Relationship Between Spent Shell Casing Location and the Shooter's

Total Page:16

File Type:pdf, Size:1020Kb

Relationship Between Spent Shell Casing Location and the Shooter's Relationship Between Spent Shell Casing Location and the Shooter’s Location Brandon Thomas Edited by: Adan Salinas Often times, when spent shell casings are found at a crime scene, the location of the shell casing is used to indicate the location of the shooter. The assumption is that semi-automatic rifle shell casings land to the right and in front of the shooter and that semi-automatic handgun shell cas- ings land to the right and behind the shooter. The author of this study investigated if there is a trend between the shooter’s location and the angle and/or distance of a spent shell casing for both a semi-automatic rifle and semi-automatic handgun. Each firearm was fired ninety times, ten tri- als, each with nine rounds, from the same distance from the target, same surface and same shoot- ing form. The results emphasized a consistency with the assumptions that semi-automatic rifle shell casings land to the right and in front of the shooter and that semi-automatic handgun shell casings land to the right and back of the shooter. The results also draw attention to the fluctuating distances and angles of the spent shell casings. These results demonstrate that determining a shooter’s location solely on the location of spent shell casings can only lead to a cautious loca- tion of the shooter. Introduction (Giannelli, 2007) Once a bullet is propelled The intent of the experiment was to out of the gun from the reaction, the casing determine if there was a sure way to deter- is ejected from the gun using an ejector and mine the location of a shooter based on the extractor. This allows for the next round to location of spent shell casings. When ana- be loaded and ready to fire with the pulling lyzing a crime scene, spent shell casings can of the trigger. When a semi-automatic fire- be used to get an approximate area of where arm is fired, the cartridge case (shell casing) the shooter was. These results are then usu- is automatically ejected from the gun and if ally used to help reconstruct the scene and is it is found, can possibly identify the firearm then typically presented to the court. There- that fired it. Forensic laboratories can use fore, it is important to test how accurately the firing pin markings on the shell casing to the results could determine the location of potentially trace it back to a list of manufac- the shooter. turers and models (Miller, 2013). However, Ammunition contains the projectile one of the issues forensic scientists are en- (bullet), case, propellant (powder), and pri- countering today is the use of reloaded car- mer which contains a small amount of ex- tridges due to the lack of research (Wang, plosive material detonated by the firing pin. 2016). The firing pin is used to hit the rim of the ammunition, crushing the folded rim or being moved by someone on the scene. causing the primer to explode igniting the (Miller, 2016) powder. However, different manufacturers Reconstructionist can take different and models use different firing pins because approaches to their reconstructions. Recon- the shape of the firing pin changes where the struction is different from re-creation or re- pin hits the casing and in turn changes how enactment, it is based on the ability to make the primer ignites. (House, 2016). observations at the scene, the scientific abil- During investigations, it can be cru- ity to examine physical evidence, and the cial to know the location of the shooter to use of logical approaches to theory formula- help understand what has occurred. Often, tions. A forensic reconstruction takes many behavior in high-stress situations, which can forms, from analyzing the trajectories to de- include pointing and shooting a gun, is termining how certain evidence would im- likely to not be stored in the shooter’s pact the crime, in order to build a case that memory (Lewinski, 2008). Therefore, the will be withheld in court (Claridge, 2016). shooter may not be able to accurately and The simplistic approach to reconstructing honestly report the exact location or way the scene, based on shell casings, is to know they fired the gun. However, shooting-scene the general direction of where spent shell reconstruction, enhanced by a firearm expert casings land. Therefore, they state that with (for a purely forensic standpoint, a person a handgun the shells will land to the right with an in-depth knowledge of all varieties and rear of the shooter and with rifles the and types of firearms (Walker, 2013) began shells will land to the right and front of the to place an emphasis on the location