Histamine Receptors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TABLE 1 Studies of Antagonist Activity in Constitutively Active
TABLE 1 Studies of antagonist activity in constitutively active receptors systems shown to demonstrate inverse agonism for at least one ligand Targets are natural Gs and constitutively active mutants (CAM) of GPCRs. Of 380 antagonists, 85% of the ligands demonstrate inverse agonism. Receptor Neutral Antagonist Inverse Agonist Reference Human β2-adrenergic Dichloroisoproterenol, pindolol, labetolol, timolol, Chidiac et al., 1996; Azzi et alprenolol, propranolol, ICI 118,551, cyanopindolol al., 2001 Turkey erythrocyte β-adrenergic Propranolol, pindolol Gotze et al., 1994 Human β2-adrenergic (CAM) Propranolol Betaxolol, ICI 118,551, sotalol, timolol Samama et al., 1994; Stevens and Milligan, 1998 Human/guinea pig β1-adrenergic Atenolol, propranolol Mewes et al., 1993 Human β1-adrenergic Carvedilol CGP20712A, metoprolol, bisoprolol Engelhardt et al., 2001 Rat α2D-adrenergic Rauwolscine, yohimbine, WB 4101, idazoxan, Tian et al., 1994 phentolamine, Human α2A-adrenergic Napthazoline, Rauwolscine, idazoxan, altipamezole, levomedetomidine, Jansson et al., 1998; Pauwels MPV-2088 (–)RX811059, RX 831003 et al., 2002 Human α2C-adrenergic RX821002, yohimbine Cayla et al., 1999 Human α2D-adrenergic Prazosin McCune et al., 2000 Rat α2-adrenoceptor MK912 RX821002 Murrin et al., 2000 Porcine α2A adrenoceptor (CAM- Idazoxan Rauwolscine, yohimbine, RX821002, MK912, Wade et al., 2001 T373K) phentolamine Human α2A-adrenoceptor (CAM) Dexefaroxan, (+)RX811059, (–)RX811059, RS15385, yohimbine, Pauwels et al., 2000 atipamezole fluparoxan, WB 4101 Hamster α1B-adrenergic -
Human Histamine H2 Receptor, Frozen Cells Product No.: ES-391-AF
TECHNICAL AequoZen® DATA SHEET Research use only. Not for use in diagnostic procedures. You are authorized to utilize these frozen cell preparations one time only. Any attempt to transfer, re-use, or propagate these cells is expressly unauthorized and a violation of the product terms and conditions of sale. Human Histamine H2 Receptor, Frozen Cells Product No.: ES-391-AF Lot No.: 2562845 Material Provided Cells: 1 x 1 mL frozen aliquot Format: ~10 x 106 cells/mL in Ham’s F12, 10% FBS with 10 % DMSO Product Information Cellular Background: CHO-K1 Parental Frozen Cells (control): A19 (replaced with Cat # ES-000-A2F) Frozen Cells Info: Frozen recombinant, CHO-K1 cells expressing mitochondrially- targeted Aequorin, Gα16 and the human Histamine H2 receptor. DNA Sequence: Identical to coding sequence of GenBank NM_022304.2. Corresponding Protein Sequence: Identical to GenBank NP_071640.1. Storage Conditions: Store in liquid nitrogen (vapor phase) immediately upon receipt, or maximum 15 days at -80°C. AequoZen® is designed for single use only. Do not refreeze. Quality Control ® EC50 for a reference agonist is determined using an AequoScreen assay (Figure 1). Mycoplasma test is performed using MycoAlert® Mycoplasma detection kit. We certify that these results meet our quality release criteria. Amthamine dihydrobromide (EC50): 6.9 nM Mycoplasma: This cell line tested negative for Mycoplasma. TDS-ES-391-AF-04 Page 1 of 5 Recommended Thawing Conditions and Handling of Frozen Cells Carefully follow instructions below to obtain the expected results. Most Frozen cells are intended to be assayed immediately upon thawing. Exceptionally, where specified, some frozen cell products require an overnight incubation in Cell Medium to enable them to perform optimally. -
The Histamine H4 Receptor: a Novel Target for Safe Anti-Inflammatory
GASTRO ISSN 2377-8369 Open Journal http://dx.doi.org/10.17140/GOJ-1-103 Review The Histamine H4 Receptor: A Novel Target *Corresponding author Maristella Adami, PhD for Safe Anti-inflammatory Drugs? Department of Neuroscience University of Parma Via Volturno 39 43125 Parma Italy * 1 Tel. +39 0521 903943 Maristella Adami and Gabriella Coruzzi Fax: +39 0521 903852 E-mail: [email protected] Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy Volume 1 : Issue 1 1retired Article Ref. #: 1000GOJ1103 Article History Received: May 30th, 2014 ABSTRACT Accepted: June 12th, 2014 th Published: July 16 , 2014 The functional role of histamine H4 receptors (H4Rs) in the Gastrointestinal (GI) tract is reviewed, with particular reference to their involvement in the regulation of gastric mucosal defense and inflammation. 4H Rs have been detected in different cell types of the gut, including Citation immune cells, paracrine cells, endocrine cells and neurons, from different animal species and Adami M, Coruzzi G. The Histamine H4 Receptor: a novel target for safe anti- humans; moreover, H4R expression was reported to be altered in some pathological conditions, inflammatory drugs?. Gastro Open J. such as colitis and cancer. Functional studies have demonstrated protective effects of H4R an- 2014; 1(1): 7-12. doi: 10.17140/GOJ- tagonists in several experimental models of gastric mucosal damage and intestinal inflamma- 1-103 tion, suggesting a potential therapeutic role of drugs targeting this new receptor subtype in GI disorders, such as allergic enteropathy, Inflammatory Bowel Disease (IBD), Irritable Bowel Syndrome (IBS) and cancer. KEYWORDS: Histamine H4 receptor; Stomach; Intestine. -
