Marketing Your Timber: Forest Products
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Providing Incentives for Bio-Energy While Protecting Established Biomass-Based Industries1 2
POTENTIAL IMPACTS OF CLIMATE AND ENERGY POLICY ON FOREST SECTOR INDUSTRIES: PROVIDING INCENTIVES FOR BIO-ENERGY 1 2 WHILE PROTECTING ESTABLISHED BIOMASS-BASED INDUSTRIES 3 DR. JIM BOWYER DOVETAIL PARTNERS, INC. JUNE 2011 1 The work upon which this publication is based was funded in whole or in part through a grant awarded by the Wood Education and Resource Center, Northeastern Area State and Private Forestry, U.S. Forest Service. 2 In accordance with Federal law and U.S. Department of Agriculture policy, this institution is prohibited from discriminating on the basis of race, color, national origin, sex, age or disability. To file a complaint of discrimination, write USDA Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue SW, Washington, DC 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. 3 Bowyer is Professor Emeritus, University of Minnesota Department of Bioproducts and Biosystems Engineering, and Director of the Responsible Materials Program within Dovetail Partners. Executive Summary Current and proposed climate and energy policy, and specifically incentives for the development of bioenergy have the potential to negatively impact established biomass- based industries through increased costs, competition for supplies, and perhaps other unidentified cause and effect relationships. This report assesses short and long-term impacts (both positive and negative) of state and federal climate and bioenergy policies and incentives on the domestic forestry/wood products sector, and in particular the logging, lumber, composite panels, and paper industries, and considers how incentive programs might be modified so as to achieve optimum results for bioenergy producers and established wood-based industries alike. -
FAOSTAT-Forestry Definitions
FOREST PRODUCTS DEFINITIONS General terms FAOSTAT - Forestry JOINT FOREST SECTOR QUESTIONNAIRE Item Item Code Definition code coniferous C Coniferous All woods derived from trees classified botanically as Gymnospermae, e.g. Abies spp., Araucaria spp., Cedrus spp., Chamaecyparis spp., Cupressus spp., Larix spp., Picea spp., Pinus spp., Thuja spp., Tsuga spp., etc. These are generally referred to as softwoods. non-coniferous NC Non-Coniferous All woods derived from trees classified botanically as Angiospermae, e.g. Acer spp., Dipterocarpus spp., Entandrophragma spp., Eucalyptus spp., Fagus spp., Populus spp., Quercus spp., Shorea spp., Swietonia spp., Tectona spp., etc. These are generally referred to as broadleaves or hardwoods. tropical NC.T Tropical Tropical timber is defined in the International Tropical Timber Agreement (1994) as follows: “Non-coniferous tropical wood for industrial uses, which grows or is produced in the countries situated between the Tropic of Cancer and the Tropic of Capricorn. The term covers logs, sawnwood, veneer sheets and plywood. Plywood which includes in some measure conifers of tropical origin shall also be covered by the definition.” For the purposes of this questionnaire, tropical sawnwood, veneer sheets and plywood shall also include products produced in non-tropical countries from imported tropical roundwood. Please indicate if statistics provided under "tropical" in this questionnaire may include species or products beyond the scope of this definition. Year Data are requested for the calendar year (January-December) indicated. 2 Transactions FAOSTAT - Forestry JOINT FOREST SECTOR QUESTIONNAIRE Element Element Code Definition code 5516 Production Quantity Removals The volume of all trees, living or dead, that are felled and removed from the forest, other wooded land or other felling sites. -
Non-Timber Forest Products
Agrodok 39 Non-timber forest products the value of wild plants Tinde van Andel This publication is sponsored by: ICCO, SNV and Tropenbos International © Agromisa Foundation and CTA, Wageningen, 2006. All rights reserved. No part of this book may be reproduced in any form, by print, photocopy, microfilm or any other means, without written permission from the publisher. First edition: 2006 Author: Tinde van Andel Illustrator: Bertha Valois V. Design: Eva Kok Translation: Ninette de Zylva (editing) Printed by: Digigrafi, Wageningen, the Netherlands ISBN Agromisa: 90-8573-027-9 ISBN CTA: 92-9081-327-X Foreword Non-timber forest products (NTFPs) are wild plant and animal pro- ducts harvested from forests, such as wild fruits, vegetables, nuts, edi- ble roots, honey, palm leaves, medicinal plants, poisons and bush meat. Millions of people – especially those living in rural areas in de- veloping countries – collect these products daily, and many regard selling them as a means of earning a living. This Agrodok presents an overview of the major commercial wild plant products from Africa, the Caribbean and the Pacific. It explains their significance in traditional health care, social and ritual values, and forest conservation. It is designed to serve as a useful source of basic information for local forest dependent communities, especially those who harvest, process and market these products. We also hope that this Agrodok will help arouse the awareness of the potential of NTFPs among development organisations, local NGOs, government officials at local and regional level, and extension workers assisting local communities. Case studies from Cameroon, Ethiopia, Central and South Africa, the Pacific, Colombia and Suriname have been used to help illustrate the various important aspects of commercial NTFP harvesting. -