of spent shooter. (Lewinski, 2010) The other ap- shell casings. This emphasis assumes that proach is more to account for many factors the shell casing had been undisturbed after that could alter the way a spent shell casing being ejected from the firearm. However, lands. Edward Hueske stated that recon- this is extremely difficult to account for due struction should account for eight different to the shooting factors, including hand-hold, factors: weapon design, weapon condition, body position, or movement, the environ- ammunition type, position the weapon was mental factors, the surface that shell casings held when fired, movement of the weapon are landing on, the rain or wind, and the al- when fired, how tightly the weapon was held teration factors, being kicked or stepped on, when fired, type of terrain where the weapon was fired, and the presence of obstacles our test results. Four quadrants were marked (Hueske, 2006). off using colored string with the origin being In this study, a simplistic approach to where the subject stood when firing the gun. reconstruction efforts is studied to determine Once the quadrants were set up, the subject if there is a relationship and the precision was instructed to stand at the origin and fire that could be reached between the angle and nine rounds at the target. After the subject distance a shell casing lands from the fired nine rounds, strings were extended shooter. The researcher used one semi-auto- from the origin to the shell casing which was matic handgun and one semi-automatic rifle then labeled, measured and recorded. The with one test position for each gun and one distance from the parallel boundary, in rela- subject firing the firearm. The study demon- tion to the target, to the shell casing and the strated that the distance of the shell casing distance from the origin were measured was variable with no significant trend, and which then were also used to calculate the the angle was closer together but still re- angle of the shell casings. mained variable. The variability factors were The subject was standing at a height then limited to the ejector, but still had sig- of 6’ and at a distance of 25’, making the nificant variability in the relationship be- height of the gun off of the ground roughly tween distance and angle of the shooter’s lo- 5’ and the end of the barrel of the handgun cation. at roughly 22’ and the barrel of the rifle at roughly 23’. The experiment tested a Taurus Materials and Methods Millennium G2 9mm semi-automatic hand- The experiment was conducted at gun and a Mossberg International 702 Plink- 30º12’33.4”N, 97º57’20.2”W on 14-15 Oc- ster .22 LR semi-automatic rifle. Both fire- tober 2017. The surface of the site contained arms, at the end of the test firings, end in a patchy turf grass on a relatively level plot of slide lock. Every round, which was the same land. The grass was able to slightly reduce brand and type of ammunition, was fired by the bounce factor of the shell casing, but still the same subject, at the same target, and allowed the shell casings to bounce. The ex- from the same location. Each round of the perimental site had an average temperature same ammunition, .22 copper-plated bullet of 79.5ºF on Oct. 14 and 64ºF on Oct. 15 Aguila Ammunition for the rifle and SIG with no significant wind speed to factor into SAUER 9mm for the handgun, was from the same lot allowing for the least amount of by all ten trials using the rifle. The measure- variability caused by variable pressure due ments were then used to run statistical anal- to the crimping of the cartridge onto the bul- ysis on the values. The statistical analysis of let, seating, amount of grains and composi- the experiment allowed us to see the distri- tion of gunpowder. bution of the angle measurements and dis- Prior to running the experiment a tances of the shell casings, calculate a me- few observation tests were conducted in- dian value, the interquartile range, and deter- volving angle of firing and distance from the mine if there were any outliers. target. In the observation tests it was ob- served that rifle shell casings land to the Results right and in front of the shooter at an aver- The results of this study emphasized age of nine feet and that handgun shell cas- a consistency with the assumptions that rifle ings land to the right and behind the shooter shell casings land to the right and in front of at an average of six feet. The general direc- the shooter and that handgun shell casings tion that shell casing eject is also the general land to the right and back of the shooter assumption, so the experiment was designed when fired from a standard standing shoot- to determine if there was a trend between a ing position.
