Suppl Fig 3 Revised2

Total Page:16

File Type:pdf, Size:1020Kb

Suppl Fig 3 Revised2 Cornelissen_FigS3 A sgScr #1 sgTrps1 #1 B C sgScr sgTrps1 sgScr #1 sgTrps1 #1 sgScr #1 sgTrps1 #1 Il15 #1 #2 #1 #3 Irf4 Full medium + + + + - - - - Socs1 Cdkn1a Ccl2 STAT1 DIP mix - - - - + + + + Cd74 Il4ra Selp shNT - - + - + - + - Cd38 Tapbp shSTAT1 Ogfr TRPS1 - + - + - + - + Ptpn1 Sri Psmb2 phospho-STAT5 Oasl1 Uba7 β-actin Ciita Txnip Mthfd2 Myd88 Casp8 β-actin Il7 Cxcl10 STAT2 Zbp1 Ripk2 Psmb9 Itgb7 total-STAT5 Gch1 TRPS1 Ccrl2 Lgals3bp Il6 Psmb8 Parp14 β-actin Ifi35 β-actin Ripk1 Stat3 Arid5b Socs3 Irf7 Trim25 Stat1 D E F Peli1 Stat1 Apol6 Full medium β-casein Pml + + - - Irf9 DIP mix - - + + 1.5 n 1.5 o Trafd1 n i o ) Trim21 s ** BSA *** ) + - + - i 0 s Eif2ak2 0 s 2 e Sspn 2 IFNγ - + - + s r S Parp9 S e p r Bst2 P P x Elf1 p R phospho-STAT5 R 1.0 e 1.0 x Trim14 o o e Isg15 n t t i Ube2l6 1 e d t Xaf1 d s e e Ifi44 β-actin a t a z z i Samd9l i c l l S - Ddx60 a a e Stat2 0.5 β 0.5 m v Ddx58 m e i r r t Ifit2 v o o i total-STAT5 a Jak2 l t n n ( Hif1a ( e a Slc25a28 l R Nod1 e Pim1 β-actin R Bpgm 0.0 0.0 Adar IFNγ Tap1 - - + - - + IFNγ Pfkp Sppl2a - + + DIP mix - + + DIP mix Cmpk2 Rsad2 Oas2 G Vamp8 H Ifih1 Myogenesis Nampt Tdrd7 Psma3 sgScr #1sgTrps1 #1 sgScr #1sgTrps1 #1 Interferon Gamma Response Rtp4 Nub1 BSA KRAS Signaling down Oas3 + + - - B2m IFNγ TNFα signaling via NFκB Casp3 - - + + Pnpt1 Inflammatory Response Il10ra phospho-STAT1 Stat4 Lysmd2 P53 Pathway Dhx58 St3gal5 Interferon Alpha Response Upp1 β-actin Vamp5 UV Response up Lcp2 Ptpn2 March1 Epithelial Mesenchymal Transition Tnfsf10 total-STAT1 Nmi Estrogen Response Late Ifi44l 1700057- Cd86G04Rik Vcam1 β-actin 0 1 2 3 4 5 St8sia4 Bank1 -log10(FDR) Cd40 Cxcl9 Psme1 Ncoa7 Gmpr Lpar6 I DMSO Rnf213 + - Il2rb TSA P2ry14 - + Znfx1 Procr Il18bp STAT1 Batf2 Cmklr1 Icam1 Arl4a Mov10 β-actin Irf2 Herc6 Trim26 Csf1 Auts2 Mettl7b STAT2 Parp12 Ncoa3 Pde4b Pla2g4a Eif4e3 β-actin Tnfaip3 Wars Irf5 H2-DMa Nlrc5 Casp7 Cnp Cd274 Cd47 Irf1 Nfkbia Nfkb1 Il15ra Tmem140 Ptgs2 Tnfaip6 1.5 Tor1b Rbck1 Cxcl11 1.0 Mvp Nup93 0.5 Btg1 Tnfaip2 0.0 Ly6e Isg20 Lap3 (Z-score) -0.5 Expression Samhd1 Ptpn6 -1.0 Fas Isoc1 Psmb10 Supplementary Figure S3. Reduced TRPS1 expression increases interferon signaling thereby affecting normal function of HC11 cells. (A) Heatmap reflecting gene expression at the genes listed in the interferon alpha and interferon gamma gene lists from the Hallmark Gene Sets collection shown in Figure 3D, with all genes annotated. (B) Western blot analysis of STAT1 and STAT2 expression levels in HC11 control and TRPS1 knockout clones. β-actin was used as a loading control. (C) Western blot analysis of phosphorylated and total STAT5 levels in HC11 control and TRPS1 knockout cells transduced with a non- targeting shRNA or a pool of shRNAs targeting Stat1 in full medium or upon treatment with DIP mix. β- actin was used as a loading control. (D) Western blot analysis of phosphorylated and total STAT5 levels in IFNγ (30ng/ml) treated HC11 cells in full medium or upon treatment with DIP mix. β-actin was used as a loading control. (E,F) RT-qPCR analysis of Stat1 (E) and β-casein (Csn2) (F) expression levels upon treatment with DIP mix and/or IFNγ (30ng/ml). Data represent mean+SD, n=2. T-test: *** p<0.001, ** p<0.01. (G) Western blot analysis of phosphorylated and total STAT1 expression levels in HC11 control and TRPS1 knockout cells upon treatment with IFNγ (30ng/ml). β-actin was used as a loading control. (H) Pathway enrichment analysis performed on RNA-seq of HC11 cells treated with or without TSA (300nM), using the MSigDB Hallmark GeneSet Collection (Liberzon et al. 2015). FDR<0.05 was considered significant. The interferon signaling pathways are highlighted in green. (I) Western blot analysis of STAT1 and STAT2 expression levels in HC11 cells treated with or without TSA (300nM). β-actin was used as a loading control. 5 .
