Histamine H2 Receptor Desensitization: Involvement of a Select Array of G Protein-Coupled Receptor Kinases

Total Page:16

File Type:pdf, Size:1020Kb

Histamine H2 Receptor Desensitization: Involvement of a Select Array of G Protein-Coupled Receptor Kinases 0026-895X/01/6005-1049–1056$3.00 MOLECULAR PHARMACOLOGY Vol. 60, No. 5 Copyright © 2001 The American Society for Pharmacology and Experimental Therapeutics 959/937817 Mol Pharmacol 60:1049–1056, 2001 Printed in U.S.A. Histamine H2 Receptor Desensitization: Involvement of a Select Array of G Protein-Coupled Receptor Kinases CARINA SHAYO, NATALIA FERNANDEZ, BIBIANA LEMOS LEGNAZZI, FEDERICO MONCZOR, ALEJANDRO MLADOVAN, ALBERTO BALDI, and CARLOS DAVIO School of Sciences (C.S.) and Radioisotopes Laboratory, School of Pharmacy and Biochemistry (N.F., B.L.L., F.M., C.D.), University of Buenos Aires, Buenos Aires, Argentina; Institute of Biology and Experimental Medicine, Buenos Aires, Argentina (C.S., N.F., A.M., A.B.); and National Research Council of Argentina, Buenos Aires, Argentina (F.M., A.B., C.D.) Received January 4, 2001; accepted July 27, 2001 This paper is available online at http://molpharm.aspetjournals.org ABSTRACT The histamine H2 receptor (H2r) belongs to the heptahelical (PKA and PKC) inhibitors but was remarkably reduced by Zn2ϩ, receptor family; upon agonist binding, members of this family an inhibitor of G protein-coupled receptor kinases (GRKs). Co- activate a G protein and the downstream effector adenylyl transfection experiments using tagged H2r and different GRKs cyclase. Like other G protein-coupled receptors, exposure of (2, 3, 5, or 6), demonstrated that GRK2 and GRK3 were the H2r to agonists produces a desensitization of the response. most potent in augmenting desensitization, causing a reduction The present study focused on the desensitization mechanism in the maximal response to amthamine and a decrease of the of this receptor. Using transiently transfected COS-7 cells ex- t1/2 for desensitization, whereas GRK5 and GRK6 did not affect pressing tagged-H2r, the desensitization induced by the signaling. Receptor phosphorylation correlates with desen- amthamine, characterized by decreased cAMP production, sitization for each GRK studied, whereas phosphorylation that was studied. Results show that the receptor was rapidly de- is dependent on protein kinases A and C seemed irrelevant in ϭ Ϯ sensitized with a t1/2 0.49 0.01 min. Because of the rapid receptor signal termination. These results indicate that in H2r- nature of H2r desensitization, receptor phosphorylation was transfected COS-7 cells, exposure to an agonist caused de- examined as a likely mechanism for signal attenuation. H2r sensitization controlled by H2r phosphorylation via GRK2 and desensitization was not affected by protein kinases A and C GRK3. Histamine is an intercellular signal molecule that exerts messenger-dependent kinases PKA and PKC, are responsible its effect through H1, H2, and H3 receptors (Leurs et al., for the homologous and heterologous desensitization, respec- 1995). Molecular biology studies indicate that H2r belongs to tively (Freedman and Lefkowitz, 1996). GRK-mediated phos- the large multigene family of G protein-coupled receptors phorylation of serine/threonine residues in the carboxyl tail (GPCRs) (Gantz et al., 1991). Structurally, these receptors and/or intracellular loops of GPCR increases the affinity for are characterized by seven transmembrane ␣-helices and arrestin-type proteins, and this binding prevents any further functionally by their ability to transmit signals to effector coupling between the receptor and G proteins. The complex molecules via G proteins (Dohlman et al., 1991). It is gener- formed by the phosphorylated GPCR and arrestin targets the ally accepted that the H2r mediates activation of adenylyl activated receptor to clathrin-coated pits for subsequent in- cyclase (AC) with subsequent increases in cAMP and protein ternalization (Pitcher et al., 1998). kinase A (PKA) activation (Nonaka et al., 1992). A charac- Recent studies have described that the H2r-mediated teristic feature of these GPCRs is that in the face of continu- cAMP response is rapidly desensitized in various cell types ing