Recommended publications
  • Numerical Simulations of Impacts of a Spherical Shell Projectile on Small Asteroids
    46th Lunar and Planetary Science Conference (2015) 1868.pdf NUMERICAL SIMULATIONS OF IMPACTS OF A SPHERICAL SHELL PROJECTILE ON SMALL ASTEROIDS. K. Kurosawa1, H. Senshu1, K. Wada1, and TDSS team, Planetary Exploration Research Center, Chiba Institute of Technology, ([email protected]) Introduction: Recently, impactors have been strength of the target Y is given by Y = max(Ycoh + µP, widely used in a number of planetary exploration Ylimit), where Ycoh, µ, P, and Ylimit are the cohesion in missions [e.g., 1-4] to excavate the fresh material from the target, the coefficient of internal friction, the underground of asteroids, which are expected not to pressure in the target, and the Hugoniot elastic limit of suffer space weathering and thermal alteration due to the target. We employed the ε−α compaction model solar incidence. [11] to investigate the effects of the target porosity on The prediction of impact outcomes is necessary to the excavation processes. No gravity was included into derive scientific results as much as possible. There are the calculation. Lagrangian tracer particles were two problems, however, to predict impact outcomes on inserted into the grids to investigate the impact-driven small asteroids. First, the mechanical properties of flow field. For reference, we also conducted a few asteroids, such as the bulk porosity and the yield simulations using a dense copper spherical impactor strength, are largely unknown prior to arriving near with the same mass under the same conditions. target asteroids. Asteroids have a variation of the Results: Examples of snapshots of the simulation porosity from 0% to 80 % [5].
    [Show full text]
  • The Torpedo Incident
    The Torpedo Incident The Torpedo Incident The Argus The Trip Of The Cerberus Contemporary Reports Index A Torpedo Calamity Mr Murray's Narrative Particulars of the Deceased Statement of the survivor, James Jasper Narrative of Eye Witness Captain Mandeville's Report The Inquest The Inquest The Late Gunner Groves The Geelong Advertiser Explosion at Queenscliff The Cerberus Disaster Mr Murray's Statement James Jasper's Statement Inquest on the Bodies The Funeral The Inquest The Williamstown Advertiser The Cerberus Calamity The Inquest The Funeral Inquest Report Summary Introduction Division 1 THE ARGUS Page 8, 5 March 1881 http://home.vicnet.net.au/~cerberus/torpedoincident.html (1 of 24)29/03/2005 9:28:10 PM The Torpedo Incident THE TRIP OF THE CERBERUS [BY ELECTRIC TELEGRAPH] (FROM OUR OWN CORRESPONDENT.) H.M.C.S.S. Cerberus, under the command of Captain Manderville, left her anchorage in the bay this morning, and after some practice off the Red Bluff, steamed away for the Heads. During the journey two targets were thrown out, the first being a triangle fixed up for the occasion at about 900 yards distance. The first round carried it away, and upon taking it on board it was found that it had been struck at the centre of the cross beam, and shattered to pieces. A small barrel was then put overboard with a red round to starboard. On account of the ebb tide the target drifted close to the steamer, and a tack had to be made so as to leave the target about 1,000 yards distant.
    [Show full text]
  • Japanese Ordnance Markings
    IAPANLS )RDNAN( MARKING KEY CHARACTERS for Essential Japanese Ordnance Materiel TABLE CHARACTER ORDNANCE TABLE CHARACTER ORDNANCE Tanks 1* Trucks MG Cars 11 Rifle Vehicles Pistol Carbine Sha J _ _ Bullet Grenade 2 Shell (w. #12) 12 Artillery Shell Bomb (w. #18) (W. #2) Rocket Dan Ryi Cannon !i~iI~Mark Number and 13~ Data on Bombs Howitzer Mortar H5 Go' 1 Metric Terms Explosives 14 Ammunition (Weight & Dimension) Yaku Sanchi Miri 5 Type 15 Aircraft Shiki . Ki Year 6 16 Metals Month Nen Getsu Tetsu Gasoline Fuze 7 ~Fuel Oils 17 Cap Lubricating Oils Train Yu Kan Primer Shell Case Airplane Bomb 8 Bangalore Torpedo 18 (w. #2) Grenade Launcher Complete Round To' Baku 9 (o) Unit or 9 (Organization 19 Factory He) Gun Sho Mines 10 Torpedo (Aerial) 20 n Arsenal Rai Sho RESTRICTED Translation of JAPANESE ORDNANCE MARKINGS AUGUST, 1945 A. S. F. OFFICE OF THE CHIEF OF ORDNANCE WASHINGTON, D. C. RESTRICTED RESTRICTED Table of Contents PAGE SECTION ONE-Introduction General Discussion of Japanese Characters........................................... 1 Unusual Methods of Japanese Markings....................................................... 5 SECTION TWO-Instructions for Translating Japanese Markings Different Japanese Calendar Systems......................................................... 8 Japanese Characters for Type and Modification............................................ 9 Explanation of the Key Characters and Their Use....................................... 10 Key Characters for Essential Japanese Ordnance Materiel.......................... 11 Method of Using the Key Character Tables in Translation............................ 12 Tables of Basic Key Characters for Japanese Ordnance................................ 17 SECTION THREE-Practical Reading and Translation of Japanese Characters Japanese Markings Copied from a Tag Within an Ammunition Box.......... 72 Japanese Markings on an Airplane Bomb.................................................... 73 Japanese Markings on a Heavy Gun...................................................
