Intensive Rotifer Production in a Pilot-Scale Continuous Culture Recirculating System Using Nonviable Microalgae and an Ammonia Neutralizer

Total Page:16

File Type:pdf, Size:1020Kb

Intensive Rotifer Production in a Pilot-Scale Continuous Culture Recirculating System Using Nonviable Microalgae and an Ammonia Neutralizer JOURNAL OF THE Vol. 39, No. 5 WORLD AQUACULTURE SOCIETY October, 2008 Intensive Rotifer Production in a Pilot-scale Continuous Culture Recirculating System Using Nonviable Microalgae and an Ammonia Neutralizer C. D. BENTLEY,P.M.CARROLL, AND W. O. WATANABE1,2 Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina 28403-5927 USA A. M. RIEDEL Aquatic Eco-Systems, Apopka, Florida 32703 USA Abstract A study was conducted to test the performance of a high-density (.3000 individuals/mL) continuous recirculating system for rotifers (B. rotundiformis) fed nonviable Nannochloropsis oculata and using sodium hydroxymethanesulfonate to neutralize ammonia. Three different microalgae feed rates (g of N. oculata [68 3 109 cells/mL] per million rotifers/d) were tested in successive trials. In Trial 1 (feed rate 5 1.5), during a 30-d period, rotifers were harvested daily to 3000 individuals/mL, for an average yield of 178 million/d. Feed efficiency (million rotifers/g/d) was 0.33. In Trial 2 (feed rate 5 1.1), during a 32-d period, an average of 106 million rotifers were harvested daily, and feed efficiency was 0.26. In Trial 3 (feed rate 5 1.3), during a 30-d period, an average of 107 million rotifers was harvested daily, and feed efficiency was 0.23. An economic analysis based on a feed rate of 1.5 showed that production cost was 40% lower than the traditional batch culture method (US$ 0.29 vs. 0.46 per million rotifers/d). The continuous culture system tested reliably produced large quantities of rotifers on a daily basis without the use of a biofilter and with a lower production cost than a batch culture system. One of the factors limiting seed production in space requirements and labor, eliminating the a marine finfish hatchery operation is the produc- need for multiple tanks, and improve culture sta- tion of the rotifers Brachionus rotundiformis and bility by stabilizing the bacterial populations in B. plicatilis as a food source for first feeding lar- the culture (James and Abu-Rezeq 1989; Fu et al. vae. It has been estimated that 400 billion rotifers 1997; Yoshimura et al. 1997; Rombaut et al. are required to produce 10 million gilthead seab- 2001). Recently, a recirculating system for continu- ream, Sparus aurata, fry in Mediterranean hatch- ous high-density rotifer culture was described eries (Zmora et al. 1991 cited by Lubzens et al. (Suantika et al. 2000, 2003). This system not only 2001). Many marine finfish hatcheries rely on reduced water consumption but also replaced the traditional ‘‘batch culture’’ method for rotifer microalgae with a cost-effective formulated diet. production in which several tanks are maintained For an intensive culture of rotifers to operate and harvested at timed intervals to ensure a con- efficiently, there must be an adequate supply of tinual supply. This method is labor intensive, re- food to maintain the rotifers in a satiated condi- quires a large portion of a hatchery’s floor space, tion (Hirayama et al. 1973). The development of and is often unstable and unpredictable (Dhert commercially available concentrated microal- et al. 2001). High-density continuous rotifer gae has allowed the culturist to provide the roti- culture systems are currently being developed fers with sufficient amounts of feed without the worldwide to provide daily harvests from one need to produce live microalgae in the hatchery tank. These systems, utilizing microalgae as feed, (Lubzens et al. 1995). This has greatly reduced have been shown to significantly reduce hatchery the need to allocate time and space to live feed production; however, the use of concentrated 1 Corresponding author. microalgae in high-density rotifer culture still 2 Present address: 601 S. College Road, Wilmington, NC represents 86% of production costs (Fu et al. 28403. 1997). Ó Copyright by the World Aquaculture Society 2008 625 626 BENTLEY ET AL. Increasing levels of NH3 within the culture (Dierckens 2005). It is important, therefore, to medium, associated with rotifer population reduce labor associated with rotifer culture sys- growth, have a negative effect on the reproductive tems and to simplify system components to min- rate of both B. rotundiformis and B. plicatilis (Yu imize the potential for human error. and Hirayama 1986; Araujo et al. 2001). One The objective of this study was to evaluate the method for reducing NH3 levels in a culture is performance of a simplified recirculating sys- to regulate the pH at 7.0 through the addition of tem using condensed, nonviable microalgae hydrochloric acid using an automated pH control- Nannochloropsis oculata and using sodium hy- ler (Yoshimura et al. 1996). This