Chapter-2 Semiconcuctors Diodes & Transistors

Total Page:16

File Type:pdf, Size:1020Kb

Chapter-2 Semiconcuctors Diodes & Transistors Semiconcuctors and Diodes & Transistors 1 Chapter-2 Semiconcuctors Diodes & Transistors Contents Semiconcuctors and Diodes: Energy Band of Insulators, Conductors and Semi Conductors Intrinsic and extrinsic semiconductors. PN junction diode, barrier potential, V-I characteristics. Special Purpose Diodes: Zener diode, Varactor diodes ,Light Emitting Diodes (LEDs),photo diodes, Solar cell. Specification parameters of diodes and numbering. Bipolar Junction Transistors: Structure, typical doping, Principle of operation,Detailed study of input and output characteristics of common emitter configuration,Transistor specifications. 2.1 Introduction A semiconductor material is one whose electrical properties lie in between those of insulators and good conductors. Examples are: germanium and silicon. In terms of energy bands, semiconductors can be defined as those materials which have almost an empty conduction band and almost filled valence band with a very narrow energy gap (of the order of 1 eV) separating the two. Some materials are intrinsic semiconductors. An intrinsic semiconductor is one which is made of the semiconductor material in its extremely pure form. The semiconducting properties occur in these materials naturally. However, most of the semiconducting materials used in electronics are extrinsic. Those intrinsic semiconductors to which some suitable impurity or doping agent has been added in extremely small amounts are called extrinsic or impurity semiconductors. Depending on the type of doping material used, extrinsic semiconductors can be sub-divided in to N-type and P-type semiconductors. The p-n junction is a homojunction between a p-type and an n-type semiconductor. It acts as a diode, which can serve in electronics as a rectifier, logic gate, voltage regulator (Zener diode), switching or tuner (varactor diode); and in optoelectronics as a light-emitting diode (LED), photodiode or solar cell. In a relatively simplified view of semiconductor materials, we can envision a semiconductor as having two types of charge carriers- holes and free electrons which travel in opposite directions when the semiconductor is subject to an external electric field, giving rise to a net flow of current in the direction of the electric field. Muhammed Riyas A.M,Assistant Professor,Dept. of ECE,MCET Pathanamthitta Semiconcuctors and Diodes & Transistors 2 2.2 Semi Conductors and Junction Diodes The electrical properties of a material depend largely upon how tightly outer electrons with in the atoms of that material are bound to the central nucleus. On the basis of this, materials can be classified in to the following three groups. Conductors Insulators Semi conductors Material in which the electrons are loosely bound to the central nucleus is called conductor.In the conductor electrons are free to drift around the material at random from one atom to another. Examples: Copper, Aluminium, Silver etc. Material in which the outer electrons are tightly bound to the nucleus is called insulator. There are no free electrons in insulator to move around the material. Examples: PVC, Rubber, Wood etc. Semi conductors are those materials their conductivity lies in between the conductivity of conductors and insulators and are called Semi conductors. Examples: Germanium, Silicon, Carbon etc. As per the rule of octate, the electrical properties of materials can again be defined on the basis of valance electrons (the electrons in the outer most orbits) numbers. If the number of valance electrons is less than 4, the material is generally called conductor. Instead of accepting electrons, it is easier to donate electrons to fill the outer sub shell as 8. If the number of valance electrons is more than 4, the material is generally called insulator. Instead of donating electrons, it is easier to accept lesser electrons to fill the outer sub shell. If the number of valance electrons is equal to 4, the material is generally called semi conductor. Here the probability of donating and accepting electrons is equal. 2.2.1 Energy Bands: In a single isolated atom, the electrons in the any orbit possess a definite energy. However an atom in solid is greatly influenced by the closely packed neighboring atoms. The electrons of the outer sub shell are shared by more than one atom in solid, the energy levels of outer shell electrons are changed considerably. Muhammed Riyas A.M,Assistant Professor,Dept. of ECE,MCET Pathanamthitta Semiconcuctors and Diodes & Transistors 3 Because of this, electrons in the same shell have a range of energies rather than a single energy. This range of energy is known as energy bands. The figure shows the basic concept of energy bands in solid. The electrons in the first orbit have range of energy and form the 1st energy band. In the same way second orbit electrons form the 2nd energy band; third orbit electrons form the 3rd energy band and so on. The following are