I ITOJ TJM II IU1viBEt 3 IToveber 1960 CONTENTS 1 The First Month 1 Air Operations 2 Ship Oper&tions 3 Project MAGNET NAF McMurdo Sounds October Weather 4 4 DEEP FREEZE 62 Volunteers Solicited A DAY AT TEE SOUTH POLE STATION, by Paul A Siple 5 in Antarctica 8 International Cooperation 8 Foreign Observer Exchange Program 9 Scientific Exchange Program NavyPrograrn 9 Argentine Navy-U.S. Station Cooperation 9 10 Other Programs 10 Worlds Largest Aircraft in Antarctic Operation 11 ANTARCTICA, by Emil Schulthess The Antarctic Treaty 11 11 USNS PRIVATE FRANIC 3. FETRARCA (TAK-250) 1961 Scientific Leaders 12 NAAF Little Rockford Reopened 13 13 First Flight to Hallett Station 14 Simmer Operations Begin at South Pole First DEEP FREEZE 61 Airdrop 14 15 DEEP FREEZE 61 Cargo Antarctic Real Estate 15 Antarctic Chronology,. 1960-61 16 The 'AuuOiA vises to t):iank Di * ?a]. A, Siple for his artj.ole Wh.4b begins n page 5 Matera1 for other sections of bhis issue was drawn from radio messages and fran information provided bY the DepBr1nozrt of State the Nat0na1 Academy , of Soienoes the NatgnA1 Science Fouxidation the Office 6f NAval Re- search, and the U, 3, Navy Hydziograpbio Offioe, Tiis, issue of tie 3n oovers: i16, aótivitiès o events 11 Novóiber The of the Uxitéd States.
    [Show full text]
  • Exploration of Subsurface Antarctica: Uncovering Past Changes and Modern Processes
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Exploration of subsurface Antarctica: uncovering past changes and modern processes MARTIN J. SIEGERT1*, STEWART S. R. JAMIESON2 & DUANNE WHITE3 1Grantham Institute and Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK 2Department of Geography, Durham University, South Road, Durham, DH1 3LE, UK 3Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia *Correspondence: [email protected] Abstract: The Antarctic continent, which contains enough ice to raise sea level globally by around 60 m, is the last major scientific frontier on our planet. We know far more about the surfaces of the Moon, Mars and around half of Pluto than we do about the underside of the Antarctic ice sheet. Geophysical exploration is the key route to measuring the ice sheetâ s internal structure and the land on which the ice rests. From such measurements, we are able to reveal how the ice sheet flows, and how it responds to atmospheric and ocean warming. By examining landscapes that have been moulded by former ice flow, we are able to identify how the ice sheet behaved in the past. Geophysics is therefore critical to understanding change in Antarctica. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Numerical ice-sheet modelling reveals that, under Historical perspective atmospheric and ocean warming, the Antarctic ice sheet is likely to lose mass in the future and con- In 1950 little was known about the size and shape of tribute to rising sea levels.
    [Show full text]
  • (2006) Switch-Off of a Major Enhanced Ice Flow Unit in East Antarctica
    GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L15501, doi:10.1029/2006GL026648, 2006 Click Here for Full Article Switch-off of a major enhanced ice flow unit in East Antarctica David M. Rippin,1 Martin J. Siegert,2,3 Jonathan L. Bamber,2 David G. Vaughan,4 and Hugh F. J. Corr4 Received 20 April 2006; revised 1 June 2006; accepted 7 June 2006; published 10 August 2006. [1] The East Antarctic Ice Sheet (EAIS) is the largest ies: flow in two of the three tributaries of Slessor Glacier reservoir of ice on the planet by an order of magnitude. can largely be explained by ice deformation (with basal Compared with the West Antarctic Ice Sheet (WAIS), it is motion, within the range of uncertainties, playing a minor traditionally considered to be relatively stable, with only role), while flow in the third (under a similar glaciological minor adjustments to its configuration over glacial- setting), could only be explained by significant basal motion interglacial cycles. Here, we present the results of a radio- [Rippin et al., 2003a]. echo sounding survey from Coats Land, East Antarctica, [4] Radio-echo sounding (RES) data-sets from many which suggests that parts of the EAIS outlet drainage regions of Antarctica have revealed that internal layers are system may have changed significantly since the Last common and traceable continuously over >100 km (e.g., Glacial Maximum. We have identified an enhanced flow Robin and Millar, 1982; Siegert, 1999; Hodgkins et al., unit from buckled internal layering and smooth bed 2000). Internal layers occur as a result of electromagnetic morphology that is no longer active.