From Inverse Agonism to 'Paradoxical Pharmacology' Richard A
International Congress Series 1249 (2003) 27-37 From inverse agonism to 'Paradoxical Pharmacology' Richard A. Bond*, Kenda L.J. Evans, Zsirzsanna Callaerts-Vegh Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 521 Science and Research Bldg 2, 4800 Caltioun, Houston, TX 77204-5037, USA Received 16 April 2003; accepted 16 April 2003 Abstract The constitutive or spontaneous activity of G protein-coupled receptors (GPCRs) and compounds acting as inverse agonists is a recent but well-established phenomenon. Dozens of receptor subtypes for numerous neurotransmitters and hormones have been shown to posses this property. However, do to the apparently low percentage of receptors in the spontaneously active state, the physiologic relevance of these findings remains questionable. The possibility that the reciprocal nature of the effects of agonists and inverse agonists may extend to cellular signaling is discussed, and that this may account for the beneficial effects of certain p-adrenoceptor inverse agonists in the treatment of heart failure. © 2003 Elsevier Science B.V. All rights reserved. Keywords. Inverse agonism; GPCR; Paradoxical pharmacology 1. Brief history of inverse agonism at G protein-coupled receptors For approximately three-quarters of a century, ligands that interacted with G protein- coupled receptors (GPCRs) were classified either as agonists or antagonists. Receptors were thought to exist in a single quiescent state that could only induce cellular signaling upon agonist binding to the receptor to produce an activated state of the receptor. In this model, antagonists had no cellular signaling ability on their own, but did bind to the receptor and prevented agonists from being able to bind and activate the receptor. -
Chapter 2 Molecular Aspects of Histamine Receptors
VU Research Portal Shedding Light on the Histamine H3 Receptor Mocking, T.A.M. 2020 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Mocking, T. A. M. (2020). Shedding Light on the Histamine H3 Receptor: Photopharmacology and bioluminescent assays to study GPCRs. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 06. Oct. 2021 Chapter 2 Molecular aspects of histamine receptors Histamine mediates a multitude of physiological effects in the human body by activating four histamine receptor subtypes. Histamine receptors have proven to be promising drug targets in the treatment of a variety of diseases, including hay fever, gastric ulcers, inflammatory and neuropathological diseases. In this chapter the molecular aspects of histamine receptors are described, including expression profile, intracellular signaling, and how histamine receptor activity can be attenuated by ligands targeting the histamine receptor binding sites. -
)&F1y3x PHARMACEUTICAL APPENDIX to THE
)&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE -
Histamine Receptors
Tocris Scientific Review Series Tocri-lu-2945 Histamine Receptors Iwan de Esch and Rob Leurs Introduction Leiden/Amsterdam Center for Drug Research (LACDR), Division Histamine is one of the aminergic neurotransmitters and plays of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit an important role in the regulation of several (patho)physiological Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The processes. In the mammalian brain histamine is synthesised in Netherlands restricted populations of neurons that are located in the tuberomammillary nucleus of the posterior hypothalamus.1 Dr. Iwan de Esch is an assistant professor and Prof. Rob Leurs is These neurons project diffusely to most cerebral areas and have full professor and head of the Division of Medicinal Chemistry of been implicated in several brain functions (e.g. sleep/ the Leiden/Amsterdam Center of Drug Research (LACDR), VU wakefulness, hormonal secretion, cardiovascular control, University Amsterdam, The Netherlands. Since the seventies, thermoregulation, food