    [Show full text]
  • Reloading Brass Shotshells Pt 2.Pdf
    R.H. VanDenburg, Jr. Continued from Handloader No. 266 ext is the loading proce- ELOADING dure. One of the things un- R covered in all this is that Nbrass shells can generate higher velocities than paper or plas- tic, all other things being equal. So 1 if you plan to create a 3-dram, 1 ⁄8- ounce, 12-gauge load of 1,200 fps, for example, Brass you might not need any- where near the called for amount of powder. 38 www.handloadermagazine.com Handloader 267 PART II: Technical Tips Shotshells A lot of things factor into such events, such as bar- rel length and diameter, chamber length, atmos- pheric conditions, powder brand and grade, wad column and so forth. Waterfowlers might rejoice, but if you are competing in a timed event where re- covery between shots is important, this is a good thing to know. Typically, this occurs in the CBC shell only with black powder. With smokeless pow- der, performance is degraded. In the RMC shell, higher velocity occurs with both types of powder. The actual loading of brass shotshells differs from that which we are accustomed to with either metal- lic cartridges or modern shotshells. We have the luxury of loading one shell at a time as we typically load shotshells on a single-stage press or batch pro- cessing, i.e., completing one step on all the shells to be loaded before beginning the next step, as we usually load metallic cartridges. Either way the first aid we should obtain is a loading block. It is indis- pensable.
    [Show full text]
  • Artillery Through the Ages, by Albert Manucy 1
    Artillery Through the Ages, by Albert Manucy 1 Artillery Through the Ages, by Albert Manucy The Project Gutenberg EBook of Artillery Through the Ages, by Albert Manucy This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: Artillery Through the Ages A Short Illustrated History of Cannon, Emphasizing Types Used in America Author: Albert Manucy Release Date: January 30, 2007 [EBook #20483] Language: English Artillery Through the Ages, by Albert Manucy 2 Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK ARTILLERY THROUGH THE AGES *** Produced by Juliet Sutherland, Christine P. Travers and the Online Distributed Proofreading Team at http://www.pgdp.net ARTILLERY THROUGH THE AGES A Short Illustrated History of Cannon, Emphasizing Types Used in America UNITED STATES DEPARTMENT OF THE INTERIOR Fred A. Seaton, Secretary NATIONAL PARK SERVICE Conrad L. Wirth, Director For sale by the Superintendent of Documents U. S. Government Printing Office Washington 25, D. C. -- Price 35 cents (Cover) FRENCH 12-POUNDER FIELD GUN (1700-1750) ARTILLERY THROUGH THE AGES A Short Illustrated History of Cannon, Emphasizing Types Used in America Artillery Through the Ages, by Albert Manucy 3 by ALBERT MANUCY Historian Southeastern National Monuments Drawings by Author Technical Review by Harold L. Peterson National Park Service Interpretive Series History No. 3 UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON: 1949 (Reprint 1956) Many of the types of cannon described in this booklet may be seen in areas of the National Park System throughout the country.