    [Show full text]
  • Tulaczyk (PDF)
    Journal of Glaciology, Vol. 55, No. 192, 2009 573 An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008) Benjamin E. SMITH,1 Helen A. FRICKER,2 Ian R. JOUGHIN,1 Slawek TULACZYK3 1Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Box 355640, Seattle, Washington 98105-6698, USA E-mail: [email protected] 2Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California–San Diego, La Jolla, California 92093-0225, USA 3Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, California 95064, USA ABSTRACT. Through the detection of surface deformation in response to water movement, recent satellite studies have demonstrated the existence of subglacial lakes in Antarctica that fill and drain on timescales of months to years. These studies, however, were confined to specific regions of the ice sheet. Here we present the first comprehensive study of these ‘active’ lakes for the Antarctic ice sheet north of 868 S, based on 4.5 years (2003–08) of NASA’s Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Our analysis has detected 124 lakes that were active during this period, and we estimate volume changes for each lake. The ICESat-detected lakes are prevalent in coastal Antarctica, and are present under most of the largest ice-stream catchments. Lakes sometimes appear to transfer water from one to another, but also often exchange water with distributed sources undetectable by ICESat, suggesting that the lakes may provide water to or withdraw water from the hydrologic systems that lubricate glacier flow.
    [Show full text]
  • ARCHIVED-CARN Vol 24, Nov 2007 [PDF-2.77
    Vol 24, November 2007 NEWSLETTER FOR THE Canadian Antarctic Research Network Inside Measuring Crustal Motion in Antarctica: Measuring Crustal Motion GPS, Tectonics, and Glacio-isostatic Adjustment in Antarctica: Thomas James GPS, Tectonics, and Glacio-isostatic Adjustment 1 For five weeks in early 2006, I joined the U.S. National Science Foundation’s (NSF) field team of the Transantarctic Mountain Deformation (TAMDEF) pro- RUGBY ject (www.geology.ohio-state.edu/tamdef/) measuring crustal motion in the (Research on Ultraviolet and Global warming effects Transantarctic Mountains near McMurdo Station (Fig. 1). My initial involvement on Biological pump Yields) 8 in this was as a modeller of the crustal motions expected from past and present changes in the Antarctic ice sheet. By observing and modelling these motions, Canadians in Antarctic known as glacio-isostatic adjustment (GIA), we learn about the structure and Place-Names: properties of the Earth beneath the TAMDEF region, and may possibly discern Supplement 13 new features of the ice-sheet history. In turn, well-constrained GIA models allow better interpretation of remote-sensing data to determine the mass balance of Protocol for Canada–Argentina ice sheets and the contribution that ice sheets make to sea-level change. Collaboration 16 The Transantarctic Mountains are adjacent to the West Antarctic Rift Sys- tem, a broad zone which has experienced significant extension in the past. When Canadian Involvement TAMDEF started, an issue in global tectonics was whether West Antarctica and in Antarctic Tourism Research: East Antarctica were moving relative to one another, or whether the continent an update on some moves as a relatively rigid block.
