2. Desertification of the Mesopotamian Plain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Babylonian Populations, Servility, and Cuneiform Records
Journal of the Economic and Social History of the Orient 60 (2017) 715-787 brill.com/jesh Babylonian Populations, Servility, and Cuneiform Records Jonathan S. Tenney Cornell University [email protected] Abstract To date, servility and servile systems in Babylonia have been explored with the tradi- tional lexical approach of Assyriology. If one examines servility as an aggregate phe- nomenon, these subjects can be investigated on a much larger scale with quantitative approaches. Using servile populations as a point of departure, this paper applies both quantitative and qualitative methods to explore Babylonian population dynamics in general; especially morbidity, mortality, and ages at which Babylonians experienced important life events. As such, it can be added to the handful of publications that have sought basic demographic data in the cuneiform record, and therefore has value to those scholars who are also interested in migration and settlement. It suggests that the origins of servile systems in Babylonia can be explained with the Nieboer-Domar hy- pothesis, which proposes that large-scale systems of bondage will arise in regions with * This was written in honor, thanks, and recognition of McGuire Gibson’s efforts to impart a sense of the influence of aggregate population behavior on Mesopotamian development, notably in his 1973 article “Population Shift and the Rise of Mesopotamian Civilization”. As an Assyriology student who was searching texts for answers to similar questions, I have occasionally found myself in uncharted waters. Mac’s encouragement helped me get past my discomfort, find the data, and put words on the page. The necessity of assembling Mesopotamian “demographic” measures was something made clear to me by the M.A.S.S. -
What the Pig Ate: a Microbotanical Study of Pig Dental Calculus from 10Th–3Rd Millennium BC Northern Mesopotamia
JASREP-00256; No of Pages 9 Journal of Archaeological Science: Reports xxx (2015) xxx–xxx Contents lists available at ScienceDirect Journal of Archaeological Science: Reports journal homepage: www.elsevier.com/locate/jasrep What the pig ate: A microbotanical study of pig dental calculus from 10th–3rd millennium BC northern Mesopotamia Sadie Weber ⁎, Max D. Price Harvard University, Department of Anthropology, 11 Divinity Avenue, Cambridge, MA 02138, United States article info abstract Article history: One of the main questions that zooarcheologists have attempted to answer in their studies of ancient Received 15 February 2015 agropastoral economies relates to animal diet. Starch granules and phytoliths, which derive from the plant Received in revised form 3 November 2015 foods consumed over the course of an animal's life, become imbedded in dental calculus and thus offer direct Accepted 12 November 2015 clues about diet. In this paper, we investigate pig diet with an eye toward understanding husbandry strategies Available online xxxx in northern Mesopotamia, the region in which pigs were first domesticated, from the Epipaleolithic though the Keywords: Early Bronze Age. Our data reveal that pigs consumed an assortment of plant foods, including grasses, wild tubers, fi Microbotanical analysis acorns, and domestic cereals. Although poor preservation plagued the identi cation of plant microremains at Dental calculus Epipaleolithic (10th millennium cal. BC) Hallan Çemi, the identification of a diet based on tubers and grasses Pig husbandry matches models of wild boar diet. Pigs at 6th millennium Domuztepe, 5th millennium Ziyadeh, and 4th millen- nium Hacinebi consumed cereals, particularly oats (Avena sp.) and barley (Hordeum sp.), as well as wild plant food resources. -
Neo-Assyrian Period 934–612 BC the Black Obelisk
Map of the Assyrian empire up to the reign of Sargon II (721–705 BC) Neo-Assyrian period 934–612 BC The history of the ancient Middle East during the first millennium BC is dominated by the expansion of the Assyrian state and its rivalry with Babylonia. At its height in the seventh century BC, the Assyrian empire was the largest and most powerful that the world had ever known; it included all of Mesopotamia, Syria, Palestine, and Egypt, as well as parts of Anatolia and Iran. Ceramics with very thin, pale fabric, referred to as Palace Ware, were the luxury ware of the Assyrians. Glazed ceramics are also characteristically Neo-Assyrian in form and decoration. The Black Obelisk Excavated by Austin Henry Lanyard in 1845 at Nimrud (ancient Kalhu), the black limestone sculpture known as the Black Obelisk commemorates the achievements of the Assyrian king Shalmaneser III (858–824 BC); a cast of the monument stands today in the Dr. Norman Solhkhah Family Assyrian Empire Gallery (C224–227) at the OI Museum. Twenty relief panels, distributed in five rows on the four sides of the obelisk, show the delivery of tribute from subject peoples and vassal kings (a king that owes loyalty to another ruler). A line of cuneiform script below each identifies the tribute and source. The Assyrian king is shown in two panels at the top, first depicted as a warrior with a bow and arrow, receiving Sua, king of Gilzanu (northwestern Iran); and second, as a worshiper with a libation bowl in hand, receiving Jehu, king of the House of Omri (ancient northern Israel). -
