Adenosine and Adenosine Receptors: Newer Therapeutic Perspective S

Total Page:16

File Type:pdf, Size:1020Kb

Adenosine and Adenosine Receptors: Newer Therapeutic Perspective S Review Article Adenosine and adenosine receptors: Newer therapeutic perspective S. Manjunath, Pranavkumar M. Sakhare ABSTRACT Adenosine, a purine nucleoside has been described as a ‘retaliatory metabolite’ by virtue of its ability to function in an autocrine manner and to modify the activity of a range of cell types, following its extracellular accumulation during cell stress or injury. These effects are largely protective and are triggered by binding of adenosine to any of the four adenosine Department of Pharmacology, M.R. receptor subtypes namely A1, A2a, A2b, A3, which have been cloned in humans, and Medical College, Sedam Road, are expressed in most of the organs. Each is encoded by a separate gene and has different Gulbarga-585 105, India functions, although overlapping. For instance, both A1 and A2a receptors play a role in regulating myocardial oxygen consumption and coronary blood flow. It is a proven fact RReceived:eceived: 10.03.2009 RRevised:evised: 31.03.2009 that adenosine plays pivotal role in different physiological functions, such as induction AAccepted:ccepted: 08.06.2009 of sleep, neuroprotection and protection against oxidative stress. Until now adenosine was used for certain conditions like paroxysmal supraventricular tachycardia (PSVT) and DDOI:OI: 10.4103/0253-7613.55202 Wolff Parkinson White (WPW) syndrome. Now there is a growing evidence that adenosine CCorrespondenceorrespondence tto:o: receptors could be promising therapeutic targets in a wide range of conditions including Dr. S. Manjunath cardiac, pulmonary, immunological and inflammatory disorders. After more than three E-mail: manjunath_pharmacology@ decades of research in medicinal chemistry, a number of selective agonists and antagonists yahoo.com of adenosine receptors have been discovered and some have been clinically evaluated, although none has yet received regulatory approval. So this review focuses mainly on the newer potential role of adenosine and its receptors in different clinical conditions. KKEYEY WWORDS:ORDS: Anaesthesia and critical care, asthma, epilepsy, inflammatory bowel diseases, ischaemia/reperfusion injury, Parkinson’s disease, refractory primary pulmonary hypertension Introduction was mainly used for terminating paroxysmal supraventricular tachycardia (PSVT) and Wolff Parkinson White (WPW) syndrome. Adenosine is a metabolite of adenosine triphosphate (ATP), having a very short half-life (1.5 s) due to its rapid metabolism Now, with advances in understanding of adenosine receptors and [Figure 1]. It accumulates in the area where ATP is utilised development of agonists and antagonists [Table 2], adenosine but not reformed, for example during ischaemia and possibly receptors have emerged as potential newer therapeutic targets. during sepsis. Unlike ATP, adenosine exists free in cytosol of all Mainly, A2a receptor plays an important role in mediating [3] cells and is transported in and out of the cell by a membrane inflammatory and immune responses. Its actions through the transporter. It is not a conventional transmitter but a sort of various adenosine receptor subtypes, bring about a decrease local hormone or better say ‘homeostatic modulator’. in energy demand and an increase in energy supply and thus Adenosine is an endogenous purine nucleoside that mediates are protective.[4] Similar to endocannabinoid, the neuromodular a wide variety of physiological functions by interacting with four adenosine plays a very important integrative role in striatal cell surface receptors namely A1, A2a, A2b and A3 [Table 1]. function.[5] Adenosine and dopamine receptor interactions, Adenosine is an intermediate metabolite in many important also have integrative mechanism in basal ganglia.