stimulation, signaling becomes attenuated or desensi- (Fukusima et al., 1993; Smit et al., 1994). However, in con- tized. For a large number of related GPCRs, rapid trast to other GPCR, the mechanism of H2r desensitization is desensitization seems to involve receptor phosphorylation. G protein-coupled receptor kinases (GRKs), and the second still not well understood. In the U937 promonocytic cell line, we described H1 and H2 histamine receptors (Davio et al., 1995 a), and we recently showed that the H2r was specifically This study was supported by grants from the University of Buenos Aires ϳ (JB52), the National Research Council of Argentina (PID 792/98), and the desensitized by an H2 agonist with a t1/2 of 20 min. This National Agency for Scientific and Technologic Promotion (PICT 1598). desensitization proved to be homologous and involved the ABBREVIATIONS: H2r, histamine H2 receptor; GPCR, G protein-coupled receptor; AC, adenylyl cyclase; PKA, protein kinase A; GRK, G protein-coupled receptor kinase; PKC, protein kinase C; IBMX, isobutylmethylxanthine; H9, N-(2-aminoethyl)-5-isoquinolinesulphonamide; HTMT dimaleate, 6[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptanecarboxamide; DMEM, Dulbecco’s modified Eagle’s medium; PBS, phosphate-buffered saline; HA, hemagglutinin. 1049 1050 Shayo et al. ␮ ␮ GRK family. Binding experiments showed that receptor in- 20 M staurosporine, or 200 M ZnCl2 for 20 min at 37°C, followed ternalization began just after 2 h, when total desensitization by desensitization assays carried out in the presence of inhibitors. ϩ took place (Lemos Legnazzi et al., 2000). Zn2 showed a maximal inhibition on desensitization response in the In an attempt to better understand the H2r desensitization range of 100 to 400 ␮M. Higher concentrations became toxic for the mechanism, a transfection system that allowed the overex- cells. cAMP production is expressed as the stimulus relative to basal levels. pression of the different GRKs was used. Results demon- Radioligand Binding Assay. Triplicate assays were performed strate that in COS-7 transfected cells, agonist-dependent in COS-7 transfected cells in 24 multiwell plates. For saturation H2r phosphorylation is coincident with receptor desensitiza- studies, increasing concentrations of [3H]tiotidine were incubated in tion and involves GRK2 and GRK3 in both processes. A the absence or presence of 1 ␮M tiotidine, in a total volume of 200 ␮l better knowledge of the molecular regulation of the H2r of 50 mM Tris-HCl, pH 7.4. After 40 min at 4°C, incubation was should contribute to the understanding and manipulation of stopped by dilution with 3 ml of ice-cold 50 mM Tris-HCl, pH 7.4, the processes they regulate. followed by washes with ice-cold buffer. Experiments on intact cells were carried out at 4°C to avoid internalization of the ligand. Kinetic Experimental Procedures studies showed that equilibrium was reached after 30 min and persisted for 4 h (data not shown). Materials. Restriction enzymes were purchased from New En- Western Blots. COS-7 cells were lysed in sample buffer (50 mM gland Biolabs, Inc. (Beverly, MA), and Taq polymerase from Invitro- Tris-HCl, pH 6.8, 2% SDS, 100 mM 2-mercaptoethanol, 10% glycerol, gen (Carlsbad, CA). Isobutylmethylxanthine (IBMX), cAMP, famoti- and 0.05% bromphenol blue), and sonicated to shear DNA. The dine, pyrilamine, protease inhibitors, and phosphatase inhibitors anti-HA immunoprecipitates were also analyzed. Samples were were obtained from Sigma Chemical Company (St. Louis, MO). boiled for 5 min, and aliquots were electrophoresed in 12% SDS- Amthamine, N-(2-aminoethyl)-5-isoquinolinesulphonamide (H9), polyacrylamide gels and transferred to nitrocellulose membranes. and 6[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)hep- The residual binding sites were blocked with 5% nonfat powdered tanecarboxamide (HTMT dimaleate), were from Tocris Cookson Inc. milk in PBS-Tween-20 (PBS containing 0.05% Tween-20), and mem- (Ballwin, MO). [3H]cAMP and [3H]tiotidine were purchased from branes were incubated with 1 ␮g/ml of anti-GRK2, 3, 5, 6 or anti-HA New England Nuclear (Boston, MA), and [32P]orthophosphate from (for the immunoprecipitates) rabbit antibody (Santa Cruz