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Genome-Wide Prediction of Small Molecule Binding to Remote
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.236729; this version posted August 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Genome-wide Prediction of Small Molecule Binding 2 to Remote Orphan Proteins Using Distilled Sequence 3 Alignment Embedding 1 2 3 4 4 Tian Cai , Hansaim Lim , Kyra Alyssa Abbu , Yue Qiu , 5,6 1,2,3,4,7,* 5 Ruth Nussinov , and Lei Xie 1 6 Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, 10016, USA 2 7 Ph.D. Program in Biochemistry, The Graduate Center, The City University of New York, New York, 10016, USA 3 8 Department of Computer Science, Hunter College, The City University of New York, New York, 10065, USA 4 9 Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, 10016, USA 5 10 Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, 11 Frederick, MD 21702, USA 6 12 Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel 13 Aviv, Israel 7 14 Helen and Robert Appel Alzheimer’s Disease Research Institute, Feil Family Brain & Mind Research Institute, Weill 15 Cornell Medicine, Cornell University, New York, 10021, USA * 16 [email protected] 17 July 27, 2020 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.236729; this version posted August 5, 2020.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification of C3 As a Therapeutic Target for Diabetic Nephropathy By
    www.nature.com/scientificreports OPEN Identifcation of C3 as a therapeutic target for diabetic nephropathy by bioinformatics analysis ShuMei Tang, XiuFen Wang, TianCi Deng, HuiPeng Ge & XiangCheng Xiao* The pathogenesis of diabetic nephropathy is not completely understood, and the efects of existing treatments are not satisfactory. Various public platforms already contain extensive data for deeper bioinformatics analysis. From the GSE30529 dataset based on diabetic nephropathy tubular samples, we identifed 345 genes through diferential expression analysis and weighted gene coexpression correlation network analysis. GO annotations mainly included neutrophil activation, regulation of immune efector process, positive regulation of cytokine production and neutrophil-mediated immunity. KEGG pathways mostly included phagosome, complement and coagulation cascades, cell adhesion molecules and the AGE-RAGE signalling pathway in diabetic complications. Additional datasets were analysed to understand the mechanisms of diferential gene expression from an epigenetic perspective. Diferentially expressed miRNAs were obtained to construct a miRNA-mRNA network from the miRNA profles in the GSE57674 dataset. The miR-1237-3p/SH2B3, miR-1238-5p/ ZNF652 and miR-766-3p/TGFBI axes may be involved in diabetic nephropathy. The methylation levels of the 345 genes were also tested based on the gene methylation profles of the GSE121820 dataset. The top 20 hub genes in the PPI network were discerned using the CytoHubba tool. Correlation analysis with GFR showed that SYK, CXCL1, LYN, VWF, ANXA1, C3, HLA-E, RHOA, SERPING1, EGF and KNG1 may be involved in diabetic nephropathy. Eight small molecule compounds were identifed as potential therapeutic drugs using Connectivity Map. It is estimated that a total of 451 million people sufered from diabetes by 2017, and the number is speculated to be 693 million by 2045 1.
