Mapping the Proteome of Streptococcus Gordonii

Total Page:16

File Type:pdf, Size:1020Kb

Mapping the Proteome of Streptococcus Gordonii CHAPTER 1 CHAPTER 1. INTRODUCTION 1.1. THE ROLE OF STREPTOCOCCUS GORDONII IN HEALTH AND DISEASE Dental plaque consists of a diverse community of microorganisms including bacteria, fungi and protozoa (Burne, 1998; Chandra et al., 2001; Lyons et al., 1983; Webb et al., 1995). In these biofilm communities different microorganisms co-adhere to one another within a polysaccharide matrix (Kolenbrander, 1993), and cooperate in degrading and utilizing host and dietary nutrients such as glycoproteins (Bradshaw et al., 1994). Studies of oral ecology have led to an appreciation of the complexity of the interactions that oral microorganisms have with the host both in health and disease (Bowden and Li, 1997; Quirynen and Bollen, 1995; Rose, 2000). Despite this, diseases such as dental caries and periodontal diseases are still worldwide human aliments resulting in a high level of morbidity and economic burden to society. Proteomics offers a novel approach to understanding the holistic changes occurring to oral microorganisms as environmental changes impinge on their habitats. Streptococcus gordonii was originally classified among the taxonomically diverse species Streptococcus sanguis2 until its description as a new species in 1989 (Kilian et al., 1989). S. gordonii cells are Gram-positive cocci that grow in short chains in serum broth. They are nonmotile, aerobic and faculatively anaerobic, fermentative, catalase negative, show α-hemolysis on horse blood agar and pronounced greening on chocolate agar. The cell wall contains glycerol teichoic acid and rhamnose, and the peptidoglycan type is Lys-Ala1-3. The guanine-plus-cytosine 2 The currently accepted nomenclature of S. sanguis is “S. sanguinis”, and of S. parasanguis is “S. parasanguinis”. However, a compelling argument has been made for the conservation of the original names (Kilian, 2001). Kilian stated that “The changing of well established names of species of Streptococcus and other genera is not desirable as it will cause unnecessary confusion and frustration for those who use these names in their daily work”. In order to avoid confusion, throughout this thesis, the name stated for Streptococcus species is that used in the associated literature. 1 CHAPTER 1 (G + C) content of the DNA is 40 to 43 mol%. S. gordonii is differentiated from S. sanguis by several biochemical characteristics, including a lack of an IgA1 protease, and by a significantly different G + C content (Kilian et al., 1989). S. gordonii is one of the viridans group streptococci (VS), which are part of the normal microbial flora in dental plaque (Whiley and Beighton, 1998). Viridis is Latin for green, and viridans refers to the green colour of the halo that surrounds α-haemolytic streptococci on chocolate agar, which is thought to comprise the metabolic degradation products of haem. While most VS are commensals, an exception is Streptococcus mutans, which is associated with dental caries (Bowden, 1997). Although most are not considered pathogens in the oral cavity, many VS species are associated with infective endocarditis (Douglas et al., 1993). In a study examining the identities of 47 strains of oral streptococci collected from 42 confirmed cases of infective endocarditis, the most common species identified were S. sanguis sensu stricto (31.9%), Streptococcus oralis (29.8%) and S. gordonii (12.7%). Other related species including Streptococcus mitis and Streptococcus parasanguis were less commonly isolated (Douglas et al., 1993). As environmental factors change, organisms either adapt or perish. In the oral cavity, early colonizing Gram-positive bacteria, such as S. gordonii, form biofilms on tooth surfaces and ferment carbohydrate efficiently at pH levels above 6.0 (Loo et al., 2000) and produce antibacterial factors that prevent the overgrowth of dental pathogens such as S. mutans (van der Hoeven and Schaeken, 1995). The initiation of oral biofilms on tooth surfaces by bacteria, such as S. gordonii, depends on the differential expression of genes in response to unique environmental clues. For example, one study observed the involvement of the adc operon and manganese homeostasis in the formation of S. gordonii biofilms (Loo et al., 2003). The conclusion drawn from this study was that AdcR could be a regulator at high levels of extracellular manganese, which is usually found at low levels in its natural and opportunistic habitats, and that the adc operon is not only involved in manganese acquisition and manganese homeostasis in S. gordonii, but appears to modulate sessile growth in this bacterium (Loo et al., 2003). This illustrates how changes in environment can cause a developmental change in a bacterium. 