intake, and memory formation).2 In histamine receptor research has been one of the traditional peripheral tissues, histamine is stored in mast cells, eosinophils, themes of the division. Molecular understanding of ligand- basophils, enterochromaffin cells and probably also in some receptor interaction is obtained by combining pharmacology specific neurons. Mast cell histamine plays an important role in (signal transduction, proliferation), molecular biology, receptor the pathogenesis of various allergic conditions. After mast cell modelling and the synthesis and identification of new ligands. degranulation, release of histamine leads to various well-known symptoms of allergic conditions in the skin and the airway system. In 1937, Bovet and Staub discovered compounds that antagonise the effect of histamine on these allergic reactions.3 Ever since, there has been intense research devoted towards finding novel ligands with (anti-) histaminergic activity. -
Physiological Implications of Biased Signaling at Histamine H2 Receptors
ORIGINAL RESEARCH published: 10 March 2015 doi: 10.3389/fphar.2015.00045 Physiological implications of biased signaling at histamine H2 receptors Natalia Alonso 1,2,CarlosD.Zappia2,3, Maia Cabrera 2,3, Carlos A. Davio 2,3,4 , Carina Shayo 1,2, Federico Monczor 2,3 and Natalia C. Fernández 2,3* 1 Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina, 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina, 3 Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina, 4 Instituto de Investigaciones Farmacológicas – Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Histamine mediates numerous functions acting through its four receptor subtypes all belonging to the large family of seven transmembrane G-protein coupled receptors. In particular, histamine H2 receptor (H2R) is mainly involved in gastric acid production, becoming a classic pharmacological target to treat Zollinger–Ellison disease and gastric Edited by: Claudio M. Costa-Neto, and duodenal ulcers. H2 ligands rank among the most widely prescribed and over University of São Paulo, Brazil the counter-sold drugs in the world. Recent evidence indicate that some H2R ligands Reviewed by: display biased agonism, selecting and triggering some, but not all, of the signaling Terry Kenakin, pathways associated to the H2R. The aim of the present work is to study whether University of North Carolina Chapel Hill, USA famotidine, clinically widespread used ligand acting at H2R, exerts biased signaling. Our Andre Sampaio Pupo, findings indicate that while famotidine acts as inverse agonist diminishing cAMP basal São Paulo State University, Brazil levels, it mimics the effects of histamine and the agonist amthamine concerning receptor *Correspondence: Natalia C. -
In Vitro Pharmacology of Clinically Used Central Nervous System-Active Drugs As Inverse H1 Receptor Agonists
0022-3565/07/3221-172–179$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 322, No. 1 Copyright © 2007 by The American Society for Pharmacology and Experimental Therapeutics 118869/3215703 JPET 322:172–179, 2007 Printed in U.S.A. In Vitro Pharmacology of Clinically Used Central Nervous System-Active Drugs as Inverse H1 Receptor Agonists R. A. Bakker,1 M. W. Nicholas,2 T. T. Smith, E. S. Burstein, U. Hacksell, H. Timmerman, R. Leurs, M. R. Brann, and D. M. Weiner Department of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.A.B., H.T., R.L.); ACADIA Pharmaceuticals Inc., San Diego, California (R.A.B., M.W.N., T.T.S., E.S.B., U.H., M.R.B., D.M.W.); and Departments of Pharmacology (M.R.B.), Neurosciences (D.M.W.), and Psychiatry (D.M.W.), University of California, San Diego, California Received January 2, 2007; accepted March 30, 2007 Downloaded from ABSTRACT The human histamine H1 receptor (H1R) is a prototypical G on this screen, we have reported on the identification of 8R- protein-coupled receptor and an important, well characterized lisuride as a potent stereospecific partial H1R agonist (Mol target for the development of antagonists to treat allergic con- Pharmacol 65:538–549, 2004). In contrast, herein we report on jpet.aspetjournals.org ditions. Many neuropsychiatric drugs are also known to po- a large number of varied clinical and chemical classes of drugs tently antagonize this receptor, underlying aspects of their side that are active in the central nervous system that display potent effect profiles. -
(12) Patent Application Publication (10) Pub. No.: US 2012/0115729 A1 Qin Et Al