    [Show full text]
  • Winchester Reloading Manuals
    15th Edition Reloader’s Manual What’s it take to manufacture the world’s finest ammunition? The world’s finest components. Winchester understands the demands of shooters and hunters want- ing to develop the “perfect load.” You can rest assured that every Winchester ammu- nition component is made to meet and exceed the most demanding requirements and performance standards in the world– yours. Winchester is the only manufacturer which backs up its data with over 125 years of experience in manufacturing rifle, handgun and shotshell ammunition.The data in this booklet are the culmination of very extensive testing which insures the reloader the best possible results. This 15th edition contains more than 150 new recipes, including AA Plus® Ball Powder® propellant, WAA12L wad, 9x23 Winchester and 454 Casull. This information is presented to furnish the reloader with current data for reloading shotshell and centerfire rifle and handgun ammunition. It is not a textbook on how to reload, but rather a useful reference list of recommended loads using Winchester® components. TABLE OF CONTENTS Warnings Read Before using Data. 2 Components Section. 6 Shotshell Reloading. 12 Shotshell Data. 17 Powder Bushing Information. 25 Metallic Cartridge Reloading. 33 Rifle Data. 35 Handgun Data. 42 Ballistic Terms and Definitions. 51 TRADEMARK NOTICE AA Plus, AA, Action Pistol, Fail Safe, Lubalox, Lubaloy, Silvertip, Super-Field, Super-Lite, Super-Match, Super-Target, Super-X, Xpert and Winchester are registered trademarks of Olin Corporation. Magnum Rifle, and Upland, are trademarks of Olin Corporation. Ball Powder is a registered trademark of Primex Technologies, Inc. © 1997 Winchester Group, Olin Corporation, East Alton, IL 62024 1 WARNINGS Read before using data The shotshell and metallic cartridge data in this booklet supersede all previous data published for Ball Powder® smokeless propellants.
    [Show full text]
  • The Artillery News
    THE ARTILLERY NEWS. JUNE – AUGUST 2007 Official Correspondence. R.A.A Assoc. of Tas. Inc. Hon. Secretary, Norman B. Andrews OAM., SBStJ. Tara Room, 24 Robin St; Newstead. Tas. 7250. E-Mail: [email protected] R.A.A. Association of Tasmania Inc. Homepage: http://www.tasartillery.o-f.com/ R.A.A.A.T. NORTHERN HISTORICAL- SOCIAL WING. APRIL 2007 The second informal get-together for 2007 of the R.A.A.A.T. Historical- Social Wing group was held at the QVM&AG at 2.00 p.m. on Thursday 12th April, 2007 and was attended by:- Norman Andrews (Hon. Sec.), Gunter Breier, Terry Higgins, Graeme Petterwood, Lloyd Saunders, Marc Smith, Frank Stokes, Charles Tee and Rick Wood.. We did receive apologies from several members - and we were aware of others who are still on the sick list – so ‘Get Wells’ are extended We also extend our sincere sympathy to our member Bob Brown who recently lost his dear wife through illness. Hang in there Bob…! Norm read several notes he had received from other Associations regarding their activities and also advised us of an invitation from Reg Watson regarding the Annual Boer War Commemorative Day which is to be held on Sunday 10 June 2007 commencing 12.00 noon at the Boer War Memorial in Launceston’s City Park. There will be an opportunity to present flowers, posy or wreath in memory of those Tasmanians who fought in and perhaps died in the South African War (1899-1902) Further inquiries phone Reg Watson 0409 975 587. 1 Launceston contact also will be Mr.