2 CHAPTER 1 If the pH of dental plaque drops below pH 6.0, the environment becomes unfavourable, S. gordonii is unable to metabolise efficiently, and aciduric pathogens begin to proliferate and predominate in the oral biofilm, further lowering the pH. However, under certain conditions, including some dental procedures, S. gordonii along with other VS may enter the bloodstream. In the bloodstream the environmental pH is slightly higher (pH 7.3) than the slightly acidic value in dental plaque (pH 6.5). Both the growth rate and the production of extracellular protein of S. gordonii increase as pH increases (Knox et al., 1985). During the resulting transient bacteremia (Vriesema et al., 2000) it is possible to kill the planktonic organisms using antimicrobial treatments while the bacteria are still in the bloodstream (Donlan and Costerton, 2002). However, should a biofilm form, such as that in an infective endocarditis lesion, the condition becomes difficult to treat due to the mass transfer limitations and the inherent resistance of biofilm microorganisms to antibiotic treatment (Donlan and Costerton, 2002; Giebink et al., 1982). In infective endocarditis, the VS adhere to a cardiac vegetation, which is a meshwork of platelets and fibrin present at the site of the endocardial lesions (Durack and Beeson, 1972). A number of surface components such as the fimbrial protein, FimA, of S. parasanguis (Burnette-Curley et al., 1995; Viscount et al., 1997) and the extracellular polysaccharides of various VS species (Dall and Herndon, 1990; Ramirez-Ronda, 1978; Scheld et al., 1978), have been implicated in the adherence of these bacteria to cardiac vegetations. The fibrin in these vegetations is converted from fibrinogen in blood by the enzyme thrombin. Interestingly, thrombin-like activity produced by S. sanguis has been shown to be a potential virulence factor for infective endocarditis (Mayo et al., 1995). Furthermore, this activity is 5-fold higher at pH 7.5 than at pH 5.5, implicating a change in pH following bacteraemia from dental plaque as a trigger for the infectious process (Mayo et al., 1995). 1.2. BIOFILMS AND QUORUM SENSING Biofilms are formed in diverse environments, from surfboard wax in a marine environment (Dalton et al., 1994), to tooth surfaces in the human mouth (Marsh and 3 CHAPTER 1 Bradshaw, 1997). Researchers have estimated that 99% of all bacteria in natural environments exist in biofilms (Costerton et al., 1987). Bacteria in biofilms optimise population survival by differentiation into forms suitable for particular conditions and organising themselves into communal groups exhibiting characteristics not shown by individual planktonic cells (Costerton et al., 1999; Lawrence et al., 1991). In these communities bacterial populations coordinate their activities by quorum sensing. This is accomplished by secreting small diffusible signal molecules (autoinducers), thus allowing a single cell to obtain information about the status of other bacteria from the same (Batchelor et al., 1997; Davies et al., 1998) or even different species (Møller et al., 1998). Autoinduction is commonly activated when the autoinducer reaches a critical density, leading to a fast, population-wide response, and, as such, is believed to be a sensor of population density (Fuqua et al., 1996). 1.2.1. Biofilms and human health Biofilms have an innate resistance to antibiotics (Donlan and Costerton, 2002; Mah et al., 2003; Stewart, 2002), and present problems of significant economic importance in industry, health and agriculture. Biofilms are often associated with human disease accounting for approximately 60% of human infections and virtually all, chronic, recurrent and implanted device associated infections (Centers for Disease, Control and Prevention, 2000; http://www.cdc.gov/). Cystic fibrosis, native valve endocarditis, otitis media, periodontitis, and chronic prostatitis are all caused by biofilm-associated microorganisms (Donlan, 2002). Biofilms colonize medical devices such as prosthetic heart valves, central venous catheters, urinary catheters, contact lenses, intrauterine devices, and dental unit water lines (Donlan and Costerton, 2002). Medical ventilation systems also support biofilms and fragments of these biofilms can readily detach and colonise the lungs (Costerton et al., 2003). 4 CHAPTER 1 1.2.2. The formation of oral biofilms Previous studies in oral ecology have led to an understanding of many of the mechanisms by which biofilms form on teeth (Bowden and Hamilton, 1987; Quirynen and Bollen, 1995; Rose, 2000), but dental caries and periodontal disease are still widespread human aliments (Hobdell et al., 2003). Researchers are still investigating possible solutions using antiseptics, antibiotics, adhesion agonists, recombinant antibodies and vaccines (Dutton et al., 2000; Hanada, 2000; Jenkinson et al., 1997).