US 201201.15729A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0115729 A1 Qin et al. (43) Pub. Date: May 10, 2012 (54) PROCESS FOR FORMING FILMS, FIBERS, Publication Classification AND BEADS FROM CHITNOUS BOMASS (51) Int. Cl (75) Inventors: Ying Qin, Tuscaloosa, AL (US); AOIN 25/00 (2006.01) Robin D. Rogers, Tuscaloosa, AL A6II 47/36 (2006.01) AL(US); (US) Daniel T. Daly, Tuscaloosa, tish 9.8 (2006.01)C (52) U.S. Cl. ............ 504/358:536/20: 514/777; 426/658 (73) Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF 57 ABSTRACT ALABAMA, Tuscaloosa, AL (US) (57) Disclosed is a process for forming films, fibers, and beads (21) Appl. No.: 13/375,245 comprising a chitinous mass, for example, chitin, chitosan obtained from one or more biomasses. The disclosed process (22) PCT Filed: Jun. 1, 2010 can be used to prepare films, fibers, and beads comprising only polymers, i.e., chitin, obtained from a suitable biomass, (86). PCT No.: PCT/US 10/36904 or the films, fibers, and beads can comprise a mixture of polymers obtained from a suitable biomass and a naturally S3712). (4) (c)(1), Date: Jan. 26, 2012 occurring and/or synthetic polymer. Disclosed herein are the (2), (4) Date: an. AO. films, fibers, and beads obtained from the disclosed process. O O This Abstract is presented solely to aid in searching the sub Related U.S. Application Data ject matter disclosed herein and is not intended to define, (60)60) Provisional applicationpp No. 61/182,833,sy- - - s filed on Jun. -
Product Information
Print Date: Oct 31st 2017 Product Information www.tocris.com Product Name: Histamine H3 Receptor Tocriset™ Catalog No.: 1876 Batch No.: 1 1. Tocriset™ Description A Tocriset™ consists of 3 to 5 key compounds that are active within a defined pharmacological area or a signaling pathway. Most compounds are supplied in a solid format in a specified molar amount so that solvent can be added directly to the vial. For example, addition of 500 μL of solvent to a vial containing 5 μmol of compound yields a 10 mM stock solution. Some compounds that are unsuitable for lyophilization are provided pre-dissolved in DMSO. The Histamine H3 Receptor Tocriset™ contains the listed products as lyophilised solids which can be used to study the pharmacology of the histamine H3 receptor. Cat.No. Product / Activity Batch Amount Format 0569 (R)-(-)-α-Methylhistamine dihydrobromide 7 5 μmol Freeze-dried solid Potent, selective H3 agonist 0644 Thioperamide 7 5 μmol Freeze-dried solid H3 antagonist, active in vivo 0729 Imetit dihydrobromide 2 5 μmol Freeze-dried solid Standard selective H3 agonist 0752 Clobenpropit dihydrobromide 2 5 μmol Freeze-dried solid Highly potent, selective H3 antagonist 0779 Iodophenpropit dihydrobromide 2 5 μmol Freeze-dried solid Potent, selective H3 antagonist 2. Storage & Solubility SOLIDS: Provided storage is as stated on the product label and the vial is kept tightly sealed, the product can be stored for up to 6 months from date of receipt. SOLUTIONS: We recommend that stock solutions, once prepared, are stored aliquoted in tightly sealed vials at -20°C or below and used within 1 month, unless indicated below. -
Proceedings of the British Pharmacological Society Clinical Pharmacology Section
PROCEEDINGS OF THE BRITISH PHARMACOLOGICAL SOCIETY CLINICAL PHARMACOLOGY SECTION 9-11 September 1987 UNIVERSITY OF OXFORD For oral communications with more than one author, an asterisk(*) denotes the one who presented the work. 90P Proceedings of the BPS, 9-11 September 1987 COMMUNICATIONS Low dose angiotensin II enhances proximal min clearance period (CP). Urine was collected tubular sodium reabsorption in man for this and a further CP after the infusion. Absolute Na+ excretion (UNa + V) (,mol J. McMURRAY*, P. H. SEIDELIN & min-' ± s.e. mean) for the baseline preinfusion A. D. STRUTHERS CP, the infusion CP and post infusion recovery Department of Clinical Pharmacology, Ninewells CPwas: (a) 119 ± 15; 112 ± 14; 108 ± 14. (b) 108 Hospital and Medical School, Dundee DD1 9SY + 13; 82 + 10; 101 ± 14 (P < 0.01 vs control). Fractional Na+ excretion (FENa+) (% s.e. The renin-angiotensin-aldosterone system mean) for the equivalent CP was (a) 0.84 ± 0.1; (RAAS) is crucial in the maintenance of Na+ 0.75 ± 0.1; 0.72 ± 0.09 (b) 0.82 ± 0.09; 0.56 + balance in man. The role of aldosterone in Na+ 0.07; 0.69 ± 0.09 (P < 0.02 vs control). Fractional homeostasis is well known (Laragh, 1985). In Li+ excretion (FEL,-) (% + s.e. mean) was: (a) addition, however, there are now animal data to 31 ±2;30+2;34+3. (b)29±2;23±2;27±3. suggest that angiotensin II (All) plays a direct (P < 0.01 vs control). Distal Na+ reabsorption role, independent of aldosterone, in controlling (RDNa+) (% ± s.e. mean) was: (a) 34 ± 2; 34 + renal Na+ reabsorption.