Biotech- Amersham Pharmacia Biotech (Little Chalfont, Buckinghamshire, nology, Santa Cruz, CA), in PBS-Tween-20. All subsequent washes UK). All other chemicals were of analytical grade. were performed with the same buffer. Reactivity was developed Expression Plasmid Preparation. Oligonucleotides were syn- using an anti-rabbit polyclonal antibody linked to horseradish per- thesized using the known cDNA sequence for human H2r, and a oxidase and enhanced chemiluminescence reagents, according to the full-length nucleotide sequence was amplified from the human cell manufacturer’s instructions (Amersham Pharmacia Biotech). line U937 cDNA by polymerase chain reaction. The cDNA was then Phosphorylation Assays. Transfected cells were preincubated cloned into the SpeI and EcoRV sites of the eukaryotic expression 1hat37°C in phosphate-free DMEM, and labeled 3 h with 100 ␮ 32 vector pCEFL (pCEFL-H2r) (Teramoto et al., 1996) or into the BglII Ci/ml of Pi at 37°C in fresh medium. H2 agonist was applied as and XbaI sites of pCEFL-HA (pCEFL-HA-H2r), a modified pCEFL indicated in figure legends. To assay kinase inhibitors, cells were ϩ expression plasmid encoding the HA nonapeptide epitope. GRK2, -3, pretreated for 20 min with 20 ␮MH9or200␮MZn2 at 37°C, and -5, and -6 cDNAs were subcloned into the pCEFL vector (pCEFL- agonist stimulation was carried out in the
Recommended publications
  • Human Histamine H2 Receptor, Frozen Cells Product No.: ES-391-AF
    TECHNICAL AequoZen® DATA SHEET Research use only. Not for use in diagnostic procedures. You are authorized to utilize these frozen cell preparations one time only. Any attempt to transfer, re-use, or propagate these cells is expressly unauthorized and a violation of the product terms and conditions of sale. Human Histamine H2 Receptor, Frozen Cells Product No.: ES-391-AF Lot No.: 2562845 Material Provided Cells: 1 x 1 mL frozen aliquot Format: ~10 x 106 cells/mL in Ham’s F12, 10% FBS with 10 % DMSO Product Information Cellular Background: CHO-K1 Parental Frozen Cells (control): A19 (replaced with Cat # ES-000-A2F) Frozen Cells Info: Frozen recombinant, CHO-K1 cells expressing mitochondrially- targeted Aequorin, Gα16 and the human Histamine H2 receptor. DNA Sequence: Identical to coding sequence of GenBank NM_022304.2. Corresponding Protein Sequence: Identical to GenBank NP_071640.1. Storage Conditions: Store in liquid nitrogen (vapor phase) immediately upon receipt, or maximum 15 days at -80°C. AequoZen® is designed for single use only. Do not refreeze. Quality Control ® EC50 for a reference agonist is determined using an AequoScreen assay (Figure 1). Mycoplasma test is performed using MycoAlert® Mycoplasma detection kit. We certify that these results meet our quality release criteria. Amthamine dihydrobromide (EC50): 6.9 nM Mycoplasma: This cell line tested negative for Mycoplasma. TDS-ES-391-AF-04 Page 1 of 5 Recommended Thawing Conditions and Handling of Frozen Cells Carefully follow instructions below to obtain the expected results. Most Frozen cells are intended to be assayed immediately upon thawing. Exceptionally, where specified, some frozen cell products require an overnight incubation in Cell Medium to enable them to perform optimally.
    [Show full text]
  • Chapter 2 Molecular Aspects of Histamine Receptors
    VU Research Portal Shedding Light on the Histamine H3 Receptor Mocking, T.A.M. 2020 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Mocking, T. A. M. (2020). Shedding Light on the Histamine H3 Receptor: Photopharmacology and bioluminescent assays to study GPCRs. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 06. Oct. 2021 Chapter 2 Molecular aspects of histamine receptors Histamine mediates a multitude of physiological effects in the human body by activating four histamine receptor subtypes. Histamine receptors have proven to be promising drug targets in the treatment of a variety of diseases, including hay fever, gastric ulcers, inflammatory and neuropathological diseases. In this chapter the molecular aspects of histamine receptors are described, including expression profile, intracellular signaling, and how histamine receptor activity can be attenuated by ligands targeting the histamine receptor binding sites.