    [Show full text]
  • Genomic Selection Signatures in Sheep from the Western Pyrenees Otsanda Ruiz-Larrañaga, Jorge Langa, Fernando Rendo, Carmen Manzano, Mikel Iriondo, Andone Estonba
    Genomic selection signatures in sheep from the Western Pyrenees Otsanda Ruiz-Larrañaga, Jorge Langa, Fernando Rendo, Carmen Manzano, Mikel Iriondo, Andone Estonba To cite this version: Otsanda Ruiz-Larrañaga, Jorge Langa, Fernando Rendo, Carmen Manzano, Mikel Iriondo, et al.. Genomic selection signatures in sheep from the Western Pyrenees. Genetics Selection Evolution, BioMed Central, 2018, 50 (1), pp.9. 10.1186/s12711-018-0378-x. hal-02405217 HAL Id: hal-02405217 https://hal.archives-ouvertes.fr/hal-02405217 Submitted on 11 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Ruiz-Larrañaga et al. Genet Sel Evol (2018) 50:9 https://doi.org/10.1186/s12711-018-0378-x Genetics Selection Evolution RESEARCH ARTICLE Open Access Genomic selection signatures in sheep from the Western Pyrenees Otsanda Ruiz‑Larrañaga1* , Jorge Langa1, Fernando Rendo2, Carmen Manzano1, Mikel Iriondo1 and Andone Estonba1 Abstract Background: The current large spectrum of sheep phenotypic diversity
    [Show full text]
  • Targeting Lysophosphatidic Acid in Cancer: the Issues in Moving from Bench to Bedside
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IUPUIScholarWorks cancers Review Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside Yan Xu Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA; [email protected]; Tel.: +1-317-274-3972 Received: 28 August 2019; Accepted: 8 October 2019; Published: 10 October 2019 Abstract: Since the clear demonstration of lysophosphatidic acid (LPA)’s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications. Keywords: Autotaxin (ATX); ovarian cancer (OC); cancer stem cell (CSC); electrospray ionization tandem mass spectrometry (ESI-MS/MS); G-protein coupled receptor (GPCR); lipid phosphate phosphatase enzymes (LPPs); lysophosphatidic acid (LPA); phospholipase A2 enzymes (PLA2s); nuclear receptor peroxisome proliferator-activated receptor (PPAR); sphingosine-1 phosphate (S1P) 1.