[6] In addition, biochemical pathways and has been shown to play a role in several drugs act through modulation of adenosine effect like the regulation of coronary and systemic vascular tone, platelet methylxanthine, dipyridamole, ketamine, beta blockers, calcium function and lipolysis in adipocytes.[1,2] In addition, it mediates channel blockers, dopamine, cannabinoids etc. Adenosine important functions like induction of sleep, antioxidant and, also plays an important role in renal function. Renal tubular antiseizure effects, neuroprotection etc. Until now adenosine sodium transport is the principal consumer of ATP.[7] Sodium Indian J Pharmacol | Jun 2009 | Vol 41 | Issue 3 | 97-105 97 Manjunath and Sakhare: Adenosine: Newer therapeutic perspective Table 1 Figure 1: Metabolism of adenosine. ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate. Modulating Adenosine receptor – Mediated effects in various organ systems various enzymes/transporters will increase endogenous adenosine concentrations Receptor Effects on Stimulating the Receptors subtypes A1 Cardiovascular • Slows AV nodal conduction (negative dromotropy) ATP ADP AMP • ↓ heart rate (negative chronotropy) Adenosine kinase 5’ Nucleotidase • ↓ atrial contractility (negative inotropy) Adenosine • ↓ β-adrenergic tone (AMP or Adenosine diffuse extracellularly) • Inhibits pacemaker and L-type calcium currents Nucleoside Nucleoside Transport Renal inhibits transport (Moves adenosine into endothelial cells) • Inhibits release of renin inhibitors • ↑ reabsorption of sodium in proximal convoluted tubule e.g. R75231 Adenosine Deaminase • Vasoconstriction of afferent arteriole - ↓ GFR Inosine CNS Ischemia • ↓ neurotransmitter release Hypoxanthine • Sedation Xanthine oxidase Xanthine dehydrogenase • Anticonvulsant effects Xanthine + Superoxide anions Metabolic • Inhibits lipolysis • ↑ insulin sensitivity There is a growing interest in elucidating the mechanisms A2a Cardiovascular by which adenosine inhibits inflammation. Hence, these • Coronary and peripheral vasodilation inhibitory adenosine receptors (Gi-A1 and A3) and their • Inhibits platelet aggregation downstream signaling pathways are promising targets for A2b Pulmonary newer antiinflammatory therapies. By signalling through the • Vasodilation A2a adenosine receptors, adenosine suppresses the release of [3] • Mast cell release of IL-8 → Potential bronchoconstriction inflammatory mediators, primarily by inhibiting lymphoid or and inß ammation myeloid cells including neutrophils, macrophages, lymphocytes, A3 Pulmonary and platelets. • Mast cell release of allergic mediators → Potential Newer potential therapeutic role of adenosine and its bronchoconstriction receptors AV indicates atrioventricular, GFR, glomerular Þ ltration rate: IL interleukin Bronchial asthma: Adenosine, a primordial signalling molecule, produces a number of physiological and pathophysiological effects in the human body. It has been transport is influenced by changes in glomerular filtration rate shown that stable form of adenosine, i.e. the nucleotide (GFR) and by primary changes in tubular transport. Intrarenal adenosine monophosphate (AMP) induces bronchoconstriction adenosine released by cleavage of ATP, maintains the balance in asthma, but not in normal airways. Following facts convince between energy supply and demand by affecting both of these that adenosine plays a key role in pathophysiology of asthma and processes. In the renal microcirculation, adenosine receptors has an important function in acute bronchoconstrictor [Figure exert control over renal blood flow, GFR, renin release and 2] and airway inflammatory responses in humans. tubuloglomerular feedback.