method keeps droxymethanesulfonate to neutralize ammonia. the majority of total ammonia nitrogen (TAN) + as nontoxic NH4 and has been used to success- Methods fully culture rotifers at densities from 10,000 to This study was conducted from February to 30,000 individuals/mL. Alternatively , a special- August 2004 at the University of North Carolina ized micropore membrane filtration device has Wilmington Center for Marine Science (UNCW- been used to remove water containing NH3 from CMS) Aquaculture Facility, Wrightsville Beach, the culture without removing algal cells or roti- North Carolina, USA. The UNCW-CMS stock 5 fers, allowing ultrahigh densities (1.6 3 10 culture of B. rotundiformis was used for this study. individuals/mL) to be maintained for 4 d in The same procedures were used for all three trials. a flow-through culture system (Yoshimura et al. 2003). Although not practical in a commercial Culture System operation, this system showed that extremely high The rotifer culture system was situated in an densities are possible if ammonia is removed. A indoor, controlled environment laboratory. The preconditioned biological filter has also been used system consisted of a semisquare, rounded cor- to remove ammonia in intensive rotifer culture to ner 190-L culture tank with a sloping bottom maintain cultures at 3000 individuals/mL for and containing 125-L of culture water (Fig. 1). 34 d (Suantika et al. 2000). A new method to reduce ammonia in rotifer culture involves adding sodium hydroxymethanesulfonate to the culture water which neutralizes unionized ammonia and its toxic effect. This product was effective in decreasing TAN and NH3 in a small-scale rotifer batch culture system (Riche and Pfeiffer 2006). To date, no studies have demonstrated the suc- cessful application of sodium hydroxymethane- sulfonate in batch culture at a practical scale or in continuous, high-density culture systems. The unpredictability of rotifer cultures is a sig- nificant problem among many hatcheries and has been attributed to degrading water quality and unstable bacterial populations within the culture (Dhert et al. 2001; Rombaut et al. 2001). Contin- uous culture systems have improved the stability of rotifer cultures (Fu et al. 1997; Suantika et al. 2000; Dhert et al. 2001; Hagiwara et al. 2001; Rombaut et al. 2001). However, in a recent sur- vey of 13 hatcheries in Europe, where rotifer cul- ture ranging from batch culture to recirculating systems are used, human error was suspected to FIGURE 1. Intensive system with 50-L sump on left, 150-L be the most prevalent reason for culture failures culture tank in middle, and feed cooler on right. ROTIFER PRODUCTION IN A PILOT-SCALE CONTINUOUS CULTURE RECIRCULATING SYSTEM 627 Seawater was pumped from a natural source Aeration was provided to the culture tank adjacent to the lab. Culture water was prepared from a blower through four 4-cm air diffusers, by mixing 1-mm filtered, UV-sterilized seawater and pure oxygen was delivered from a dewar with municipal freshwater to achieve a salinity through a 15-cm microdiffuser. Temperature was of 20 ppt. For further sterilization, the culture controlled by a 300-W glass submersible heater medium was chlorinated for 24 h with liquid placed in the culture tank and was maintained bleach solution (6.5% ClONa) and then dech- at 25.0–29.9 C. Natural lighting was provided lorinated with sodium thiosulfate. through a laboratory window, and fluorescent The culture tank was fitted with a center stand- overhead lights were used only during system pipe drain consisting of a 10-cm-diameter plastic maintenance. netting frame covered with a 55-mm nylon mesh screen to retain the rotifers in the culture vessel Feeding and an inner standpipe to maintain the culture To begin a rotifer culture trial, the system was volume (Fig. 2). A bubble ring at the bottom of initially stocked at a density of 600–900 indivi- the standpipe decreased fouling of the mesh. duals/mL and the culture density was monitored Twenty-six liters per hour (500%) of system daily. Nonviable microalgal paste N. oculata water was recirculated through the culture tank (approximately 68 3 109 cells/mL) (Reed each day. Water exiting the culture tank drained Mariculture, Campbell, CA, USA) was used to by gravity into a 50-L sump tank, and water feed the rotifer culture. Approximately 10 g was then circulated by a 1.5-amp pump through was added directly to the culture tank, and the a foam fractionator at a rate of 24.2 L/min. to re- remainder of the algae paste was diluted in move dissolved and suspended solids. A bypass 16 L of 20 ppt water and stored in a cooler with diverted the remainder of the flow into the sump. ice packs. The diluted algal paste was added The total system volume was 220 L (Fig. 3). continuously to the culture tank over a 22-h FIGURE 2. Center drain for culture unit with 55-mm screen. Four filter mats are suspended from center drain. 628 BENTLEY ET AL. FIGURE 3.