    [Show full text]
  • Histamine Receptors
    Tocris Scientific Review Series Tocri-lu-2945 Histamine Receptors Iwan de Esch and Rob Leurs Introduction Leiden/Amsterdam Center for Drug Research (LACDR), Division Histamine is one of the aminergic neurotransmitters and plays of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit an important role in the regulation of several (patho)physiological Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The processes. In the mammalian brain histamine is synthesised in Netherlands restricted populations of neurons that are located in the tuberomammillary nucleus of the posterior hypothalamus.1 Dr. Iwan de Esch is an assistant professor and Prof. Rob Leurs is These neurons project diffusely to most cerebral areas and have full professor and head of the Division of Medicinal Chemistry of been implicated in several brain functions (e.g. sleep/ the Leiden/Amsterdam Center of Drug Research (LACDR), VU wakefulness, hormonal secretion, cardiovascular control, University Amsterdam, The Netherlands. Since the seventies, thermoregulation, food intake, and memory formation).2 In histamine receptor research has been one of the traditional peripheral tissues, histamine is stored in mast cells, eosinophils, themes of the division. Molecular understanding of ligand- basophils, enterochromaffin cells and probably also in some receptor interaction is obtained by combining pharmacology specific neurons. Mast cell histamine plays an important role in (signal transduction, proliferation), molecular biology, receptor the pathogenesis of various allergic conditions. After mast cell modelling and the synthesis and identification of new ligands. degranulation, release of histamine leads to various well-known symptoms of allergic conditions in the skin and the airway system. In 1937, Bovet and Staub discovered compounds that antagonise the effect of histamine on these allergic reactions.3 Ever since, there has been intense research devoted towards finding novel ligands with (anti-) histaminergic activity.
    [Show full text]
  • Physiological Implications of Biased Signaling at Histamine H2 Receptors
    ORIGINAL RESEARCH published: 10 March 2015 doi: 10.3389/fphar.2015.00045 Physiological implications of biased signaling at histamine H2 receptors Natalia Alonso 1,2,CarlosD.Zappia2,3, Maia Cabrera 2,3, Carlos A. Davio 2,3,4 , Carina Shayo 1,2, Federico Monczor 2,3 and Natalia C. Fernández 2,3* 1 Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina, 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina, 3 Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina, 4 Instituto de Investigaciones Farmacológicas – Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Histamine mediates numerous functions acting through its four receptor subtypes all belonging to the large family of seven transmembrane G-protein coupled receptors. In particular, histamine H2 receptor (H2R) is mainly involved in gastric acid production, becoming a classic pharmacological target to treat Zollinger–Ellison disease and gastric Edited by: Claudio M. Costa-Neto, and duodenal ulcers. H2 ligands rank among the most widely prescribed and over University of São Paulo, Brazil the counter-sold drugs in the world. Recent evidence indicate that some H2R ligands Reviewed by: display biased agonism, selecting and triggering some, but not all, of the signaling Terry Kenakin, pathways associated to the H2R. The aim of the present work is to study whether University of North Carolina Chapel Hill, USA famotidine, clinically widespread used ligand acting at H2R, exerts biased signaling. Our Andre Sampaio Pupo, findings indicate that while famotidine acts as inverse agonist diminishing cAMP basal São Paulo State University, Brazil levels, it mimics the effects of histamine and the agonist amthamine concerning receptor *Correspondence: Natalia C.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,486,621 B2 Luo Et Al
    USOO8486.621B2 (12) United States Patent (10) Patent No.: US 8,486,621 B2 Luo et al. (45) Date of Patent: Jul. 16, 2013 (54) NUCLEICACID-BASED MATRIXES 2005. O130180 A1 6/2005 Luo et al. 2006/0084607 A1 4/2006 Spirio et al. (75) Inventors: ity, N. (US); Soong Ho 2007/01482462007/0048759 A1 3/20076/2007 Luo et al. m, Ithaca, NY (US) 2008.0167454 A1 7, 2008 Luo et al. 2010, O136614 A1 6, 2010 Luo et al. (73) Assignee: Cornell Research Foundation, Inc., 2012/0022244 A1 1, 2012 Yin Ithaca, NY (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this WO WO 2004/057023 A1 T 2004 patent is extended or adjusted under 35 U.S.C. 154(b) by 808 days. OTHER PUBLICATIONS Lin et al. (J Biomech Eng. Feb. 2004;126(1):104-10).* (21) Appl. No.: 11/464,184 Li et al. (Nat Mater. Jan. 2004:3(1):38-42. Epub Dec. 21, 2003).* Ma et al. (Nucleic Acids Res. Dec. 22, 1986;14(24):9745-53).* (22) Filed: Aug. 11, 2006 Matsuura, et al. Nucleo-nanocages: designed ternary oligodeoxyribonucleotides spontaneously form nanosized DNA (65) Prior Publication Data cages. Chem Commun (Camb). 2003; (3):376-7. Li, et al. Multiplexed detection of pathogen DNA with DNA-based US 2007/01 17177 A1 May 24, 2007 fluorescence nanobarcodes. Nat Biotechnol. 2005; 23(7): 885-9. Lund, et al. Self-assembling a molecular pegboard. JAm ChemSoc. Related U.S. Application Data 2005; 127(50): 17606-7. (60) Provisional application No. 60/722,032, filed on Sep.