the more important energy bands. Valance Band Valance band in a solid is the energy band possessed by the valance electrons. Under normal condition valance band has the electrons of highest energy. Depending on materials this band may be filled completely or partially. Conduction Band The energy band which possesses the conduction electrons in a solid is called Conduction Band. In metals, the valance electrons are loosely attached to the nucleus and they can be easily detached. These electrons are called free electrons or conduction electrons. They are responsible for the conduction of current through the material. The current conduction is not possible, if there are no free electrons in the conduction band. The gap between the valance band and conduction band is called forbidden energy gap. The width of energy gap represent, how stronger the valance electrons are bonded to the nucleus. The greater the gap more tightly the valance electrons are bonded to the nucleus. To make valance electron free, an external energy equal to the forbidden energy gap must be supplied to lift the electrons from the valance band to the conduction band. The forbidden energy gap is usually expressed in terms of electron volt (eV). Muhammed Riyas A.M,Assistant Professor,Dept. of ECE,MCET Pathanamthitta Semiconcuctors and Diodes & Transistors 4 2.2.1.2 Energy Band of Insulators, Conductors and Semi Conductors: The electrical behavior of solid can be explained with the help of energy bands. Insulators Fig (a) shows the energy band diagram of insulators. Here the valance band is full while the conduction band is empty. More over the energy gap between valance band and conduction band is very large (15 eV).Therefore a very high electric field is required to lift the valance electrons to the conduction band. Due to this reason the electrical conductivity of insulator is extremely small and can be regarded as zero under normal condition. Conductors In the energy band diagram of conductors, there is no forbidden energy gap between the valance band and the conduction band .The two bands actually overlap as shown in fig(b).It indicates that, the valance band energies are the same as the conduction band energies and it is very easy for a valance electron to become a conduction electron. Therefore without supplying additional energy these materials can have a large number of free electrons and act as good conductors. Muhammed Riyas A.M,Assistant Professor,Dept. of ECE,MCET Pathanamthitta Semiconcuctors and Diodes & Transistors 5 . Semi Conductors In the case of semi conductors, the valance band is almost filled and conduction band is empty. But the forbidden energy gap is very small (1 eV) as shown in fig(c).There fore comparatively a smaller electric field (smaller than required in the case of insulator but greater than conductor) is required to lift the valance electrons to the conduction band. Thus the conductivity of semiconductor lies between a conductor and insulator. 2.2.2 Intrinsic Semi Conductor: A semi conductor in its purest form is known as intrinsic semi conductor. To form molecules of matters, the atoms in every element are held together by the bonding action of valance electrons. Each atom has the tendency to fill its outer most shell by acquiring eight electrons in it. In the case of an intrinsic semiconductor such as Ge or Si, it has only four electrons in its outer shell of its atom. To fill the shell as eight it requires four electrons more. This is acquired by forming bond through sharing one valance electron from each of the neighboring atoms. Such bonds are called Co-valent bond. Thus in semi-conductors the atoms are Muhammed Riyas A.M,Assistant Professor,Dept. of ECE,MCET Pathanamthitta Semiconcuctors and Diodes & Transistors 6 arranged themselves in a uniform three dimensional pattern, so that each atom is surrounded by four atoms. This orderly pattern is known as crystal. Figure shows a two dimensional symbolic representation of silicon crystal. Here each of the valance electrons of silicon atom is shared by one of its four nearest neighbors to form covalent bond. At this state all the valance electron within the crystal are tightly bond to the parent atoms and no free electrons are available to cause electrical conduction. Therefore at absolute zero temperature, intrinsic semi conductor act as a perfect insulator. Due to temperature, covalent bond with in an intrinsic semi conductor will break and free electrons and holes are produced. This process is called electron hole pair generation. The number of free electrons is equal to the number of holes. These free electrons and holes moves in the crystal in a random manner. If an electron meeting a hole in a broken covalent bond and covalent bond is re-established. This process is called electron hole recombination. 2.2.3 Extrinsic Semi Conductor: The conductivity of the intrinsic semiconductor can be increased by adding small amount of impurities. The process of adding impurities to the intrinsic (pure) semiconductor is called doping.