[8] • Adenosine levels are increased in broncho-alveolar- Table 2 Comparison of subtypes Adenosine receptors Receptor Gene Mechanism Agonists Antagonists A1 ADORA1 Gi/o --> cAMP↓ N6-Cyclopentyladenosine Caffeine, Theophylline, 8-Cyclopentyl-1, Inhibition ↓ vesicle release, CCPA, 2’-MeCCPA 3-dimethylxanthine (CPX), ↓ NMDA receptor activity GR 79236, SDZ WAG 994 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), 8-Phenyl 1,3-dipropylxanthine, PSB 36 A2a ADORA2A Gs --> cAMP↑ ATL-146e, CGS-21680, Caffeine, theophylline, istradefylline, SCH-58261, Regadenoson SCH-442,416 ZM-241,385 A2b ADORA2B Gs --> cAMP↑ 5’-N ethylcarboxamidoadenos ne, Theophylline, CVT-6883, MRS-1706, MRS- BAY 60–6583, LUF-5835, LUF-5845. 1754, PSB-603, PSB-0788, PSB-1115 A3 ADORA3 Gi/o --> cAMP↓ 2-(1-Hexynyl)-N methyl adenosine, Theophylline, MRS-1191, MRS-1220, MRS- CF-101 (IB-MECA), 2-Cl-IB-MECA, 1334, MRS-1523, MRS-3777, MRE3008F20, CP-532,903; MRS-3558 PSB-10, PSB-11, VUF-5574 98 Indian J Pharmacol | Jun 2009 | Vol 41 | Issue 3 | 97-105 Manjunath and Sakhare: Adenosine: Newer therapeutic perspective Figure 2: Schematic diagram of the mechanism involved in adenosine-induced bronchoconstriction. Once generated, adenosine activates the adenosine A2b receptors on mast cells. Upon activation of A2b receptors, various inß ammatory mediators that induce bronchoconstriction are released. ADP = adenosine diphosphate: AMP = adenosine monophosphate; ATP = adenosine triphosphate; NT = nucleotidase; NTPD= nucleoside triphosphate diphosphohydrolase. Mast cell ATP ADP NTPDase AMP ATP Adenosine Ecto kinase 5’NTase AR2b Adenosine Adenosine Adenosine Nucleoside (AMP) deaminase transporter Prostanoids, Cytokines leukotriene C4 lonosine Histamine Sensory C fibre nerve Bronchoconstriction Adenosine-producing cell Smooth muscle cells lavage fluid[9] and exhaled breath condensate of patients a serious disease in which the pulmonary vascular resistance with allergic asthma[10] and in the plasma of patients with remains elevated during the neonatal period. It is a clinical exercise-induced asthma.[11] syndrome that may occur in association with
Recommended publications
  • P2Y6 Receptors Regulate CXCL10 Expression and Secretion in Mouse Intestinal Epithelial Cells
    fphar-09-00149 February 26, 2018 Time: 17:57 # 1 ORIGINAL RESEARCH published: 28 February 2018 doi: 10.3389/fphar.2018.00149 P2Y6 Receptors Regulate CXCL10 Expression and Secretion in Mouse Intestinal Epithelial Cells Mabrouka Salem1,2, Alain Tremblay2, Julie Pelletier2, Bernard Robaye3 and Jean Sévigny1,2* 1 Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada, 2 Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada, 3 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium In this study, we investigated the role of extracellular nucleotides in chemokine (KC, MIP- 2, MCP-1, and CXCL10) expression and secretion by murine primary intestinal epithelial cells (IECs) with a focus on P2Y6 receptors. qRT-PCR experiments showed that P2Y6 was the dominant nucleotide receptor expressed in mouse IEC. In addition, the P2Y6 Edited by: ligand UDP induced expression and secretion of CXCL10. For the other studies, we Kenneth A. Jacobson, −=− National Institutes of Health (NIH), took advantage of mice deficient in P2Y6 (P2ry6 ). Similar expression levels of P2Y1, −=− United States P2Y2, P2X2, P2X4, and A2A were detected in P2ry6 and WT IEC. Agonists of Reviewed by: TLR3 (poly(I:C)), TLR4 (LPS), P2Y1, and P2Y2 increased the expression and secretion Fernando Ochoa-Cortes, of CXCL10 more prominently in P2ry6−=− IEC than in WT IEC. CXCL10 expression Universidad Autónoma de San Luis −=− Potosí, Mexico and secretion induced by poly(I:C) in both P2ry6 and WT IEC were inhibited by Markus Neurath, general P2 antagonists (suramin and Reactive-Blue-2), by apyrase, and by specific Universitätsklinikum Erlangen, Germany antagonists of P2Y1, P2Y2, P2Y6 (only in WT), and P2X4.