    [Show full text]
  • International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors
    1521-0081/67/3/601–655$25.00 http://dx.doi.org/10.1124/pr.114.010249 PHARMACOLOGICAL REVIEWS Pharmacol Rev 67:601–655, July 2015 Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: ELIOT H. OHLSTEIN International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors Pertti Panula, Paul L. Chazot, Marlon Cowart, Ralf Gutzmer, Rob Leurs, Wai L. S. Liu, Holger Stark, Robin L. Thurmond, and Helmut L. Haas Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry (H.S.) and Institute of Neurophysiology, Medical Faculty (H.L.H.), Heinrich-Heine-University Duesseldorf, Germany; and Janssen Research & Development, LLC, San Diego, California (R.L.T.) Abstract ....................................................................................602 Downloaded from I. Introduction and Historical Perspective .....................................................602 II. Histamine H1 Receptor . ..................................................................604 A. Receptor Structure
    [Show full text]
  • WO 2011/089216 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date t 28 July 2011 (28.07.2011) WO 2011/089216 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 47/48 (2006.01) C07K 1/13 (2006.01) kind of national protection available): AE, AG, AL, AM, C07K 1/1 07 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) Number: International Application DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP201 1/050821 HN, HR, HU, ID, J , IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 2 1 January 201 1 (21 .01 .201 1) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 1015 1465. 1 22 January 2010 (22.01 .2010) EP kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): AS- ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, CENDIS PHARMA AS [DK/DK]; Tuborg Boulevard TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 12, DK-2900 Hellerup (DK).
    [Show full text]
  • 2 12/ 35 74Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 22 March 2012 (22.03.2012) 2 12/ 35 74 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/16 (2006.01) A61K 9/51 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 9/14 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP201 1/065959 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 14 September 201 1 (14.09.201 1) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/382,653 14 September 2010 (14.09.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, NANOLOGICA AB [SE/SE]; P.O Box 8182, S-104 20 ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Stockholm (SE).
    [Show full text]
  • In Vitro Test System for the Screening of Histamine H2 Agonists And
    In vitro test system for the screening of histamine H 2 agonists and antagonists This protocols describes a standard in vitro test on guinea pig gallbladder based on the relaxant response of histamine on isolated, precontracted guinea pig gallbladder. 1. Tissue preparation • Male Dunkin-Hartley guinea pig (300-400 g), killed by cervical dislocation. • Remove and clean the gallbladder in a dissection disc with Krebs-Henseleit solution. • Cut longitudinally the gallbladder to obtain two muscle strips (approximately 1 cm by 0.5 cm). • Set up the strips in 10 ml organ bath at 37°C containing Krebs-Henseleit solution gassed with 95% O2 and 5% CO 2 (pH 7.4) under a constant load of 1±0.2 g. • Equilibration period: 60 min. Wash the preparation 4 x 15 min with fresh Krebs-Henseleit solution. 2a. Histamine H 2 agonists screening • Add 30 µl of cholecystokinin-octapeptide (CCK-8; 1 µM solution) in order to obtain a stable contraction. This tonic contraction reaches a peak within ~30 min and remains stable for 60-90 min. Discard preparation showing a spontaneous fade of plateau response. • At the top of contraction administer histamine (or the H2 agonist, amthamine, impromidine and dimaprit) in a cumulative fashion at 0.5 log unit increments. Construct the concentration-response curve (CRC) of agonist (histamine: 1 - 300 µM; amthamine: 0.1 - 100 µM; impromidine: 0.001 - 10 µM; dimaprit: 0.01 - 10 mM). Perform experiments with histamine in presence of mepyramine (1 µM: add 10 µl of mepyramine 1 mM 30 min before histamine administration) to minimize possible H 1-mediated contraction.