Rose-Marcella-Thesis-2020.Pdf
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Nebkha Morphology, Distribution and Stability Black Rock Playa, Nevada A thesis submitted in partial fulfillment of the requirements For the degree of Master of Arts in Geography By Marcella Rose December 2019 The thesis of Marcella Rose is approved: _______________________________________ _____________ Dr. Julie Laity Date _______________________________________ _____________ Dr. Thomas Farr Date _______________________________________ _____________ Dr. Amalie Orme, Chair Date California State University, Northridge ii Acknowledgements Dr. Orme, I really don’t think that there is a sufficient combination of words that exist to properly express the immense amount of gratitude I feel for everything that you have done for me. This college education changed my life for the better and I hope you realize what a significant role you were within that experience. I am thankful that not only did I get a great professor, but also a friend. Dr. Laity, thank you so much for having faith in me and for taking me on as one of your last students to advise. But most of all, thank you for pushing me to be better – I needed that. Dr. Farr, I was so excited during DEVELOP that you accepted to be a part of my committee. It was a pleasure to work with you within the Black Rock Playa research team but then to also take our research a step further for this graduate thesis. I would also like to thank the staff at the Bureau of Land Management, Winnemucca: Dr. Mark E. Hall, Field Manager of the Black Rock Field Office; Shane Garside, Black Rock Station Manager/ Outdoor Recreation Planner; Brian McMillan, Rangeland Management Technician; and Braydon Gaard, Interim Outdoor Recreation Planner. -
The Environment and the Tigris- Euphrates River System, 1988-2005
Still the Fertile Crescent? The Environment and the Tigris- Euphrates River System, 1988-2005 ROBERT B AUER In January 1990, engineers in southeastern Turkey observed one of the most incredible events ever seen in that region of the world. The Euphrates River, a 1,900-mile unstoppable force of nature, ran up against an immovable object, the towering walls of Atatürk Dam. For an entire month, the dam stopped the flow of the Euphrates in its tracks while its waters filled a 817 square kilometer reservoir. Atatürk Dam formed the centerpiece of Turkey’s Guneydogu Anadolu Projesi (also known as the GAP Project or the Southeastern Anatolia Project), which was designed to bring irrigation water and hydroelectric power to its citizens living in the southeast. After spending $1.25 billion on the dam, the Turkish government was ready to see the returns.1 Turkey’s downstream neighbors, Syria and Iraq, were less than elated by the impoundment of so much water. The Syrians depended on the Tigris and Euphrates; they are the only major rivers within Syr- ian borders. While Turkey claimed to have fulfilled its water obligations to Syria (guaranteed unilaterally by Turkey in 1987), this was small con- solation to the Syrian farmers already dealing with drought conditions. For Iraq, whose water supply also depended in part on the Euphrates, Syria’s own Tabqa Dam compounded the problem. This structure, along with the GAP Project, combined to decrease the volume of wa- ter reaching Iraq from the Euphrates by 25 percent.2 1 John Cooley, “Middle East Water: Power and Peace” Middle East Policy 1 (no. -
Euphrates-Tigris
0 [Type here] Irrigation in Africa in figures - AQUASTAT Survey - 2016 Transboundary River Basin Overview – Euphrates-Tigris Version 2009 Recommended citation: FAO. 2009. AQUASTAT Transboundary River Basins – Euphrates-Tigris River Basin. Food and Agriculture Organization of the United Nations (FAO). Rome, Italy The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licencerequest or addressed to [email protected]. -
The Intentional Destruction of Cultural Heritage in Iraq As a Violation Of