    [Show full text]
  • Immunosuppression Via Adenosine Receptor Activation by Adenosine
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref RESEARCH ARTICLE elifesciences.org Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells Hiroshi Yamaguchi1, Toshihiko Maruyama2, Yoshihiro Urade2†, Shigekazu Nagata1,3* 1Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 2Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka, Japan; 3Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kyoto, Japan Abstract Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic *For correspondence: snagata@ supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an mfour.med.kyoto-u.ac.jp ecto-5’-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced † Present address: Molecular high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated Sleep Biology Laboratory, that AMP from apoptotic cells suppresses inflammation as a ‘calm down’ signal. WPI-International Institute for DOI: 10.7554/eLife.02172.001 Integrative Sleep Medicine, University of Tsukuba, Ibaraki, Japan Competing interests: The Introduction authors declare that no competing interests exist.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification of C3 As a Therapeutic Target for Diabetic Nephropathy By
    www.nature.com/scientificreports OPEN Identifcation of C3 as a therapeutic target for diabetic nephropathy by bioinformatics analysis ShuMei Tang, XiuFen Wang, TianCi Deng, HuiPeng Ge & XiangCheng Xiao* The pathogenesis of diabetic nephropathy is not completely understood, and the efects of existing treatments are not satisfactory. Various public platforms already contain extensive data for deeper bioinformatics analysis. From the GSE30529 dataset based on diabetic nephropathy tubular samples, we identifed 345 genes through diferential expression analysis and weighted gene coexpression correlation network analysis. GO annotations mainly included neutrophil activation, regulation of immune efector process, positive regulation of cytokine production and neutrophil-mediated immunity. KEGG pathways mostly included phagosome, complement and coagulation cascades, cell adhesion molecules and the AGE-RAGE signalling pathway in diabetic complications. Additional datasets were analysed to understand the mechanisms of diferential gene expression from an epigenetic perspective. Diferentially expressed miRNAs were obtained to construct a miRNA-mRNA network from the miRNA profles in the GSE57674 dataset. The miR-1237-3p/SH2B3, miR-1238-5p/ ZNF652 and miR-766-3p/TGFBI axes may be involved in diabetic nephropathy. The methylation levels of the 345 genes were also tested based on the gene methylation profles of the GSE121820 dataset. The top 20 hub genes in the PPI network were discerned using the CytoHubba tool. Correlation analysis with GFR showed that SYK, CXCL1, LYN, VWF, ANXA1, C3, HLA-E, RHOA, SERPING1, EGF and KNG1 may be involved in diabetic nephropathy. Eight small molecule compounds were identifed as potential therapeutic drugs using Connectivity Map. It is estimated that a total of 451 million people sufered from diabetes by 2017, and the number is speculated to be 693 million by 2045 1.
    [Show full text]
  • Genomic Selection Signatures in Sheep from the Western Pyrenees Otsanda Ruiz-Larrañaga, Jorge Langa, Fernando Rendo, Carmen Manzano, Mikel Iriondo, Andone Estonba
    Genomic selection signatures in sheep from the Western Pyrenees Otsanda Ruiz-Larrañaga, Jorge Langa, Fernando Rendo, Carmen Manzano, Mikel Iriondo, Andone Estonba To cite this version: Otsanda Ruiz-Larrañaga, Jorge Langa, Fernando Rendo, Carmen Manzano, Mikel Iriondo, et al.. Genomic selection signatures in sheep from the Western Pyrenees. Genetics Selection Evolution, BioMed Central, 2018, 50 (1), pp.9. 10.1186/s12711-018-0378-x. hal-02405217 HAL Id: hal-02405217 https://hal.archives-ouvertes.fr/hal-02405217 Submitted on 11 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Ruiz-Larrañaga et al. Genet Sel Evol (2018) 50:9 https://doi.org/10.1186/s12711-018-0378-x Genetics Selection Evolution RESEARCH ARTICLE Open Access Genomic selection signatures in sheep from the Western Pyrenees Otsanda Ruiz‑Larrañaga1* , Jorge Langa1, Fernando Rendo2, Carmen Manzano1, Mikel Iriondo1 and Andone Estonba1 Abstract Background: The current large spectrum of sheep phenotypic diversity
    [Show full text]
  • Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation
    catalysts Article Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation 1, 2 2,3 2 Marco Rabuffetti y, Teodora Bavaro , Riccardo Semproli , Giulia Cattaneo , Michela Massone 1, Carlo F. Morelli 1 , Giovanna Speranza 1,* and Daniela Ubiali 2,* 1 Department of Chemistry, University of Milan, via Golgi 19, I-20133 Milano, Italy; marco.rabuff[email protected] (M.R.); [email protected] (M.M.); [email protected] (C.F.M.) 2 Department of Drug Sciences, University of Pavia, viale Taramelli 12, I-27100 Pavia, Italy; [email protected] (T.B.); [email protected] (R.S.); [email protected] (G.C.) 3 Consorzio Italbiotec, via Fantoli 15/16, c/o Polo Multimedica, I-20138 Milano, Italy * Correspondence: [email protected] (G.S.); [email protected] (D.U.); Tel.: +39-02-50314097 (G.S.); +39-0382-987889 (D.U.) Present address: Department of Food, Environmental and Nutritional Sciences, University of Milan, y via Mangiagalli 25, I-20133 Milano, Italy. Received: 7 March 2019; Accepted: 8 April 2019; Published: 12 April 2019 Abstract: Despite the impressive progress in nucleoside chemistry to date, the synthesis of nucleoside analogues is still a challenge. Chemoenzymatic synthesis has been proven to overcome most of the constraints of conventional nucleoside chemistry. A purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) has been used herein to catalyze the synthesis of Ribavirin, Tecadenoson, and Cladribine, by a “one-pot, one-enzyme” transglycosylation, which is the transfer of the carbohydrate moiety from a nucleoside donor to a heterocyclic base. As the sugar donor, 7-methylguanosine iodide and its 20-deoxy counterpart were synthesized and incubated either with the “purine-like” base or the modified purine of the three selected APIs.
    [Show full text]
  • Revealing 29 Sets of Independently Modulated Genes in Staphylococcus Aureus, Their Regulators, and Role in Key Physiological Response
    Revealing 29 sets of independently modulated genes in Staphylococcus aureus, their regulators, and role in key physiological response Saugat Poudela, Hannah Tsunemotob, Yara Seifa, Anand V. Sastrya, Richard Szubina, Sibei Xua, Henrique Machadoa, Connor A. Olsona, Amitesh Ananda, Joe Poglianob, Victor Nizetc,d, and Bernhard O. Palssona,c,1 aDepartment of Bioengineering, University of California San Diego, La Jolla, CA 92093; bDepartment of Biology, University of California San Diego, La Jolla, CA 92093; cCollaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093; and dSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 Edited by Jeff F. Miller, University of California, Los Angeles, CA, and approved June 1, 2020 (received for review May 6, 2020) The ability of Staphylococcus aureus to infect many different tis- modulated sets of genes (called i-modulons) and calculates the sue sites is enabled, in part, by its transcriptional regulatory net- activity level of each i-modulon in the input expression profile. work (TRN) that coordinates its gene expression to respond to ICA analysis of expression profiles in E. coli have been used to different environments. We elucidated the organization and activ- describe undefined regulons, link strain-specific mutations with ity of this TRN by applying independent component analysis to a changes in gene expression, and understand rewiring of TRN compendium of 108 RNA-sequencing expression profiles from two during adaptive laboratory evolution (ALE) (7, 9). Given the S. aureus clinical strains (TCH1516 and LAC). ICA decomposed the deeper insights it provided into the TRN of E.
    [Show full text]
  • Blood Platelet Adenosine Receptors As Potential Targets for Anti-Platelet Therapy
    International Journal of Molecular Sciences Review Blood Platelet Adenosine Receptors as Potential Targets for Anti-Platelet Therapy Nina Wolska and Marcin Rozalski * Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Science, Medical University of Lodz, 92-215 Lodz, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-504-836-536 Received: 30 September 2019; Accepted: 1 November 2019; Published: 3 November 2019 Abstract: Adenosine receptors are a subfamily of highly-conserved G-protein coupled receptors. They are found in the membranes of various human cells and play many physiological functions. Blood platelets express two (A2A and A2B) of the four known adenosine receptor subtypes (A1,A2A, A2B, and A3). Agonization of these receptors results in an enhanced intracellular cAMP and the inhibition of platelet activation and aggregation. Therefore, adenosine receptors A2A and A2B could be targets for anti-platelet therapy, especially under circumstances when classic therapy based on antagonizing the purinergic receptor P2Y12 is insufficient or problematic. Apart from adenosine, there is a group of synthetic, selective, longer-lasting agonists of A2A and A2B receptors reported in the literature. This group includes agonists with good selectivity for A2A or A2B receptors, as well as non-selective compounds that activate more than one type of adenosine receptor. Chemically, most A2A and A2B adenosine receptor agonists are adenosine analogues, with either adenine or ribose substituted by single or multiple foreign substituents. However, a group of non-adenosine derivative agonists has also been described. This review aims to systematically describe known agonists of A2A and A2B receptors and review the available literature data on their effects on platelet function.