    [Show full text]
  • Histamine, Histamine Receptors, and Their Role in Immunomodulation: an Updated Systematic Review
    The Open Immunology Journal, 2009, 2, 9-41 9 Open Access Histamine, Histamine Receptors, and their Role in Immunomodulation: An Updated Systematic Review Mohammad Shahid*,1, Trivendra Tripathi2, Farrukh Sobia1, Shagufta Moin2, Mashiatullah Siddiqui2 and Rahat Ali Khan3 1Section of Immunology and Molecular Biology, Department of Microbiology, 2Department of Biochemistry, and 3Department of Pharmacology, Faculty of Medicine, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh-202002, U.P., India Abstract: Histamine, a biological amine, is considered as a principle mediator of many pathological processes regulating several essential events in allergies and autoimmune diseases. It stimulates different biological activities through differen- tial expression of four types of histamine receptors (H1R, H2R, H3R and H4R) on secretion by effector cells (mast cells and basophils) through various immunological or non-immunological stimuli. Since H4R has been discovered very re- cently and there is paucity of comprehensive literature covering new histamine receptors, their antagonists/agonists, and role in immune regulation and immunomodulation, we tried to update the current aspects and fill the gap in existing litera- ture. This review will highlight the biological and pharmacological characterization of histamine, histamine receptors, their antagonists/agonists, and implications in immune regulation and immunomodulation. Keywords: Histamine, histamine receptors, H4-receptor, antagonists, agonists, immunomodulation. I.
    [Show full text]
  • 2011-2012 Lecture 08 Year 3
    Lecture 8: Autacoids Lecture 8: Autacoids Autacoids (Greek, "self-remedy") or local hormones are biologically active substances that are are often released locally and have complex physiologic and pathologic effects through multiple receptor subtypes. Autacoids are classified as: 1. Biologically active amines: - Histamine - Serotonin (5-hydroxytryptamine) 2. Endogenous peptides: - Angiotensin and renin-angiotensin-aldosteron system; - Kallikrein–kininogen–kinin system; - Natriuretic peptide (ANP, BNP, CNP); - Vasoactive intestinal peptide (VIP); - Substance P; - Neurotensin; - Endothelins; - Calcitonin-gene related peptide (CGRP); - Neuropeptide Y; - Endorfine-enkefaline system. 3. Lipid-derived autacoids (eicosanoids) - Products of Cyclooxygenases: - Prostaglandins: PGA PGJ; - Tromboxans: TXA, TXB. - Lipoxygenase products: - Leukotrienes: LTA LTE; - Lipoxins; - Hepoxilins. - Epoxygenase products: - Epoxyprostaglandins; - Dioli. - Products of other pathways: - Isoprostanes. Pharmacologic influence of Histamine Histamine Mechanism of action: on histamine receptor agonist (H), located transmembrane or on the surface of the membrane of target cells. Histamine receptors: - histamine 1 receptor (H1) → in smooth muscle, endothelium and to the brain, they transmit the biological signal post-receptor stimulating the formation of IP3 and DAG; - histamine 2 receptor (H2) → in the gastric mucosa, heart muscle, and brain to mast cells, they transmit the biological signal post-receptor stimulating the formation of cAMP; - histamine 3 receptor (H3)
    [Show full text]
  • Histamine Receptors
    HISTAMINE RECEPTORS Rob Leurs and Henk Timmerman Based on these observations histamine is Leiden/Amsterdam Centre for Drug Research considered as one of the most important Division of Medicinal Chemistry mediators of allergy and inflammation. Vrije Universiteit Amsterdam, The Netherlands Pharmacology of the Histamine Receptor Subtypes Introduction The advent of molecular biology techniques has greatly increased the number of Histamine is one of the aminergic pharmacologically distinct receptor subtypes in neurotransmitters, playing an important role in the the biogenic amine field, yet the pharmacological regulation of several (patho)physiological definition of the three distinct histamine receptor processes. In the mammalian brain histamine is subtypes by the pioneering work of Ash and synthesized in a restricted population of neurons Schild,34 Blacket al and Arrang et al 5 has still not located in the tuberomammillary nucleus of the been challenged by gene cloning approaches. posterior hypothalamus.1 These neurons project diffusely to most cerebral areas and have been Until the seventies, histamine research implicated in several brain functions (e.g. completely focused on the role of histamine in sleep/wakefulness, hormonal secretion, allergic diseases. This intensive research resulted cardiovascular control, thermoregulation, food in the development of several potent 1 intake, and memory formation). In peripheral “antihistamines” (e.g. mepyramine), which were tissues histamine is stored in mast cells, useful in inhibiting certain symptoms of allergic basophils, enterochromaffin cells and probably conditions.6 The observation that these also in some specific neurons. Mast cell histamine “antihistamines” did not antagonise all histamine- plays an important role in the pathogenesis of induced effects (e.g.
    [Show full text]