Recommended publications
  • Schottky Diodes Selection Guide
    SCHOTTKY DIODES ( HOT - CARRIER ) pag A 1 Schottky diodes selection guide For HIGH SENSITIVITY , ZERO-BIAS or LOW BARRIER applications --- for lab detectors as RF detector with sweep generator --- RF fields detector, electromagnetic pollution, TAG , etc… --- passive or active mobile phones and bugs detector diode TSS Glass SMD Ceramic or special (tangential sensitivity) case case case HSMS 2850 - 2851 -59 dBm @ 2 GHz SMS 7630 -55 dBm @ 10 GHz these are the much sensitive diodes at usable up to 18 GHz ZERO BIAS -53 dBm @ 2 GHz ND 4991 - 1SS276 DDC2353 -55 dBm @ 6 GHz LOW BARRIER up to 20 GHz from -54 dBm to -52 dBm all BAT 15… types are LOW BARRIER up to 24 GHz depending on type high sensitivity vatious types available -56 dBm @ 2 GHz with bias HP 5082-2824 HSMS.282…series low barrier, up to millimeter freq. beam lead version version with leads of the famous 1N821 point-contact 1N21 - 23 silicon , up to 5 GHz NOTE : high sensitivity silicon or germanium diodes for detectors are available too, see VARIOUS DIODES for : RECEIVING MIXERS - RF DETECTORS - SAMPLING freq. config. glass case SMD or plastic case ceramic case up to 500 MHz BAT 42 - 43 - 46 - 48 - 85 - 86 BAS 40-…- BAT 64-.... 5082.2800 - BAT 45 - 82 - 83 single HSMS 28.... , BAT 68 up to HSCH 1001 2 GHz pair 5082.2804 BAS 70... , HSMS 28... quad 5082.2836 ND 487C1-3R 5082.2810, 2811, 2817 2824, up to HSMS 2810 , 2820 single 2835, 2900, MA4853 ND4991 BAT 17 , BAT 68 3 - 5 1SS154 ,BA 481, QSCH 5374 pair 5082.2826, 2912 HSMS 28….
    [Show full text]
  • Special Diodes 2113
    CHAPTER54 Learning Objectives ➣ Zener Diode SPECIAL ➣ Voltage Regulation ➣ Zener Diode as Peak Clipper DIODES ➣ Meter Protection ➣ Zener Diode as a Reference Element ➣ Tunneling Effect ➣ Tunnel Diode ➣ Tunnel Diode Oscillator ➣ Varactor Diode ➣ PIN Diode ➣ Schottky Diode ➣ Step Recovery Diode ➣ Gunn Diode ➣ IMPATT Diode Ç A major application for zener diodes is voltage regulation in dc power supplies. Zener diode maintains a nearly constant dc voltage under the proper operating conditions. 2112 Electrical Technology 54.1. Zener Diode It is a reverse-biased heavily-doped silicon (or germanium) P-N junction diode which is oper- ated in the breakdown region where current is limited by both external resistance and power dissipa- tion of the diode. Silicon is perferred to Ge because of its higher temperature and current capability. As seen from Art. 52.3, when a diode breaks down, both Zener and avalanche effects are present although usually one or the other predominates depending on the value of reverse voltage. At reverse voltages less than 6 V, Zener effect predominates whereas above 6 V, avalanche effect is predomi- nant. Strictly speaking, the first one should be called Zener diode and the second one as avalanche diode but the general practice is to call both types as Zener diodes. Zener breakdown occurs due to breaking of covalent bonds by the strong electric field set up in the depletion region by the reverse voltage. It produces an extremely large number of electrons and holes which constitute the reverse saturation current (now called Zener current, Iz) whose value is limited only by the external resistance in the circuit.