Recommended publications
  • Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation
    catalysts Article Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation 1, 2 2,3 2 Marco Rabuffetti y, Teodora Bavaro , Riccardo Semproli , Giulia Cattaneo , Michela Massone 1, Carlo F. Morelli 1 , Giovanna Speranza 1,* and Daniela Ubiali 2,* 1 Department of Chemistry, University of Milan, via Golgi 19, I-20133 Milano, Italy; marco.rabuff[email protected] (M.R.); [email protected] (M.M.); [email protected] (C.F.M.) 2 Department of Drug Sciences, University of Pavia, viale Taramelli 12, I-27100 Pavia, Italy; [email protected] (T.B.); [email protected] (R.S.); [email protected] (G.C.) 3 Consorzio Italbiotec, via Fantoli 15/16, c/o Polo Multimedica, I-20138 Milano, Italy * Correspondence: [email protected] (G.S.); [email protected] (D.U.); Tel.: +39-02-50314097 (G.S.); +39-0382-987889 (D.U.) Present address: Department of Food, Environmental and Nutritional Sciences, University of Milan, y via Mangiagalli 25, I-20133 Milano, Italy. Received: 7 March 2019; Accepted: 8 April 2019; Published: 12 April 2019 Abstract: Despite the impressive progress in nucleoside chemistry to date, the synthesis of nucleoside analogues is still a challenge. Chemoenzymatic synthesis has been proven to overcome most of the constraints of conventional nucleoside chemistry. A purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) has been used herein to catalyze the synthesis of Ribavirin, Tecadenoson, and Cladribine, by a “one-pot, one-enzyme” transglycosylation, which is the transfer of the carbohydrate moiety from a nucleoside donor to a heterocyclic base. As the sugar donor, 7-methylguanosine iodide and its 20-deoxy counterpart were synthesized and incubated either with the “purine-like” base or the modified purine of the three selected APIs.
    [Show full text]
  • Revealing 29 Sets of Independently Modulated Genes in Staphylococcus Aureus, Their Regulators, and Role in Key Physiological Response
    Revealing 29 sets of independently modulated genes in Staphylococcus aureus, their regulators, and role in key physiological response Saugat Poudela, Hannah Tsunemotob, Yara Seifa, Anand V. Sastrya, Richard Szubina, Sibei Xua, Henrique Machadoa, Connor A. Olsona, Amitesh Ananda, Joe Poglianob, Victor Nizetc,d, and Bernhard O. Palssona,c,1 aDepartment of Bioengineering, University of California San Diego, La Jolla, CA 92093; bDepartment of Biology, University of California San Diego, La Jolla, CA 92093; cCollaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093; and dSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 Edited by Jeff F. Miller, University of California, Los Angeles, CA, and approved June 1, 2020 (received for review May 6, 2020) The ability of Staphylococcus aureus to infect many different tis- modulated sets of genes (called i-modulons) and calculates the sue sites is enabled, in part, by its transcriptional regulatory net- activity level of each i-modulon in the input expression profile. work (TRN) that coordinates its gene expression to respond to ICA analysis of expression profiles in E. coli have been used to different environments. We elucidated the organization and activ- describe undefined regulons, link strain-specific mutations with ity of this TRN by applying independent component analysis to a changes in gene expression, and understand rewiring of TRN compendium of 108 RNA-sequencing expression profiles from two during adaptive laboratory evolution (ALE) (7, 9). Given the S. aureus clinical strains (TCH1516 and LAC). ICA decomposed the deeper insights it provided into the TRN of E.