    [Show full text]
  • The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies
    International Journal of Molecular Sciences Article The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies Aleksandra Szopa 1,* , Karolina Bogatko 1, Mariola Herbet 2 , Anna Serefko 1 , Marta Ostrowska 2 , Sylwia Wo´sko 1, Katarzyna Swi´ ˛ader 3, Bernadeta Szewczyk 4, Aleksandra Wla´z 5, Piotr Skałecki 6, Andrzej Wróbel 7 , Sławomir Mandziuk 8, Aleksandra Pochodyła 3, Anna Kudela 2, Jarosław Dudka 2, Maria Radziwo ´n-Zaleska 9, Piotr Wla´z 10 and Ewa Poleszak 1,* 1 Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (K.B.); [email protected] (A.S.); [email protected] (S.W.) 2 Chair and Department of Toxicology, Medical University of Lublin, 8 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (M.H.); [email protected] (M.O.); [email protected] (A.K.) [email protected] (J.D.) 3 Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (K.S.);´ [email protected] (A.P.) 4 Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Sm˛etnaStreet, PL 31–343 Kraków, Poland; [email protected] 5 Department of Pathophysiology, Medical University of Lublin, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland; [email protected] Citation: Szopa, A.; Bogatko, K.; 6 Department of Commodity Science and Processing of Raw Animal Materials, University of Life Sciences, Herbet, M.; Serefko, A.; Ostrowska, 13 Akademicka Street, PL 20–950 Lublin, Poland; [email protected] M.; Wo´sko,S.; Swi´ ˛ader, K.; Szewczyk, 7 Second Department of Gynecology, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland; B.; Wla´z,A.; Skałecki, P.; et al.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Adenosine A1 Receptor-Mediated Activation of Phospholipase C in Cultured Astrocytes Depends on the Level of Receptor Expression
    The Journal of Neuroscience, July 1, 1997, 17(13):4956–4964 Adenosine A1 Receptor-Mediated Activation of Phospholipase C in Cultured Astrocytes Depends on the Level of Receptor Expression Knut Biber,1,2 Karl-Norbert Klotz,3 Mathias Berger,1 Peter J. Gebicke-Ha¨ rter,1 and Dietrich van Calker1 1Department of Psychiatry, University of Freiburg, D-79104 Freiburg, Germany, 2Institute for Biology II, University of Freiburg, D-79104 Freiburg, Germany, and 3Institute for Pharmacology and Toxicology, University of Wu¨ rzburg, D-97078 Wu¨ rzburg, Germany Adenosine A1 receptors induce an inhibition of adenylyl cyclase dependent on the expression level of A1 receptor, and (4) the via G-proteins of the Gi/o family. In addition, simultaneous potentiating effect on PLC activity is unrelated to extracellular stimulation of A1 receptors and of receptor-mediated activation glutamate. of phospholipase C (PLC) results in a synergistic potentiation of Taken together, our data support the notion that bg subunits PLC activity. Evidence has accumulated that Gbg subunits are the relevant signal transducers for A1 receptor-mediated mediate this potentiating effect. However, an A1 receptor- PLC activation in rat astrocytes. Because of the lower affinity of mediated increase in extracellular glutamate was suggested to bg, as compared with a subunits, more bg subunits are re- be responsible for the potentiating effect in mouse astrocyte quired for PLC activation. Therefore, only in cultures with higher cultures. We have investigated the synergistic activation of PLC levels of adenosine A1 receptors is the release of bg subunits by adenosine A1 and a1 adrenergic receptors in primary cul- via Gi/o activation sufficient to stimulate PLC.
    [Show full text]