    [Show full text]
  • Thermionic and Gaseous State Diodes
    THERMIONIC AND GASEOUS STATE DIODES Thermionic and gaseous state (vacuum tube) diodes Thermionic diodes are thermionic-valve devices (also known as vacuum tubes, tubes, or valves), which are arrangements of electrodes surrounded by a vacuum within a glass envelope. Early examples were fairly similar in appearance to incandescent light bulbs. In thermionic valve diodes, a current through the heater filament indirectly heats the cathode, another internal electrode treated with a mixture of barium and strontium oxides, which are oxides of alkaline earth metals; these substances are chosen because they have a small work function. (Some valves use direct heating, in which a tungsten filament acts as both heater and cathode.) The heat causes thermionic emission of electrons into the vacuum. In forward operation, a surrounding metal electrode called the anode is positively charged so that it electrostatically attracts the emitted electrons. However, electrons are not easily released from the unheated anode surface when the voltage polarity is reversed. Hence, any reverse flow is negligible. For much of the 20th century, thermionic valve diodes were used in analog signal applications, and as rectifiers in many power supplies. Today, valve diodes are only used in niche applications such as rectifiers in electric guitar and high-end audio amplifiers as well as specialized high-voltage equipment. Semiconductor diodes A modern semiconductor diode is made of a crystal of semiconductor like silicon that has impurities added to it to create a region on one side that contains negative charge carriers (electrons), called n-type semiconductor, and a region on the other side that contains positive charge carriers (holes), called p-type semiconductor.
    [Show full text]
  • CHAPTER 11 HPD (Hybrid Photo-Detector)
    CHAPTER 11 HPD (Hybrid Photo-Detector) HPD (Hybrid Photo-Detector) is a completely new photomultiplier tube that incorporates a semiconductor element in an evacuated elec- tron tube. In HPD operation, photoelectrons emitted from the photo- cathode are accelerated to directly strike the semiconductor where their numbers are increased. Features offered by the HPD are extremely little fluctuation during the multiplication, high electron resolution, and excellent stability. © 2007 HAMAMATSU PHOTONICS K. K. 210 CHAPTER 11 HPD (Hybrid Photo-Detector) 11.1 Operating Principle of HPDs As shown in Figure 11-1, an HPD consists of a photocathode for converting light into photoelectrons and a semiconductor element (avalanche diode or AD) which is the target for "electron bombardment" by photo- electrons. The HPD operates on the following principle: when light enters the photocathode, photoelectrons are emitted according to the amount of light; these photoelectrons are accelerated by a high-intensity electric field of a few kilovolts to several dozen kilovolts applied to the photocathode; they are then bombarded onto the target semiconductor where electron-hole pairs are generated according to the incident energy of the photoelectrons. This is called "electron bombardment gain". A typical relation between this electron bom- bardment gain and the photocathode supply voltage is plotted in Figure 11-2. In principle, this electron bom- bardment gain is proportional to the photocathode supply voltage. However, there is actually a loss of energy in the electron bombardment due to the insensitive surface layer of the semiconductor, so their proportional relation does not hold at a low voltage. In Figure 11-2, the voltage at a point on the voltage axis (horizontal axis) where the dotted line intersects is called the threshold voltage [Vth].
    [Show full text]
  • (Or Varicap) Diode
    Radio and Electronics Cookbook 20 The varactor (or varicap) diode Introduction Many of the circuits for receivers and transmitters presented in this series rely upon the variable capacitor as a means of tuning. Another method of varying capacitance (without any moving parts) is provided by the varactor diode, sometimes called a varicap diode. This is a component which changes its capacitance as the voltage across it is varied. The details Figure 1 shows how a varactor diode might be connected to demonstrate its operation. Its symbol is that of an ordinary diode, with a capacitor symbol next to it. A variable voltage is applied across it in such a way that the diode is reverse-biased. This means that virtually no current passes through it – the positive voltage is applied to the cathode. Varactors are cheaper than variable capacitors, and they are tiny in comparison, very suitable for today’s miniature circuits. If A and B were connected across the tuning coil in a simple receiver (with a series capacitor to block the DC from the battery reaching the coil), the tuning operation would be accomplished by turning the knob on the 10 kilohm potentiometer. Varactors are available with different values, from less than 20 picofarad (pF) for VHF applications to 500 pF for medium-wave radios. They are Figure 1 The capacitance of the varicap diode (between A and B) increases as the voltage is reduced, using the variable resistor 64 A portable radio for medium waves tuned usually by voltages between 2 V and 9 V. For a real application of varactors, you should consult the circuit diagram of the Yearling 20 metre receiver, elsewhere in this book.