    [Show full text]
  • University of Groningen Ccpa Ensures Optimal Metabolic Fitness
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen CcpA Ensures Optimal Metabolic Fitness of Streptococcus pneumoniae Carvalho, Sandra M.; Kloosterman, Tomas G.; Kuipers, Oscar P.; Neves, Ana Rute Published in: PLoS ONE DOI: 10.1371/journal.pone.0026707 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Carvalho, S. M., Kloosterman, T. G., Kuipers, O. P., & Neves, A. R. (2011). CcpA Ensures Optimal Metabolic Fitness of Streptococcus pneumoniae. PLoS ONE, 6(10), [26707]. https://doi.org/10.1371/journal.pone.0026707 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 CcpA Ensures Optimal Metabolic Fitness of Streptococcus pneumoniae Sandra M.
    [Show full text]
  • Adenosine A1 Receptor Activation Attenuates Lung Ischemia–Reperfusion Injury
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE CARDIOTHORACIC TRANSPLANTATION provided by Elsevier - Publisher Connector Adenosine A1 receptor activation attenuates lung ischemia–reperfusion injury Lucas G. Fernandez, MD, DSc, Ashish K. Sharma, PhD, MBBS, Damien J. LaPar, MD, MSc, Irving L. Kron, MD, and Victor E. Laubach, PhD Objectives: Ischemia–reperfusion injury contributes significantly to morbidity and mortality in lung transplant patients. Currently, no therapeutic agents are clinically available to prevent ischemia–reperfusion injury, and treatment strategies are limited to maintaining oxygenation and lung function. Adenosine can modulate inflam- matory activity and injury by binding to various adenosine receptors; however, the role of the adenosine A1 re- ceptor in ischemia–reperfusion injury and inflammation is not well understood. The present study tested the hypothesis that selective, exogenous activation of the A1 receptor would be anti-inflammatory and attenuate lung ischemia–reperfusion injury. Methods: Wild-type and A1 receptor knockout mice underwent 1 hour of left lung ischemia and 2 hours of re- perfusion using an in vivo hilar clamp model. An A1 receptor agonist, 2-chloro-N6-cyclopentyladenosine, was administered 5 minutes before ischemia. After reperfusion, lung function was evaluated by measuring airway resistance, pulmonary compliance, and pulmonary artery pressure. The wet/dry weight ratio was used to assess edema. The myeloperoxidase and cytokine levels in bronchoalveolar lavage fluid were measured to determine the presence of neutrophil infiltration and inflammation. Results: In the wild-type mice, 2-chloro-N6-cyclopentyladenosine significantly improved lung function and at- tenuated edema, cytokine expression, and myeloperoxidase levels compared with the vehicle-treated mice after ischemia–reperfusion.
    [Show full text]
  • Anti-Inflammatory Effects of Adenosine N1-Oxide
    Kohno et al. Journal of Inflammation (2015) 12:2 DOI 10.1186/s12950-014-0045-0 RESEARCH Open Access Anti-inflammatory effects of adenosine N1-oxide Keizo Kohno1*†, Emiko Ohashi1†, Osamu Sano1†, Hajime Kusano2†, Toshio Kunikata1†, Norie Arai3†, Toshiharu Hanaya1†, Toshio Kawata2†, Tomoyuki Nishimoto1† and Shigeharu Fukuda1,3† Abstract Background: Adenosine is a potent endogenous anti-inflammatory and immunoregulatory molecule. Despite its promise, adenosine’s extremely short half-life in blood limits its clinical application. Here, we examined adenosine N1-oxide (ANO), which is found in royal jelly. ANO is an oxidized product of adenosine at the N1 position of the adenine base moiety. We found that it is refractory to adenosine deaminase-mediated conversion to inosine. We further examined the anti-inflammatory activities of ANO in vitro and in vivo. Methods: The effect of ANO on pro-inflammatory cytokine secretion was examined in mouse peritoneal macrophages and the human monocytic cell line THP-1, and compared with that of adenosine, synthetic adenosine receptor (AR)-selective agonists and dipotassium glycyrrhizate (GK2). The anti-inflammatory activity of ANO in vivo was examined in an LPS-induced endotoxin shock model in mice. Results: ANO inhibited secretion of inflammatory mediators at much lower concentrations than adenosine and GK2 when used with peritoneal macrophages and THP-1 cells that were stimulated by LPS plus IFN-γ. The potent anti-inflammatory activity of ANO could not be solely accounted for by its refractoriness to adenosine deaminase. ANO was superior to the synthetic A1 AR-selective agonist, 2-chloro-N6-cyclopentyladenosine (CCPA), A2A AR-selective agonist, 2-[p-(2-carboxyethyl)phenethylamino]-5’-N-ethylcarboxamideadenosine hydrochloride (CGS21680), and A3 AR-selective agonist, N6-(3-iodobenzyl)adenosine-5’-N-methyluronamide (IB-MECA), in suppressing the secretion of a broad spectrum of pro-inflammatory cytokines by peritoneal macrophages.