Recommended publications
  • Gnesiotrocha, Monogononta, Rotifera) in Thale Noi Lake, Thailand
    Zootaxa 2997: 1–18 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Diversity of sessile rotifers (Gnesiotrocha, Monogononta, Rotifera) in Thale Noi Lake, Thailand PHURIPONG MEKSUWAN1, PORNSILP PHOLPUNTHIN1 & HENDRIK SEGERS2,3 1Plankton Research Unit, Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thai- land. E-mail: [email protected], [email protected] 2Freshwater Laboratory, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium. E-mail: [email protected] 3Corresponding author Abstract In response to a clear gap in knowledge on the biodiversity of sessile Gnesiotrocha rotifers at both global as well as re- gional Southeast Asian scales, we performed a study of free-living colonial and epiphytic rotifers attached to fifteen aquat- ic plant species in Thale Noi Lake, the first Ramsar site in Thailand. We identified 44 different taxa of sessile rotifers, including thirty-nine fixosessile species and three planktonic colonial species. This corresponds with about 40 % of the global sessile rotifer diversity, and is the highest alpha-diversity of the group ever recorded from a single lake. The record further includes a new genus, Lacinularoides n. gen., containing a single species L. coloniensis (Colledge, 1918) n. comb., which is redescribed, and several possibly new species, one of which, Ptygura thalenoiensis n. spec. is formally described here. Ptygura noodti (Koste, 1972) n. comb. is relocated from Floscularia, based on observations of living specimens of this species, formerly known only from preserved, contracted specimens from the Amazon region.
    [Show full text]
  • February 15, 2012 Chapter 34 Notes: Flatworms, Roundworms and Rotifers
    February 15, 2012 Chapter 34 Notes: Flatworms, Roundworms and Rotifers Section 1 Platyhelminthes Section 2 Nematoda and Rotifera 34-1 Objectives Summarize the distinguishing characteristics of flatworms. Describe the anatomy of a planarian. Compare free-living and parasitic flatworms. Diagram the life cycle of a fluke. Describe the life cycle of a tapeworm. Structure and Function of Flatworms · The phylum Platyhelminthes includes organisms called flatworms. · They are more complex than sponges but are the simplest animals with bilateral symmetry. · Their bodies develop from three germ layers: · ectoderm · mesoderm · endoderm · They are acoelomates with dorsoventrally flattened bodies. · They exhibit cephalization. · The classification of Platyhelminthes has undergone many recent changes. Characteristics of Flatworms February 15, 2012 Class Turbellaria · The majority of species in the class Turbellaria live in the ocean. · The most familiar turbellarians are the freshwater planarians of the genus Dugesia. · Planarians have a spade-shaped anterior end and a tapered posterior end. Class Turbellaria Continued Digestion and Excretion in Planarians · Planarians feed on decaying plant or animal matter and smaller organisms. · Food is ingested through the pharynx. · Planarians eliminate excess water through a network of excretory tubules. · Each tubule is connected to several flame cells. · The water is transported through the tubules and excreted from pores on the body surface. Class Turbellaria Continued Neural Control in Planarians · The planarian nervous system is more complex than the nerve net of cnidarians. · The cerebral ganglia serve as a simple brain. · A planarian’s nervous system gives it the ability to learn. · Planarians sense light with eyespots. · Other sensory cells respond to touch, water currents, and chemicals in the environment.