The Intentional Destruction of Cultural Heritage in Iraq as a Violation of Human Rights Submission for the United Nations Special Rapporteur in the field of cultural rights About us RASHID International e.V. is a worldwide network of archaeologists, cultural heritage experts and professionals dedicated to safeguarding and promoting the cultural heritage of Iraq. We are committed to de eloping the histor! and archaeology of ancient "esopotamian cultures, for we belie e that knowledge of the past is ke! to understanding the present and to building a prosperous future. "uch of Iraq#s heritage is in danger of being lost fore er. "ilitant groups are ra$ing mosques and churches, smashing artifacts, bulldozing archaeological sites and illegall! trafficking antiquities at a rate rarel! seen in histor!. Iraqi cultural heritage is suffering grie ous and in man! cases irre ersible harm. To pre ent this from happening, we collect and share information, research and expert knowledge, work to raise public awareness and both de elop and execute strategies to protect heritage sites and other cultural propert! through international cooperation, advocac! and technical assistance. R&SHID International e.). Postfach ++, Institute for &ncient Near -astern &rcheology Ludwig-Maximilians/Uni ersit! of "unich 0eschwister-Scholl/*lat$ + (/,1234 "unich 0erman! https566www.rashid-international.org [email protected] Copyright This document is distributed under a Creative Commons Attribution .! International license. 8ou are free to copy and redistribute the material in an! medium or format, remix, transform, and build upon the material for an! purpose, e en commerciall!. R&SHI( International e.). cannot re oke these freedoms as long as !ou follow the license terms. -
The Waters of Euphrates and Tigris: an International Law Perspective
The Waters of Euphrates and Tigris: An International Law Perspective A Study by Adele J. Kirschner and Katrin Tiroch* A. von Bogdandy and R. Wolfrum, (eds.), Max Planck Yearbook of United Nations Law, Volume 16, 2012, p. 329-394. © 2012 Koninklijke Brill N.V. * This Study was written as part of the MPIL Global Knowledge Transfer project on “Water Conflicts in International Law” financed by the German Ministry of Foreign Affairs, see <www.mpil.de/red/water>. The authors would like to thank Prof. Dr. Dr. h.c. Rüdiger Wolfrum, Prof. Dr. Ulrich Beyerlin and Dr. Tilmann Röder for their invaluable comments on the article. Special thanks also go to Nicolas Bremer, Jie-Yoon Kim and David Reichwein for their kind assistance. 330 Max Planck UNYB 16 (2012) I. Introduction II. Geography, Climate and Hydrological Setting 1. Geography a. The Euphrates b. The Tigris 2. Climate 3. Hydrological Setting III. Utilization of the Rivers and Development Plans 1. Iraq 2. Syria 3. Turkey 4. Conclusion IV. Historical Overview on Water Politics in the Euphrates and Tigris Region 1. Developments before World War II 2. Developments after World War II V. International Law in the Euphrates and Tigris Region 1. International Water Law a. Introduction b. Equitable and Reasonable Utilization of an International Water- course c. Obligation not to Cause Harm d. Procedural Obligations e. Environmental Protection f. Groundwater g. Vital Human Needs h. Water Principles in Islamic Law 2. Bilateral Agreements a. Water Sharing Agreements before the 1990s aa. Turkey and Iraq bb. Syria and Turkey cc. Iraq and Syria b. -
DATA COLLECTION SURVEY on WATER RESOURCE MANAGEMENT and AGRICULTURE IRRIGATION in the REPUBLIC of IRAQ FINAL REPORT April 2016 the REPUBLIC of IRAQ
DATA COLLECTION SURVEY ON WATER RESOURCE MANAGEMENT AND AGRICULTURE IRRIGATION IN THE REPUBLIC OF IRAQ FINAL REPORT April 2016 REPORT IRAQ FINAL THE REPUBLIC OF IN IRRIGATION AGRICULTURE AND RESOURCE MANAGEMENT WATER ON COLLECTION SURVEY DATA THE REPUBLIC OF IRAQ DATA COLLECTION SURVEY ON WATER RESOURCE MANAGEMENT AND AGRICULTURE IRRIGATION IN THE REPUBLIC OF IRAQ FINAL REPORT April 2016 Japan International Cooperation Agency (JICA) NTC International Co., Ltd. 7R JR 16-008 英文 118331.402802.28.4.14 作業;藤川 Directorate Map Dohuk N Albil Nineveh Kiekuk As-Sulaymaniyyah Salah ad-Din Tigris river Euphrates river Bagdad Diyala Al-Anbar Babil Wasit Karbala Misan Al-Qadisiyan Al-Najaf Dhi Qar Al-Basrah Al-Muthanna Legend Irrigation Area International boundary Governorate boundary River Location Map of Irrigation Areas ( ii ) Photographs Kick-off meeting with MoWR officials at the conference Explanation to D.G. Directorate of Legal and Contracts of room of MoWR MoWR on the project formulation (Conference room at Both parties exchange observations of Inception report. MoWR) Kick-off meeting with MoA officials at the office of MoA Meeting with MoP at office of D.G. Planning Both parties exchange observations of Inception report. Both parties discussed about project formulation Courtesy call to the Minister of MoA Meeting with representatives of WUA assisted by the JICA JICA side explained the progress of the irrigation sector loan technical cooperation project Phase 1. and further project formulation process. (Conference room of MoWR) ( iii ) Office of AL-Zaidiya WUA AL-Zaidiya WUA office Site field work to investigate WUA activities during the JICA team conducted hearing investigation on water second field survey (Dhi-Qar District) management, farming practice of WUA (Dhi-Qar District) Piet Ghzayel WUA Piet Ghzayel WUA Photo shows the eastern portion of the farmland. -