    [Show full text]
  • J. W. Miller Company the Coil Forum March 1960
    J. W. MILLER COMPANY-LOS ANGELES, CALIFORNIA-VOLUME 1, NUMBER 1 MARCH 1960 A TRANSISTOR FM RECEIVER With this issue, the J. W. Miller Company inaugurates a new publication devoted to the experimenter. Although coils, and their associated com­ ponents, are our business, we at Miller would like to supply our customers with timely information on circuits, theory to assist with your work or experiments, and data on how to select and use our coils wisely. We believe you will agree that THE COIL FORUM is indeed an appropriate nam~. www.SteamPoweredRadio.Com J. W. M I L L E R C O M P A N Y Recent advances in the state of the semiconductor from the collector back to the base through capacitor art have made it possible to construct a transistor Cl2 and the stage oscillates. Coil L3, along with the FM receiver which performs every bit as well as a tuning capacitor and circuit capacity, determines the vacuum tube version. VHF equipment places very frequency of oscillation, which is always 10. 7 me. strict demands on the transistors. They must be above the incoming signal frequency. Resistors R9 capable of constant amplification over the entire and Rl 1 provide bias and RIO is used for d.c. degener­ band being received, create a minimum of circuit ation. Transistor QlO and diode Xl are part of the drift, and provide maximum gain with a minimum automatic frequency control system and will be of stages. ' discussed later. All tuned circuits in the "front end" are tracked with a three-gang variable capacitor The excellent performance of the receiver to be (C3, 3-lOmmfd.) described is an outgrowth of the work done by Philco Corporation on their transistor "Safari" tele­ The i.f.
    [Show full text]
  • Avalanche Diode Detector Unit
    A large area avalanche photodiode detector system with USB interface 1. Introduction When measuring low light levels, a vacuum tube photomultiplier tube or some form of solid-state detector which relies on multiplication (e.g. Avalanche diode, Geiger avalanche diode, silicon photomultiplier) is normally used. Vacuum tube photomultipliers have the advantage that a large photosensitive area is available, in contrast to most solid-state devices, which, in general, allow detection over a small area. Avalanche photodiodes make excellent detectors, and here we describe a detector assembly developed around a large area device, 10 mm diameter. This detector unit is designed to detect low light levels and is based around a detector module, commercially available from AP Technology, (www.advancedphotonix.com) part# 197-70-74-661. The detector module is supplied as just that, a small box with flying leads, requiring appropriate low voltage dc power supplies. It does include a thermoelectric cooler and the avalanche diode’s high voltage bias supply. Here we describe how this module was integrated in a photo-detection subsystem, powered from the mains and controlled either from an internal potentiometer or through a computer interface. The completed unit can operate as a stand-alone, manually adjusted unit and powered from a +5V / 2.5A power supply, providing an analogue output in the range 0 to +1V into a 50 Ω (or greater) load over a typical 10 MHz bandwidth. It can also operate as a USB-controlled device, where the detector gain can be remotely set and where output readings and operating conditions can be monitored.
    [Show full text]
  • Capacitor & Capacitance
    CAPACITOR & CAPACITANCE - TYPES Capacitor types Listed by di-electric material. A 12 pF 20 kV fixed vacuum capacitor Vacuum : Two metal, usually copper, electrodes are separated by a vacuum. The insulating envelope is usually glass or ceramic. Typically of low capacitance - 10 - 1000 pF and high voltage, up to tens of kilovolts, they are most often used in radio transmitters and other high voltage power devices. Both fixed and variable types are available. Vacuum variable capacitors can have a minimum to maximum capacitance ratio of up to 100, allowing any tuned circuit to cover a full decade of frequency. Vacuum is the most perfect of dielectrics with a zero loss tangent. This allows very high powers to be transmitted without significant loss and consequent heating. Air : Air dielectric capacitors consist of metal plates separated by an air gap. The metal plates, of which there may be many interleaved, are most often made of aluminium or silver-plated brass. Nearly all air dielectric capacitors are variable and are used in radio tuning circuits. Metallized plastic film: Made from high quality polymer film (usually polycarbonate, polystyrene, polypropylene, polyester (Mylar), and for high quality capacitors polysulfone), and metal foil or a layer of metal deposited on surface. They have good quality and stability, and are suitable for timer circuits. Suitable for high frequencies. Mica: Similar to metal film. Often high voltage. Suitable for high frequencies. Expensive. Excellent tolerance. Paper: Used for relatively high voltages. Now obsolete. Glass: Used for high voltages. Expensive. Stable temperature coefficient in a wide range of temperatures. Ceramic: Chips of alternating layers of metal and ceramic.