    [Show full text]
  • Bacterial Additives That Consistently Enhance Rotifer Growth Under Synxenic Culture Conditions 1
    Aquaculture 182Ž. 2000 249±260 www.elsevier.nlrlocateraqua-online Bacterial additives that consistently enhance rotifer growth under synxenic culture conditions 1. Evaluation of commercial products and pure isolates P.A. Douillet ) The UniÕersity of Texas at Austin, Marine Science Institute, 1300 Port Street, Port Aransas, TX 78373, USA Accepted 20 July 1999 Abstract Axenic rotifers Ž.Brachionus plicatilis MullerÈ were cultured under aseptic conditions; they were fed either a bacteria-free artificial dietŽ. AD , or axenic Isochrysis galbana, or a combination of axenic Chlorella minutissima and the bacteria-free AD. The medium was inoculated with commercial bacterial additives or cultured strains of marine bacteria. The highest improvements in growth rateŽ. GR of rotifer populations were obtained with laboratory grown bacteria. Addition of an Alteromonas strain and an unidentified Gram negative strainŽ. B3 consistently enhanced rotifer GR in all experiments, and under all feeding regimes in comparison with control cultures inoculated with microbial communities present in seawater, or maintained bacteria-free. None of the other isolates or commercial products were consistent in their enhancement of rotifer production. q 2000 Elsevier Science B.V. All rights reserved. Keywords: Rotifer; Brachionus plicatilis; Isochrysis galbana 1. Introduction The rotifer Brachionus plicatilis has become a valuable and, in many cases indis- pensable, food organism for first feeding of a large variety of cultured marine finfish and crustacean larvaeŽ. Watanabe et al., 1983; Lubzens et al., 1997 . However, suppressed ) 1692 Houghton Ct North, Dunwoody, GA 30338, USA. Tel.: q1-770-671-9393; E-mail: philippe± [email protected] 0044-8486r00r$ - see front matter q 2000 Elsevier Science B.V.
    [Show full text]
  • Culture of Brachionus Plicatilis Feeding with Powdered Dried Chlorella
    The Bangladesh Veterinarian (2010) 27(2) : 91 – 98 Culture of Brachionus plicatilis feeding with powdered dried Chlorella S. Mostary1*, M. S. Rahman, A. S. M. S. Mandal, K. M. M. Hasan2, Z. Rehena2 and S. M. A. Basar1 Departments of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh Abstract The rotifer Brachionus plicatilis was cultured with powdered dried Chlorella in treatment 1, live or fresh cultured Chlorella in treatment 2, and baker’s yeast in treatment 3. All the jars under three treatments were stocked with B. plicatilis at the initial density of 10 individuals per ml. The water temperature, air temperature, pH and dissolved oxygen were within the suitable range for B. plicatilis culture. The highest population densities of B. plicatilis in treatments 1, 2 and 3 were 60000, 50000 and 30000 (individual/L), respectively. The powered dried Chlorella was comparable with live Chlorella and may be used successfully as a feed for B. plicatilis. (Bangl. vet. 2010. Vol. 27, No. 2, 91 – 98) Introduction Brachionus plicatilis is a brackishwater rotifer, which has been used as food for marine fish larvae and planktonic crustaceans throughout the world (Watanable et al., 1983). But several authors have demonstrated the importance of rotifers as food for freshwater larvae (Hale and Carlson, 1972). B. plicatilis has been recognized as a potential food for shrimp larvae in addition to or as a replacement for Artemia (Hirata et al., 1985). In order to attain stable mass production of rotifers, it is desirable to develop a food source that will support rotifer growth completely by itself.