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Initial, Transient, and Specific Interaction Between G Protein
    Sato T. et al. Medical Research Archives, vol. 6, issue 9, September 2018 Page 1 of 25 ARTICLE Initial, transient, and specific interaction between G protein-coupled receptor and target G protein in parallel signal processing: a case of olfactory discrimination of cancer-induced odors Takaaki Sato1, Mutsumi Matsukawa2, Yoichi Mizutani3, Toshio Iijima4, Hiroyoshi Matsumura5 Authors’ affiliations: 1 Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan 2 Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan 3 Department of Medical Engineering, Faculty of Health Science, Aino University, Osaka, Japan 4 Graduate School of Life Sciences, Tohoku University, Sendai, Japan 5 College of Life Sciences, Ritsumeikan University, Kusatsu, Japan * Corresponding author: Takaaki Sato, Biomedical Research Institute, National Institute of Ad- vanced Industrial Science and Technology, 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan, E-mail: [email protected] Abstract: G protein-coupled receptors (GPCRs) detect and distinguish between various subtypes of extracellular sig- nals, such as neurotransmitters, hormones, light, and odorous chemicals. As determinants for robust and appropriate cellular responses, common and unique features of interactions between GPCRs and their target G proteins provide insights into structure-based drug design for treatment of GPCR-related diseases. Re- cently, we found that the hydrophobic core buried between GPCR helix 8 and TM1–2 is essential for acti- vation of both specific and nonspecific G proteins. Furthermore, the 2nd residue of helix 8 is responsible for initial, transient, and specific interaction with a target G protein. Analysis of human and murine olfactory receptors (ORs) and other class-A GPCRs revealed that several amino acids, such as Glu, Gln, and Asp, are conserved at this position.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Supplemental Figure S1. Distinct difference in expression of 576 sensome genes comparing cortex versus microglia. (A) This heatmap shows all 576 sensome candidate genes ordered by DE and with the left column shows if the gene is present in the “Hickman et al. sensome” Supplemental Figure S2. Mouse sensome and human sensome genes categorized by group. (A) Bar graph showing the number of mouse and human sensome genes per group (Cell-Cell Interactions, Chemokine and related receptors, Cytokine receptors, ECM receptors, Endogenous ligands receptors, sensors and transporters, Fc receptors, Pattern recognition and related receptors, Potential sensors but no known ligands and Purinergic and related receptors). Supplementary Figure S3. Overlap of ligands recognized by microglia sensome (A) Overlap between the ligands of the receptors from respectively human and mouse core sensome was shown using Venn Diagrams. (B) Ligands of human and mouse receptors categorized in groups (Glycoproteins, Cytokines, Immunoglobulin, Amino acids, Carbohydrates, Electrolytes, Lipopeptides, Chemokines, Neuraminic acids, Nucleic acids, Receptors, Lipids, Fatty acids, Leukotrienes, Hormones, Steroids and Phospholipids) and spread of different groups shown as parts of whole again highlighting that the distribution of ligands what the human and mouse sensome genes can sense (Categorization of ligands in Supplementary Table S1). Supplementary Figure S4. Microglia core sensome expression during aging. (A) Two-log fold change of microglia core sensome genes in aging mice derived from Holtman et al. [12]. (B) Accelerated aging model (ERCC1), with impaired DNA repair mechanism, shows changes of microglia core sensome expression [12]. (C) Microglia core sensome expression during aging in human derived from Olah et al.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Identification of P2RY13 As an Immune- Related Prognostic Biomarker in Lung Adenocarcinoma: a Public Database-Based Retrospective Study
    Identification of P2RY13 as an immune- related prognostic biomarker in lung adenocarcinoma: A public database-based retrospective study Jiang Lin, Chunlei Wu, Dehua Ma and Quanteng Hu Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province, Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China ABSTRACT Background. Lung adenocarcinoma (LUAD) is the leading histological subtype of non- small cell lung cancer (NSCLC). Methods. In the present study, the gene matrixes of LUAD were downloaded from The Cancer Genome Atlas to infer immune and stromal scores with the `Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data' (ESTIMATE) algorithm and identified immune-related differentially expressed genes (DEGs) between the high- and low-stromal/immune score groups. Next, all DEGs were subjected to univariate Cox regression and survival analyses to screen out prognostic biomarkers in the tumor microenvironment (TME), and were validated in the Gene Expression Omnibus database. Single-sample gene set enrichment analysis (ssGSEA) was performed to assess the level of tumor-infiltrating immune cells (TIICs) and immune functions, and GSEA was used to identified pathways altered by prognostic biomarkers. Results. Survival analysis showed that LUAD in the high-immune and stromal score group had a better clinical prognosis. A total of 303 immune-related DEGs were detected. Univariate Cox regression and survival analyses revealed that P2Y purinoceptor 13 (P2RY13) was a favorable factor for the prognosis of LUAD. ssGSEA Submitted 16 November 2020 and Spearman correlation analysis demonstrated that P2RY13 was highly correlated Accepted 31 March 2021 with various TIICs and immune functions. Several immune-associated pathways were Published 5 May 2021 enriched between the high- and low-expression P2RY13 groups.
    [Show full text]