    [Show full text]
  • Derivation of Glaciological Parameters from Time Series of Multi-Mission Remote Sensing Data
    Derivation of glaciological parameters from time series of multi-mission remote sensing data – Applications to glaciers in Antarctica and the Karakoram Ableitung glaziologischer Parameter aus Fernerkundungsdatenzeitreihen – Anwendungen an Gletschern in der Antarktis und im Karakorum Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Peter Friedl aus Nürnberg Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 09.12.2019 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter/in: Prof. Dr. Matthias Braun Prof. Dr. Angelika Humbert Table of contents Acknowledgements .................................................................................................. V Abbreviations .......................................................................................................... VII Summary .................................................................................................................. XI Zusammenfassung ................................................................................................ XIV 1 Introduction ........................................................................................................ 1 2 Structure of the thesis ....................................................................................... 5 3 Theoretical background of glaciological remote sensing .............................
    [Show full text]
  • Glaciological Properties of the Antarctic Ice Sheet from RADARSAT-1 Synthetic Aperture Radar Imagery
    Annals of Glaciology 29 1999 # International Glaciological Society Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery Kenneth C. Jezek Byrd Polar Research Center and Department of Geological Sciences,The Ohio State University, Columbus, OH43210, U.S.A. ABSTRACT. The RADARSAT-1 Antarctic Mapping Project RAMP) is a partner- ship between the Canadian Space Agency and the U.S. National Aeronautics and Space Administration.The goal of the project is to create the first complete high-resolution radar mosaic of all of Antarctica for studies of Antarctic glaciology, geology, coastal processes and climate. The major participants in RAMP are the Ohio State University, the Alaska SAR Facility, the Jet Propulsion Laboratory, Pasadena, CA, and Vexcel Corporation. Phase one of the project was the Antarctic Imaging Campaign-1 AIC) which occurred during the period 9 September^20 October 1997. The AIC relied on the abilities of the Canadian RADARSAT-1 to rotate in orbit and to image with a variety of look angles to acquire imagery from the Antarctic coast to the pole. Its primary goal was the acquisition of image data.The nearly flawless execution of the mission also enabled additional collec- tions of exact repeat orbit data.These data, covering a large part of the interiorAntarctic, are potentially suitable for interferometric analysis of surface velocity. This paper de- scribes the AIC and the various datasets obtained. It also reviews early scientific findings on the large-scale characteristics of the ice sheet including ice divides and ice streams.The overall conclusion is that these data, which constitute complete high-resolution micro- wave coverage, represent a new view of the Antarctic, revealing in considerable detail the glaciology, coastal processes and geology of the Southern Continent.
    [Show full text]
  • Measurement of Glacier Geophysical Properties from Insar Wrapped Phase Richard R
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 11, NOVEMBER 2003 2595 Measurement of Glacier Geophysical Properties From InSAR Wrapped Phase Richard R. Forster, Kenneth C. Jezek, Associate Member, IEEE, Lora Koenig, and Elias Deeb Abstract—A method is presented for calculating longitudinal (SAR) [20], [36] does not have this limitation as it provides its glacier strain rates directly from the wrapped phase of an in- own illumination. However, all feature-tracking techniques are terferometric synthetic aperture radar (InSAR) interferogram limited by the presence of identifiable features and detectable assuming the ice flow path is known. This technique enables strain rates to be calculated for scenes lacking any velocity control displacements between acquisitions. Even with a good dataset points or areas within a scene where the phase is not continuously and an automatic feature-tracking algorithm the velocity field unwrappable from a velocity control point. The contributions produced is spatially irregular. to the error in the estimate of the strain rate are evaluated, and recommendations for appropriate SAR and InSAR parameters Interferometric synthetic aperture radar (InSAR) techniques are presented. An example using Radarsat-1 InSAR data of can produce high spatial resolution 30 m , high precision an East Antarctic ice stream demonstrates the technique for 1cmday , uniform velocity fields over large continuous calculating longitudinal strain rate profiles and estimating tensile areas 10 000 km for a single scene. Because the interfero- strength of ice (186–215 kPa) from locations of crevasse initiation. The strain rate error was found to be 17% corresponding to a metric phase is only known to modulo it must be integrated tensile strength of ice error of 5.3% (unwrapped) to form a continuous phase field [8].
    [Show full text]