    [Show full text]
  • Flatworms/ Rotifers 1) Clade (Clades Are a Group of Related Phylum) Platyzoa A) Platyzoa Consist of 6 Phyla, However Most of T
    Flatworms/ Rotifers 1) Clade (clades are a group of related phylum) Platyzoa a) Platyzoa consist of 6 phyla, however most of these phyla are represented by a very small number of species and are debated on where they fall taxonomically. b) These organisms represent the beginning or bilateral symmetry i) For organisms like sponges and Cnidarians it is to their advantage to be radial symmetrical because they can collect food from any angle ii) However now organisms show a distinct head and tail end and better movement to go after food items 2) Phylum Platyhelminthes a) This is the group of flat worms. b) It consist of four classes c) All but one class are parasitic in nature d) Feeding i) Platyhelminthes have an incomplete gut. ii) Most have a mouth, pharynx, and intestine (1) The advancement of having a small intestine increases surface area and thus increases the amount of nutrients absorbed. iii) Many of the non-parasitic species have a pharynx (connection between mouth and intestines) that has the ability to extend out of the mouth in order to gather resources. iv) Parasitic forms have to have some specialized feeding apparatus to extract nutrients from their host without causing too much harm. e) Sense organs i) Here is also an evolutionary advancement in nerve cells (1) The simplest forms are similar to Cnidarians, however, others have in addition one or more longitudinal nerve cords creating a “ladder” style pattern. (2) Towards the superior end there is a cluster of nerves that serves as a rudimentary brain ii) Tactile cells (cells that detect pressure) and chemoreceptors (cells that stimulate in response to a chemical) are abundant all over the body.
    [Show full text]
  • 3585 the BIOLOGY of NEMATODES, ROTIFERS, BRYOZOANS, and SOME MINOR PHYLA Grade Levels: 9-12 19 Minutes ENVIRONMENTAL MEDIA CORPORATION 1997 DESCRIPTION
    #3585 THE BIOLOGY OF NEMATODES, ROTIFERS, BRYOZOANS, AND SOME MINOR PHYLA Grade Levels: 9-12 19 minutes ENVIRONMENTAL MEDIA CORPORATION 1997 DESCRIPTION Grab a stocking net and go hunting for fascinating creatures in the nearest pond or moss bed. Microphotography and graphics closely reveal the physical characteristics of nematodes, rotifers, bryozoans, and other minor protist phyla. Discusses digestion, elimination, and reproduction. Highlights their similarities and differences. Notes the human-infecting nematodes: pinworms, hookworms, and trichina. ACADEMIC STANDARDS Subject Area: Science ¨ Standard: Knows about the diversity and unity that characterize life · Benchmark: Knows different ways in which living things can be grouped (e.g., plants/animals; pets/nonpets; edible plants/nonedible plants) and purposes of different groupings · Benchmark: Knows that plants and animals progress through life cycles of birth, growth and development, reproduction, and death; the details of these life cycles are different for different organisms ¨ Standard: Understands basic Earth processes · Benchmark: Knows that fossils provide evidence about the plants and animals that lived long ago and the nature of the environment at that time · Benchmark: Knows the composition and properties of soils (e.g., components of soil such as weathered rock, living organisms, products of plants and animals; properties of soil such as color, texture, capacity to retain water, ability to support plant growth) 1 Captioned Media Program VOICE 800-237-6213 – TTY 800-237-6819 – FAX 800-538-5636 – WEB www.cfv.org Funding for the Captioned Media Program is provided by the U. S. Department of Education SUMMARY Nematodes: Roundworms are seldom seen but easily found. Tree moss, leaf litter and compost piles swarm with nematodes.
    [Show full text]
  • 1 Monitoring of the Bioencapsulation of a Probiotic Phaeobacter Strain In
    *Manuscript Click here to view linked References 1 2 Monitoring of the bioencapsulation of a probiotic Phaeobacter strain in the rotifer 3 Brachionus plicatilis using denaturing gradient gel electrophoresis 4 5 José Pintado1*, María Pérez-Lorenzo1,2, Antonio Luna-González1,3, Carmen G. Sotelo1, 6 María J. Prol1 and Miquel Planas1 7 8 1Instituto de Investigacións Mariñas (CSIC), Eduardo Cabello nº 6, 36208 Vigo, 9 Galicia, Spain. 10 2 Present address: Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 11 36310 Vigo, Galicia, Spain. 12 3 Present address: Centro Interdisciplinario de Investigación para el Desarrollo Integral 13 Regional-Instituto Politécnico Nacional, Unidad Sinaloa. Boulevard Juan de Dios Bátiz 14 Paredes 250, Guasave, Sinaloa 81101, México 15 16 17 *Corresponding author: Phone +34986231930. Fax +34986292762. E-mail address: 18 [email protected]. 19 20 Abstract 21 22 The bioencapsulation of the probiotic bacteria Phaeobacter 27-4 in the rotifer 23 Brachionus plicatilis was monitored by culture methods and denaturing gradient gel 24 electrophoresis (DGGE) of PCR-amplified 16S rDNA. 25 In a first experiment, the permanence of the probiotic bacteria in clear water and green 26 water was studied. Phaeobacter 27-4 added to the water of the tanks (107 CFU ml-1) 27 remained at levels around 106 CFU ml-1 for 72 h and was not affected by the presence of 28 the algae added (Isochrysis galbana, 105 cells ml-1). The DGGE fingerprints showed a 29 temporal predominance of the probiont in the water and the presence of bacteria 30 belonging to the Flavobacteria, -proteobacteria, and Sphingobacteria groups.