The Rise of Sumerian City-States
Name and Date: _________________________ Text: HISTORY ALIVE! The Ancient World 4.1 Introduction In Chapter 3, you learned how people began farming and living in small villages during Neolithic times. In this chapter, you’ll discover how some small villages grew into large, complex cities. These villages were located in a land of rolling hills and low plains called Mesopotamia (modern-day Iraq). Mesopotamia is a Greek word that means “the land between the rivers.” The two rivers are the Tigris River and the Euphrates River. Cities first appeared in the southern part of this land, an area called Sumer. The earliest cities in Sumer date back to about 3500 B.C.E. These first cities were like small, independent countries. They each had their own ruler and their own farmland to provide food. For this reason, they are called city-states. These ruins in the Syrian Desert reveal an ancient Sumerian walled city. Imagine that you are visiting one of these early cities. You see a walled settlement surrounded by farmland that supplies food for the city. The strong city walls are built of sunbaked bricks. Moats, or ditches filled with water, surround the walls. The moats help to keep out enemies. During an attack, people living outside the city walls fled inside for protection. As you gaze on the city, you may wonder how it came to be built. Why didn’t people in Mesopotamia go on living in small villages, as their ancestors had done for thousands of years? Why did large city-states grow up here, in the “Land Between the Rivers”? In this chapter, you’ll find out. -
Change in Characteristics of Soil Carbon and Nitrogen During the Succession of Nitraria Tangutorum in an Arid Desert Area
sustainability Article Change in Characteristics of Soil Carbon and Nitrogen during the Succession of Nitraria Tangutorum in an Arid Desert Area Xinyou Wang 1,2,3, Quanlin Ma 2,*, Hujia Jin 2, Baoli Fan 2, Duobin Wang 1 and Huilong Lin 1,* 1 State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; [email protected] (X.W.); [email protected] (D.W.) 2 State Key Laboratory of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou 730070, China; [email protected] (H.J.); [email protected] (B.F.) 3 College of Science and Technology, Gansu Radio & TV University, Lanzhou 730030, China * Correspondence: [email protected] (Q.M.); [email protected] (H.L.) Received: 5 January 2019; Accepted: 19 February 2019; Published: 21 February 2019 Abstract: The shrub Nitraria tangutorum is distributed widely in arid desert areas, and plays a critical role in the desert–oasis ecosystem. This study quantified varying characteristics of carbon (C) and nitrogen (N) in the soil at four stages—the initial stage (IS), stable stage (SS), degradation stage (DS), and severe degradation stage (SDS)—in a steppe ecosystem in the desert of northwestern China. The results indicated that N. tangutorum experienced both expansion and deterioration as a decline of 50.7% occurred in the available soil water due to agricultural utilization, and the plant community transformed from being shrub-dominated to annual herb-dominated. At soil layer depths between 0–100 cm in the N. -
WIND and ITS IMPACT on the GEOMORPHOLOGICAL APPEARANCE on MUSANDAM PENINSULA- SULTANATE of OMAN Dr
WIND AND ITS IMPACT ON THE GEOMORPHOLOGICAL APPEARANCE ON MUSANDAM PENINSULA- SULTANATE OF OMAN Dr. Naglaa Tawfik Oref Lecturer of physical geography and GIS Department of social studies, Taibahu University, Saudi Arabia Received on 5/10/2018 Accepted on 4/12/2018 Vol.11 (1) March 2019 51 WIND AND ITS IMPACT ON THE the submerged coasts and a number of intents GEOMORPHOLOGICAL APPEARANCE ON that formulate the area coast(Torab , M 2002). MUSANDAM PENINSULA- SULTANATE OF OMAN Location: Dr. Naglaa Tawfik Oref Musandam peninsula lies at the entrance of lecturer of physical geography and GIS The Arabian Gulf, extending between two Department of social studies, latitudes of 25º 40′ and 26º 30′ to the north, and Taibahu University, Saudi Arabia between two longitudes of 56º 05′ and 56º 30′ The Egyptian Journal Of Environmental Change Key words: coastal sand dunes, Rock Chimney, to the east. limited by The Gulf of Oman from Musandam Peninsula, Arabian Gulf, the east and by The Arabian Gulf from the west. Abstract: It overlooks Strait of Hormuz northerly, but the Musandam peninsula lies at the entrance of southern watershed separating between Basins The Arabian Gulf. The area affected by the of Wadi Tibet, Wadi Khasab, Wadi Al-Wahiya tilting subsidence that had happened in the and Mala which slopes towards west, north and Tertiary and are still happening now (Falcon, east, on one hand, and between Wadi Sha'am and N.L., 1973). The climate impact on the area’s Al-Bih, sloping towards south and west, on the surface. The old climate effect on the drainage other one this line is considered as a southern networks.