    [Show full text]
  • Products Catalog Index
    Products Catalog Index PART NO. MANUFACTURER DESCRIPTION URL PRICE 2N5116 National Semiconductor Pro-Electron Transistor Datasheets http://www.searchdatasheet.com/2N5116-datasheet.html QUOTE 2N5116 National Semiconductor JFET SWitches/Choppers http://www.searchdatasheet.com/2N5116-datasheet.html QUOTE 2N5116 Philips Semiconductors / P-Channel JFET http://www.searchdatasheet.com/2N5116-datasheet.html QUOTE NXP Semiconductors 2N5116 Siliconix FET Design Catalogue 1979 http://www.searchdatasheet.com/2N5116-datasheet.html QUOTE 2N5116 Siliconix MOSPOWER Design Data Book 1983 http://www.searchdatasheet.com/2N5116-datasheet.html QUOTE 2N5116 Vishay Telefunken TRANS JFET P-CH 25MA 3TO-206AA http://www.searchdatasheet.com/2N5116-datasheet.html QUOTE 2N5135 Central Semiconductor NPN EPOXY - SWITCHING AND http://www.searchdatasheet.com/2N5135-datasheet.html QUOTE GENERAL PURPOSE 2N5135 Continental Device India Semiconductor Device Data Book 1996 http://www.searchdatasheet.com/2N5135-datasheet.html QUOTE Limited 2N5135 Fairchild Semiconductor Full Line Condensed Catalogue 1977 http://www.searchdatasheet.com/2N5135-datasheet.html QUOTE 2N5135 Motorola Motorola Semiconductor Datasheet Library http://www.searchdatasheet.com/2N5135-datasheet.html QUOTE 2N5135 National Semiconductor NPN Transistors http://www.searchdatasheet.com/2N5135-datasheet.html QUOTE 2N5135 National Semiconductor General Purpose Amplifiers and Switches http://www.searchdatasheet.com/2N5135-datasheet.html QUOTE 2N5135 National Semiconductor Pro-Electron Transistor Datasheets http://www.searchdatasheet.com/2N5135-datasheet.html
    [Show full text]
  • Products Catalog Index
    Products Catalog Index PART NO. MANUFACTURER DESCRIPTION URL PRICE DFLR1400-7 DIODES DFLR1400 Series 1 A http://www.searchdatasheet.com/DFLR1400-7-datasheet.html QUOTE INCORPORATED 400 V Surface Mount Glass Passivated Rectifier-POWERDI-123 GRM155R61C474KE01D MURATA 0402 0.47 uF 16 V ±10% http://www.searchdatasheet.com/GRM155R61C474KE01D-datasheet.html QUOTE Tolerance X5R SMT Multilayer Ceramic Capacitor GRM155R60J102KA01D MURATA 0402 1 nF 6.3 V ±10% http://www.searchdatasheet.com/GRM155R60J102KA01D-datasheet.html QUOTE Tolerance X5R SMT Multilayer Ceramic Capacitor GRM155R61C222KA01D MURATA 0402 2.2 nF 16 V ±10% http://www.searchdatasheet.com/GRM155R61C222KA01D-datasheet.html QUOTE Tolerance X5R SMT Multilayer Ceramic Capacitor GRM155R71C102KA01D MURATA 0402 1 nF 16 V ±10% http://www.searchdatasheet.com/GRM155R71C102KA01D-datasheet.html QUOTE Tolerance X7R SMT Multilayer Ceramic Capacitor GRM1885C1H1R5CA01D MURATA 0603 1.5 pF 50 V ±0.25 http://www.searchdatasheet.com/GRM1885C1H1R5CA01D-datasheet.html QUOTE pF Tolerance C0G SMT Multilayer Ceramic Capacitor GRM155R60J334KE01D MURATA 0402 0.33 uF 6.3 V http://www.searchdatasheet.com/GRM155R60J334KE01D-datasheet.html QUOTE ±10% Tolerance X5R SMT Multilayer Ceramic Capacitor GRM155R71H222JA01D MURATA 0402 2.2 nF 50 V ±5% http://www.searchdatasheet.com/GRM155R71H222JA01D-datasheet.html QUOTE Tolerance X7R SMT Multilayer Ceramic Capacitor GRM155R61A103KA01D MURATA 0402 10 nF 10 V ±10% http://www.searchdatasheet.com/GRM155R61A103KA01D-datasheet.html QUOTE Tolerance X5R SMT Multilayer Ceramic
    [Show full text]
  • Circuits for High-Efficiency Avalanche-Diode Oscillators