    [Show full text]
  • Sleep Promoting Effect of Luteolin in Mice Via Adenosine A1 and A2A Receptors
    Original Article Biomol Ther 27(6), 584-590 (2019) Sleep Promoting Effect of Luteolin in Mice via Adenosine A1 and A2A Receptors Tae-Ho Kim1, Raly James Custodio2, Jae Hoon Cheong2, Hee Jin Kim2,* and Yi-Sook Jung1,3,* 1College of Pharmacy, Ajou University, Suwon 16499, 2Uimyoung Research Institute in Neuroscience, Sahmyook University, Seoul 01795, 3College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea Abstract Luteolin, a widespread flavonoid, has been known to have neuroprotective activity against various neurologic diseases such as epilepsy, and Alzheimer’s disease. However, little information is available regarding the hypnotic effect of luteolin. In this study, we evaluated the hypnotic effect of luteolin and its underlying mechanism. In pentobarbital-induced sleeping mice model, luteolin (1, and 3 mg/kg, p.o.) decreased sleep latency and increased the total sleep time. Through electroencephalogram (EEG) and electromyogram (EMG) recording, we demonstrated that luteolin increased non-rapid eye movement (NREM) sleep time and decreased wake time. To evaluate the underlying mechanism, we examined the effects of various pharmacological antagonists on the hypnotic effect of luteolin. The hypnotic effect of 3 mg/kg of luteolin was not affected by flumazenil, a GABAA receptor- benzodiazepine (GABAAR-BDZ) binding site antagonist, and bicuculine, a GABAAR-GABA binding site antagonist. On the other hand, the hypnotic effect of 3 mg/kg of luteolin was almost completely blocked by caffeine, an antagonist for both adenosine A1 and A2A receptor (A1R and A2AR), 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), an A1R antagonist, and SCH-58261, an A2AR antagonist.
    [Show full text]
  • Metabolic and Genetic Factors Affecting the Productivity of Pyrimidine Nucleoside in Bacillus Subtilis
    Zhu et al. Microbial Cell Factories (2015) 14:54 DOI 10.1186/s12934-015-0237-1 RESEARCH Open Access Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis Hui Zhu1,2, Shao-Mei Yang1,2, Zhao-Min Yuan1,2 and Rui Ban1,2* Abstract Background: Cytidine and uridine are produced commercially by Bacillus subtilis. The production strains of cytidine and uridine were both derivatives from mutagenesis. However, the exact metabolic and genetic factors affecting the productivity remain unknown. Genetic engineering may be a promising approach to identify and confirm these factors. Results: With the deletion of the cdd and hom genes, and the deregulation of the pyr operon in Bacillus subtilis168, the engineered strain produced 200.9 mg/L cytidine, 14.9 mg/L uridine and 960.1 mg/L uracil. Then, the overexpressed prs gene led to a dramatic increase of uridine by 25.9 times along with a modest increase of cytidine. Furthermore, the overexpressed pyrG gene improved the production of cytidine, uridine and uracil by 259.5%, 11.2% and 68.8%, respectively. Moreover, the overexpression of the pyrH gene increasesd the yield of cytidine by 40%, along with a modest augments of uridine and uracil. Lastly, the deletion of the nupC-pdp gene resulted in a doubled production of uridine up to 1684.6 mg/L, a 14.4% increase of cytidine to 1423 mg/L, and a 99% decrease of uracil to only 14.2 mg/L. Conclusions: The deregulation of the pyr operon and the overexpression of the prs, pyrG and pyrH genes all contribute to the accumulation of pyrimidine nucleoside compounds in the medium.