    [Show full text]
  • Lifecycle Assessment of a PFHE Shell Grenade
    FOI-R--1373--SE November 2004 ISSN 1650-1942 Scientific report Joakim Hägvall, Elisabeth Hochschorner, Göran Finnveden, Michael Overcash, Evan Griffing Life Cycle Assessment of a PFHE Shell Grenade Defence Analysis SE-172 90 Stockholm SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1373--SE Defence Analysis November 2004 SE-172 90 Stockholm ISSN 1650-1942 Scientific report Joakim Hägvall, Elisabeth Hochschorner, Göran Finnveden, Michael Overcash, Evan Griffing Life Cycle Analysis on a PFHE Shell Grenade Issuing organization Report number, ISRN Report type FOI – Swedish Defence Research Agency FOI-R--1373--SE Scientific report Defence Analysis Research area code SE-172 90 Stockholm 3. NBC Defence and other hazardous substances Month year Project no. November 2004 E1420 Sub area code 35 Environmental Studies Sub area code 2 Author/s (editor/s) Project manager Joakim Hägvall Göran Finnveden Elisabeth Hochschorner Approved by Göran Finnveden Karin Mossberg Sonnek Michael Overcash Sponsoring agency Evan Griffing Swedish Armed Forces Scientifically and technically responsible Report title Life Cycle Analysis on a PFHE Shell Grenade Abstract (not more than 200 words) The environmental constraint on all activities in society increases. Today there is a growing understanding of the need to minimize the environmental impacts and the military defence can not be an exception. So far, most of the work in this field has been focused on the direct environmental impact from the energetic materials in the munition. There has been a very small amount of work on the life cycle aspects concerning military materiel. This report describes a two year project, funded by the Swedish Armed Forces, with the purpose of performing life cycle assessments of munitions.
    [Show full text]
  • How Does a Cannon Work?
    National Park Service Fort Moultrie U.S. Department of the Interior Fort Sumter National Monument How Does A Cannon Work? Tube Top View Tube Chassis Muzzle Trunnions Vent Cascabel Breech Carriage Introduction People have been fascinated with guns since the invention of artillery in the Middle Ages. This basic guide explains how 19th century seacoast cannon operated, and the types of projectiles they fired. These guns are muzzle loaders; everything entered and left through the muzzle. The gun has three basic components: the tube, the carriage, and the chassis. The tube rests on the carriage, which supports it for firing and controls recoil (energy released when the gun fires). Most tubes are made of cast iron. The tube and carriage rests on a chassis, which permits the movement of the cannon left, right, forward or back to aim, load and fire. All together, this weapon is called a piece. Smoothbore Smoothbore guns typically fired spherical Spherical case shot are similar projectiles; the classic round cannonball. to shells, but also contain Ammunition consists of five kinds: solid shot, shell, shrapnel (musket balls). These spherical case shot, canister, and grape shot. are antipersonnel rounds, timed to explode in front of Solid shot are used for the target while airborn. puncturing walls, buildings and ships. When heated they Canister and grape shot turns a cannon into a become hot shot, used for shotgun, killing men and destroying objects alike. starting fires. Canister Shells are hollow, with a charge of gunpowder inside. The powder is ignited by a timed fuse, which lights when the gun is fired.
    [Show full text]
  • Marine Torpedo. No 47, 776
    W00D & LAY. Marine Torpedo. No 47, 776. Patented May 16, 1865. UNITED STATES PATENT OFFICE, WM. W. W. WOOD, AND JOHN L. LAY, OF THE UNITED STATES NAVY, ASSIGNORS TO DONALD MCKAY, OF EAST BOSTON, MASS. M PROVE MENT IN SUBMARINE Explosiv E S - ELLS. Specification forming part of Letters Patent No. 4A ?, ? ? G, dated May 16, 1865; antedated February 25, 1865. To all uvho7nn, ibi may concern, : || our invention, we will now proceed to describe Be it known that We, WILLIAMI W. W. || its construction, operation, and effect. WOOD, Chief Engineer, and JOHN L. LAY, On reference to the accompanying drawings, First-Assistant Engineer, both of the United || which forma part of this specification, Figure States Navy, have invented certain Improve- || 1 is a vertical section of our improved subma ments in Submarine Shells or Torpedoes; and | Irine shell or torpedo; Fig. 2, a sectional plan we do hereby declare the following to be a full, i on the line 1, 2, Fig. 1, and Figs. 3, 4, and 5 clear, and exact description of the same, refer- || views illustrative of experiments made with ence being had to the accompanying drawings, | our improved shells. and to the letters of reference marked thereon. In the present instance, the casing A of the Our invention relates to certain improve- || shell is constructed of sheet-iron in the form ments in shells or torpedoes to be submerged || of a hollow cylinder, A, closed at the lower or partly submerged, and to be used for the || end and furnished at the upper end with a de sinking of vessels, the removal of obstructions || tachable cover, B, the lower closed end being from rivers or harbors, and the destruction of || cone - shaped, if desired, and being made folrtifications.