    [Show full text]
  • Rotifer Culturing
    Live Feeds for Zebrafish Aquatics Lab Services LLC 1112 Nashville Street Erik Sanders B.S. RALAT St. Peters, MO 63376 +1-314-724-3800 www.aquaticslabservices.com [email protected] 5th Annual International Zebrafish Husbandry Course Presentation Summary . Live feed Advantages/disadvantages . Most common live feed choices . Artemia . Pros and Cons . Hatching and feed-out procedure . Paramecia . Pros and Cons . Culture and Feed-out Procedure . Rotifers . Pros and Cons . Culture and Feed-out Procedure . Frozen/Freeze Dried 5th Annual International Zebrafish Husbandry Course Live Diets – WHY?? •The main identifiable components of the diet were zooplankton and insects… •Insects that could be identified to order were primarily dipterans… •The majority of insects were aquatic species, or aquatic larval forms of terrestrial •species, with dipteran larvae being particularly common during the monsoon months (June to August). •…the zebrafish appears to feed chiefly on zooplankton in the water column.. From: Diet, growth and recruitment of wild zebrafish in Bangladesh; Spence et al, Journal of Fish Biology (2007) 71, 304–309 doi:10.1111/j.1095-8649.2007.01492.x 5th Annual International Zebrafish Husbandry Course Live Diets Advantages Disadvantages - Amenability to mass - Can be variable in culture nutritional profile - Good nutritional profiles - Can be labor intensive (particularly when enriched) - Can be a source of - Digestible pathogens - Attractive (motility, smell, - Not efficient always as color, shape) size of fish scales up - Zebrafish are adapted to feed on it, and have co- evolved with it 5th Annual International Zebrafish Husbandry Course Live feed types: Artemia . Aquatic crustacean . Most commonly used live feed for zebrafish of all life stages? - Many in the field (mistakenly) believe that the fish “require” it.
    [Show full text]
  • Nemertean and Phoronid Genomes Reveal Lophotrochozoan Evolution and the Origin of Bilaterian Heads
    Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads Author Yi-Jyun Luo, Miyuki Kanda, Ryo Koyanagi, Kanako Hisata, Tadashi Akiyama, Hirotaka Sakamoto, Tatsuya Sakamoto, Noriyuki Satoh journal or Nature Ecology & Evolution publication title volume 2 page range 141-151 year 2017-12-04 Publisher Springer Nature Macmillan Publishers Limited Rights (C) 2017 Macmillan Publishers Limited, part of Springer Nature. Author's flag publisher URL http://id.nii.ac.jp/1394/00000281/ doi: info:doi/10.1038/s41559-017-0389-y Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) ARTICLES https://doi.org/10.1038/s41559-017-0389-y Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads Yi-Jyun Luo 1,4*, Miyuki Kanda2, Ryo Koyanagi2, Kanako Hisata1, Tadashi Akiyama3, Hirotaka Sakamoto3, Tatsuya Sakamoto3 and Noriyuki Satoh 1* Nemerteans (ribbon worms) and phoronids (horseshoe worms) are closely related lophotrochozoans—a group of animals including leeches, snails and other invertebrates. Lophotrochozoans represent a superphylum that is crucial to our understand- ing of bilaterian evolution. However, given the inconsistency of molecular and morphological data for these groups, their ori- gins have been unclear. Here, we present draft genomes of the nemertean Notospermus geniculatus and the phoronid Phoronis australis, together with transcriptomes along the adult bodies. Our genome-based phylogenetic analyses place Nemertea sis- ter to the group containing Phoronida and Brachiopoda. We show that lophotrochozoans share many gene families with deu- terostomes, suggesting that these two groups retain a core bilaterian gene repertoire that ecdysozoans (for example, flies and nematodes) and platyzoans (for example, flatworms and rotifers) do not.