    [Show full text]
  • Adenosine A3 Receptor Stimulation Induces Protection of Skeletal Muscle from Eccentric Exercise-Mediated Injury
    Am J Physiol Regul Integr Comp Physiol 299: R259–R267, 2010. First published April 28, 2010; doi:10.1152/ajpregu.00060.2010. Adenosine A3 receptor stimulation induces protection of skeletal muscle from eccentric exercise-mediated injury Ruibo Wang,1 Maria L. Urso,2 Edward J. Zambraski,2 Erik P. Rader,3 Kevin P. Campbell,3 and Bruce T. Liang1 1Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut; 2U.S. Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massachusetts; and 3Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, Neurology, and Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa Submitted 29 January 2010; accepted in final form 22 April 2010 Wang R, Urso ML, Zambraski EJ, Rader EP, Campbell KP, anism by which each receptor mediates protection is not the Liang BT. Adenosine A3 receptor stimulation induces protection of same. The adenosine A3 receptor, but not the A1 or A2A skeletal muscle from eccentric exercise-mediated injury. Am J Physiol receptor subtype, signals selectively via phospholipase C␤ Regul Integr Comp Physiol 299: R259–R267, 2010. First published isoform to achieve its anti-ischemic effect. While adenosine April 28, 2010; doi:10.1152/ajpregu.00060.2010.—Effective therapy and its various receptors are well known to be able to protect to reduce skeletal muscle injury associated with severe or eccentric Downloaded from exercise is needed. The purpose of this study was to determine cardiac and skeletal muscle from ischemia and reperfusion whether adenosine receptor stimulation can mediate protection from injury, the ability of adenosine to protect against exertion- eccentric exercise-induced muscle injury.
    [Show full text]
  • Marr Family Transcriptional Regulators from Streptomyces Coelicolor Hao Huang Louisiana State University and Agricultural and Mechanical College
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2013 MarR Family Transcriptional Regulators from Streptomyces coelicolor Hao Huang Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Huang, Hao, "MarR Family Transcriptional Regulators from Streptomyces coelicolor" (2013). LSU Doctoral Dissertations. 64. https://digitalcommons.lsu.edu/gradschool_dissertations/64 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. MARR FAMILY TRANSCRIPTIONAL REGULATORS FROM STREPTOMYCES COELICOLOR A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Hao Huang B.Sc. (Agr.), Jimei University, P.R. China, 2003 M.Sc., Xiamen University, P.R. China, 2006 December 2013 Dedicated to my parents, my grandparents and brother for their selfless love ii ACKNOWLEDGMENTS The first and most important acknowledgements are to my advisor and mentor Dr. Anne Grove who plays a critical role in my research growth. Dr. Grove gives critical guidance in my scientific research with her patience and dedication. Her enthusiasm in science also affects me deeply. Without her encouragement and help, I would not be able to complete this dissertation. I would like to sincerely acknowledge my committee, Dr. Joomyeong ‘Joo’ Kim , Dr.
    [Show full text]
  • Bioactive Nutrients for Improved Metabolic Function of Dairy Cattle
    Bioactive nutrients for improved metabolic function of dairy cattle by KATIE E. OLAGARAY B.S., California Polytechnic State University - San Luis Obispo, 2014 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Animal Sciences and Industry College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2017 Approved by: Major Professor Barry J. Bradford Copyright © Katie E. Olagaray 2017. Abstract Dairy cows undergo many homeorhetic adaptations during the transition to lactation. Although many of the physiological processes - including increased lipolysis and postpartum inflammation - are adaptive, exaggerated responses can contribute to metabolic disease and reduced milk production. L-carnitine has been shown to increase hepatic oxidation of fatty acids and reduce hepatic lipid accumulation in early lactation cows; however, L-carnitine is degraded in the rumen. An experiment using 4 ruminally-cannulated Holstein heifers in a split plot design demonstrated that the relative bioavailability of L-carnitine was greater when delivered abomasally than ruminally. There was a dose × route interaction and a route effect for increases in plasma carnitine above baseline, with increases above baseline being greater across all dose levels (1, 3, and 6 g L-carnitine/d) when infused abomasally compared to ruminally. A second experiment used 56 lactating Holstein cows in a randomized complete block design to evaluate 2 rumen-protected products (40COAT and 60COAT) compared to crystalline L-carnitine at doses targeting 3 and 6 g/d carnitine. Although crystalline and 40COAT were effective in linearly increasing carnitine concentrations, only subtle responses were seen for the 60COAT, which were less than that for crystalline carnitine in plasma, milk, and urine.