    [Show full text]
  • Identification of Artillery Projectiles
    IDENTIFICATION OF ARTILLERY. PROJECTILES (WITH ADDENDA) SECOND EDITION RESTRICTED Published by VI Corps June 1944. Republished with Addenda as Second Edition by Seventh^Army Auq 1944 INDEX Preface .......................................................... 2 Sample Shelling Report Form ..........................3 Sec. I - GERMAN................................................ 5 Abbreviations and Nomenclature . 6 Chart: Details of Rotating Bands . 46 Sec. II - ITALIAN.......................................... 51 Chart: Details of Rotating Bands . 57 Sec. I l l - B R IT IS H .......................................6l Chart: Details of Rotating Bands . 65 Sec. IV - AMERICAN.......................................67 Chart: Details of Rotating Bands . 73 Sec. V - MISCELLANEOUS................................75 ADDENDA ............................................................ 79 Inch and Centimeter scale inside back cover. PRgACt. Information included in this booklet haa been compiled from a ll available Intelligence sources, including many original drawings sub­ mitted by Arty S-2a. No e ffo rt haa been made to indicate the sources o f this information. The measurements on the drawings and in the charts are believed to be reasonably accurate; however, minor varia­ tions may exist. Binfcmy a rtille ry a ctivity in HALT reached new heights on the ANZ10 Beachhead. Not only have the forward units been shelled continuously, but rear areas including Army, Corps, Air Corps, and Naval installations have been shelled interm ittently with heavy caliber guns. Due to the semi-circular front o f approx 30 miles we have encountered shelling from every direction, and from weapons ranging from the lig h t 75-mm Hecoilless gun to 28-cm super-heavy railway gun. Also, the enemy has used many d iffe re n t types of arty captured from the Russians, Italian s and French.
    [Show full text]
  • Early 18Th Century Hand Grenades on the North American Atlantic Coast an Experimental Archaeology Study By
    Early 18th Century Hand Grenades on the North American Atlantic Coast An Experimental Archaeology Study by Stephen Lacey April, 2019 Director of Thesis: Donald H. Parkerson, Ph.D. Major Department: History, Program of Maritime Studies ABSTRACT In the first half of the eighteenth century, standardization of weapons appears in cannon, shot, and small arms. No comparative study has been conducted to determine if grenades follow this pattern. In this study, three collections of cast iron grenades dating from 1700–1750 were compared to determine if any statistical significance exists. If so, this will form the basis to create a taxonomy to assist in dating sites. Furthermore, grenade blasts from this era are reported in the historical record but recorders barely understood ballistics. An experimental phase has been designed into the project to fully record a blast via controlled detonation. The concussive force and decibel levels were recorded to help assess potential damage. Upon completion, medical evaluations can be made to determine the full lethality of cast iron grenades. This allows an evaluation of historical records for unexplained deaths, altered behaviors post battle, and critical evaluation of historical documents on grenade lethality. Early 18th Century Hand Grenades on the North American Atlantic Coast An Experimental Archaeology Study A Thesis Presented to the Faculty of the Department of History East Carolina University In Partial Fulfillment of the Requirements for the Degree Master’s of Arts By Stephen Lacey April, 2019 ©Stephen Lacey, 2019 Early 18th Century Hand Grenades on the North American Atlantic Coast An Experimental Archaeology Study By Stephen Lacey APPROVED BY: DIRECTOR OF THESIS: ___________________________________________ Donald H.
    [Show full text]