    1060 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-17, NO. 12, DECEMBER 1969 Circuits for High-Efficiency Avalanche- Diode Oscillators W. J. EVANS Absfract—This paper describes and analyzes the circuits which have II. THE TRAPATT MODE been used successfully for TRAPATT oscillator studies. The results lead In order to understand the operation of high-efficiency to a better understanding of the TRAPATT oscillator and yield a simple model of the oscillator which is useful for circuit design. oscillators, it is necessary to understand what happens when The circuit characteristics of ms experimental TRAPATT oscillator large RF voltage swings exist across an IMPATT diode. are determined from measurements on the circuits and from equivalent Therefore, this section will begin with a review of the large- circuit model calculations. The following conclusions can be drawn from signal behavior of an IMPATT oscillator. the analysis. First, the avalanche diode requires sufficient capacitance near Fig. l(a) is a plot of the field profile and carrier densities the diode to sustain the high-current state required for TRAPATT oper- in an oscillating IMPATT diode at a particular point in ation. Seeondly, at a distance from the diode corresponding to approx. time. The profile shown here is for a 6-GHz n+-p-p+ epi- inmtely one half-wavelength at the TRAPATT frequency the transmission taxial germanium diode [4]. The plots are made for the par- ~me containing the diode should be terminated by a low-pass filter. The ticular point in the RF voltage and current waveforms indi- function of the filter is to pass the TRAPATT frequency and to provide a cated by the squares in Fig.
    [Show full text]
  • Noise in Avalanche Transit-Time Devices
    1674 PROCEEDINGS OF THE IEEE, VOL. 59, NO. 12, DECEMBER 1971 for receiving arrays,” ZEEE Trans. Antennas Propagat. (Commun.), [22] C. J. Drane, Jr., and J. F. McIlvenna, “Gain maximization and VO~.AP-14, NOV.1966, pp. 792-794. controlled null placement simultaneously achievedin aerial array [9] A. I. Uzkov, ‘‘An approach to the problem of optimum directive patterns,” Air Force Cambridge Res. Labs., Bedford,Mass., antenna design,” C. R. Acad. Sci. USSR., vol. 35, 1946, p. 35. Rep. AFCRL-69-0257, June 1969. [lo] A. Bloch, R. G. Medhurst, and S. D. Pool, “A new approach to [23] R. F. Hamngton, “Matrixmethods for field problems,” Proc. the design of superdirective aerial arrays,” Proc. Znst. Elec. Eng., ZEEE, vol. 55, Feb. 1967, pp. 136-149. VO~.100, Sept. 1953, pp. 303-314. [24] J. A. Cummins,“Analysis of a circulararray of antennas by [ll] M.Uzsoky and L. Solymar,“Theory of superdirectivelinear matrix methods,” Ph.D. dissertation, Elec. Eng. Dept., Syracuse arrays,” Acta Phys. (Budapt), vol. 6, 1956, pp. 185-204. University, Syracuse,N. Y., Dec. 1968. [12] C. T. Tai, “The optimum directivity of uniformly spaced broad- [25] B. J. Strait and K. Hirasawa, “On radiation and scattering from sidearrays ofdipoles,” ZEEE Trans. Antennas Propgat., vol. arrays of wire antennas,” Proc. Nut. Elec. Con$, vol. 25, 1969. AP-12, July 1964, pp. 447-454. [26] A.T. Adams and B. J. Strait, “Modernanalysis methods for [13] D. K. Cheng and F. I. Tseng, “Gain optimization for arbitrary EMC,” ZEEEIEMC Symp. Rec., July 1970, pp. 383-393. antenna arrays,’’ ZEEE Trans.
    [Show full text]