    [Show full text]
  • Codex Alimentarius Commission FOOD and AGRICULTURE WORLD HEALTH ORGANIZATION ORGANIZATION of the UNITED NATIONS
    codex alimentarius commission FOOD AND AGRICULTURE WORLD HEALTH ORGANIZATION ORGANIZATION OF THE UNITED NATIONS JOINT OFFICE: Via delle Tame di Caracalla 00100 ROME: Tel. 57971 Telex: 610181 FAO I. Cables Foodagri ALItDPM 83/12A JOINT FAO/WHO FCCO SmNIl~.RE6 PRCGIWIIE CCODC ALIMENThPIUS CCftCSSION Fifteenth Session ttxie, 4—15 July, 1983 REtORT OF THE SI)CrEEI’lrH SESSION OF THE (DOEX COM?CTTEE ON FOY) AEDITIVES The Hague, 22nd — 28th March, 1983 TABLE OF CWTENIS PAGE Introduction 1 AppDinttent of PappDrteirs 1 Adoption of the Agenda 1 Matters of Interest to the Caitnittee ReFort of the 26th Session of 3IX2E~ 1 International Progranine on Clienical Safety 3 Matters of Interest fran Codex Sessions 3 Guidelines for the Establishment of Food Additives Provisions in Cctrmdity Standards S Consideration of Ftcd Additive Intake 6 Esdorsenn~t of Ftni Additive Provisions in Codex Standards 7 I Prccessed Emits and Vegetables 7 II Fruit Juices 8 III Vegetable Proteins 8 IV Fats and Oils 8 V Draft Standard for vinegar 9 VI Cereals, Ikilses and Legumes VII T~Dhno1ogica1 Justification for the Use of Calcium Disodium Salt of Wffi - &idorsenEnt of the Additive Provision in Fat Spreads/Spreadable Thble Fats 10 VIII Ctieese 10 Action by CCFA resulting in change in AOl Status of Etcd Additives 10 Fndors~ient of Ccntandnant provisions in Ccidex Standards 11 I Prctessed Fruits and Vegetables, Fruit Juices and Fats arid Oils 11 II Cereals, Pulses and Legumes 11 Consideration of Lead Levels in Recatnended Orxiex Standard for Sugars 12 Guide to the Safe Use of
    [Show full text]
  • Transcriptome Response of Lactobacillus Plantarum to Global Regulator Deficiency, Stress and Other Environmental Conditions
    Transcriptome Response of Lactobacillus plantarum to Global Regulator Deficiency, Stress and other Environmental Conditions Marc J.A. Stevens Promotoren: Prof. Dr. W. M. de Vos Hoogleraar Microbiologie Wageningen Universiteit Prof. Dr. M. Kleerebezem Hoogleraar Metagenomics Wageningen Universiteit Co-promotor: Dr. D. Molenaar Projectleider NIZO Food Research Promotiecommisie: Dr. J. Sikkema TI Food and Nutrition Prof. Dr. J. Kok Rijksuniversiteit Groningen Prof. Dr. P. Hols Université Louvain Prof. Dr. T. Abee Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoeksschool VLAG Transcriptome Response of Lactobacillus plantarum to Global Regulator Deficiency, Stress and other Environmental Conditions Marc J. A. Stevens Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. M. J. Kropff, In het openbaar te verdedigen op vrijdag 11 januarie 2008 des namiddags om half twee in de aula Marc J. A. Stevens. Transcriptome Response of Lactobacillus plantarum to Global Regulator Deficiency, Stress and other Environmental Conditions. PhD Thesis. Wageningen University and Research Centre, The Netherlands, 2008. With Summary in Dutch ISBN: 978-90-8504-869-5 Abstract Lactobacillus plantarum is a lactic acid bacterium encountered in a variety of food and feed fermentations and as a natural inhabitant of human gastrointestinal tract. To survive in these niches and to maintain its capability, L. plantarum has to respond to numerous changing conditions and the cellular processes involved in these responses are frequently regulated at the transcriptional level. For this reason the transcriptome of a cell is of interest, as it contains information about the transcriptional response of individual genes. Transcriptomic approaches allow elucidation of transcriptional behaviour of all genes at once and are therefore a powerful tool to study all the transcriptional response of a bacterium to differential conditions.
    [Show full text]