    [Show full text]
  • Ecological and Genetic Aspects of the Population Biology of the Littoral Rotifer Euchlanis Dilatata
    UNLV Retrospective Theses & Dissertations 1-1-1989 Ecological and genetic aspects of the population biology of the littoral rotifer Euchlanis dilatata Elizabeth Jensen Walsh University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Walsh, Elizabeth Jensen, "Ecological and genetic aspects of the population biology of the littoral rotifer Euchlanis dilatata" (1989). UNLV Retrospective Theses & Dissertations. 2954. http://dx.doi.org/10.25669/s2xt-3g8q This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.
    [Show full text]
  • Rotifers: Excellent Subjects for the Study of Macro- and Microevolutionary Change
    Hydrobiologia (2011) 662:11–18 DOI 10.1007/s10750-010-0515-1 ROTIFERA XII Rotifers: excellent subjects for the study of macro- and microevolutionary change Gregor F. Fussmann Published online: 1 November 2010 Ó Springer Science+Business Media B.V. 2010 Abstract Rotifers, both as individuals and as a nature. These features make them excellent eukaryotic phylogenetic group, are particularly worthwhile sub- model systems for the study of eco-evolutionary jects for the study of evolution. Over the past decade dynamics. molecular and experimental work on rotifers has facilitated major progress in three lines of evolution- Keywords Rotifer phylogeny Á Asexuality Á ary research. First, we continue to reveal the phy- Eco-evolutionary dynamics logentic relationships within the taxon Rotifera and its placement within the tree of life. Second, we have gained a better understanding of how macroevolu- Introduction tionary transitions occur and how evolutionary strat- egies can be maintained over millions of years. In the Rotifers are microscopic invertebrates that occur in case of rotifers, we are challenged to explain the freshwater, brackish water, in moss habitats, and in soil evolution of obligate asexuality (in the bdelloids) as (Wallace et al., 2006). Rotifers are particularly fasci- mode of reproduction and how speciation occurs in nating and suitable objects for the study of evolution the absence of sex. Recent research with bdelloid roti- and, over the past decade, featured prominently in fers has identified novel mechanisms such as horizon- research on both macro- and microevolutionary tal gene transfer and resistance to radiation as factors change. I, here, review the recent developments in potentially affecting macroevolutionary change.
    [Show full text]
  • Cadmium and Morphological Alterations in the Rotifer Philodina Cf
    Cadmium and morphological alterations in the rotifer Philodina cf. roseola (Bdelloidea: Philodinidae) and the worm Aeolosoma hemprichi (Annelida: Aeolosomatidae) Daniela Pérez-Yañez, Danika Ruth Soriano-Martínez, Mendy Eded Damian-Ku, Eduardo Cejudo-Espinosa & Jesús Alvarado-Flores* Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán A. C. Cancún, Quintana Roo, México. Calle 8, No. 39, Mz. 29, S.M. 64, C.P. 77500; [email protected], [email protected], [email protected], [email protected], [email protected] * Correspondence Received 23-I-2019. Corrected 29-V-2019. Accepted 27-IX-2019. Abstract: Cadmium is a toxic metal for zooplankton that produces deformations. It is also considered an environmental hazard to aquatic life. Since it has a significant effect in some marine organisms, we used two native zooplankton species from Quintana Roo, Mexico to obtain data regarding cadmium toxicity including the threshold concentration for observable morphological alterations and the percentage of organisms with morpho- logical alterations at the exposure concentrations. We used the rotifer Philodina cf roseola and the oligochaeta Aeolosoma hemprichi, since both feed from the algae Nannochloropsis oculata. Both animals were exposed to a cadmium concentration range from 0.05 mg/l (0.047 mg/l, real concentration) to 10.0 mg/l (9.39 mg/l, real con- centration) for 24 h. The LC50 for cadmium in P. cf roseola was 0.7 mg/l (0.65 mg/l, real concentration), whereas in A. hemprichi was 3.38 mg/l (3.17 mg/l, real concentration). The exposure of cadmium at 0.5 mg/l (0.47 mg/l, real concentration) for less than 24 h induced morphological alterations in the lorica of rotifers, foot deforma- tions, and constriction in the middle part of the body.
    [Show full text]