Buyers of Timber in Orange County
Companies that Buy Timber In County: Orange 7/7/2021 COMPANY PHONE, FAX, EMAIL and SPECIES PRODUCTS ADDRESS CONTACT PERSON PURCHASED PURCHASED 360 Forest Products, Inc. PHONE 910-285-5838 S Yellow Pine, E White Pine, Cypress, Standing Timber, Sawlogs, PO Box 157 FAX: 910-285-8009 Ash, Cherry, Red Oak, White Oak, Pulpwood, Poles, Pilings, Cottonwood, Beech, Hickory, Sweetgum, Chips, Chip-n-Saw, Veneer & Wallace, NC 28466 EMAIL: Black/Tupelo Gum, Soft Maple, Hard Plywood Logs or Bolts [email protected] Maple, Walnut, Yellow Poplar Larry Batchelor, President A & P Timber Co, Inc. PHONE 919-554-4597 All Hardwoods, All Softwoods Standing Timber 137 East Fleming Farm Dr FAX: Youngsville, NC 27596 EMAIL: Dwight Payne, Registered Forester All-Woods Timber Company, Inc. PHONE 919-818-5957 S Yellow Pine, All Hardwoods Standing Timber, Sawlogs, 2671 Charlie Long Road FAX: Pulpwood Hurdle Mills, NC 27571 EMAIL: Philip R. Whitfield, President Black Creek Forestry Services, LL PHONE (919)6314064 All Hardwoods, All Softwoods Standing Timber 4920 Raleigh Rd FAX: Benson, NC 27504 EMAIL: [email protected] Dave Hendershott, Owner Blue Chip Wood Products PHONE (919)805-0060 All Hardwoods, All Softwoods Standing Timber, Sawlogs, FAX: Pulpwood , NC EMAIL: [email protected] Bill Baxley Braxton's Sawmill, Inc. PHONE (336)376-6798 S Yellow Pine, Yellow-Poplar, Sweetgum, Standing Timber, Sawlogs 7519 D Lindley Mill Rd FAX: (336)376-8411 Soft Maple, Red Oak, White Oak, Hickory, Ash Graham, NC 27253 EMAIL: Christopher Braxton, President Canfor Southern Pine Graham PHONE (336)376-3130 S Yellow Pine Standing Timber, Sawlogs 4408 Mt Herman Rock Creek Rd FAX: (336)376-5858 Graham, NC 27253 EMAIL: [email protected]; doug.burleson Doug Burleson, Forester This is a list of individuals that purchase standing timber and have requested that their information be posted on the N.C. -
Tree Care Handbook
Minnesota SWCD Forestry Association Tree Handbook Dear Tree Planter. With headlines reporting the continuing deforestation of the tropical rain forest, one may ask the question: Are America’s forests in danger of disappearing? Because people such as yourself practice reforestation, our forested acres are actually growing in size. About one-third of the United States, or 731 million acres is covered with trees. That’s about 70 percent of the forest that existed when Columbus discovered America. Almost one third of this is set aside in permanent parks and wilderness areas. Minnesotans’ have planted an average of 12 million trees annually; enough trees to cover over 15,000 acres per year. Good land stewards are planting trees for many good reasons. The results of their efforts can be seen in reduced soil erosion, improved air and water quality, healthy forest industries, enhanced wildlife habitat and generally a more attractive surrounding for us to live in. Aspen has become the most prominent tree in Minnesota’s forests. After clearcutting, aspen regenerates readily by sprouting from its root system or by drifting seeds onto disturbed sites. Most of the other major species in Minnesota need some help from tree planters to ensure that they make up a part of the new forest. The following pages will help explain how to plant and care for a tree seedling. There is a section on the general characteristics and planting requirements of the tree and shrub species commonly planted for conservation purposes in Minnesota. The professionals working in conservation throughout Minnesota thank you for planting, nurturing and wisely using one of Minnesota’s greatest treasures its renewable trees. -
Florida's Timber Industry - Agriculture the Author
United States Department of Florida's Timber Industry - Agriculture The Author: Michael Howell is a Resource Forester, with the Forest Inventory and Analysis group, Southern Research Station, Asheville, NC. May 1995 Southern Research Station P.O. Box 2680 Asheville, NC 28802 Foreword This report contains the findings of a 1993 canvass of and location. Surveys for all timber products other all primary wood-using plants in Florida and presents than pulpwood began in 1958, and are currently con- changes in product output and residue use since 1991. ducted every 2 years. It complements the Forest Inventory and Analysis peri- Pulpwood production data were taken from an annual odic inventory of volume and removals from the State's canvass of all southeastern pulpmills, conducted timberland. The canvass was conducted to determine annually in cooperation with the American Pulpwood the amount and source of wood receipts and annual Association. Medium density fiberboard, insulating timber product drain by county in 1993 and to deter- board, and hardboard plants were included in this sur- mine interstate and cross-regional movement of indus- vey. trial roundwood. Only primary wood-using mills were canvassed. Primary mills are those that process round- The Southern Research Station gratefully acknowledges wood in log or bolt form or as chipped roundwood. the cooperation and assistance provided by the Florida Examples of industrial roundwood products are saw Department of Agriculture and Consumer Services. logs, pulpwood, veneer logs, poles, and logs used for Division of Marketing and Utilization in collecting mill composite board products. Mills produc~ngproducts data. Appreciation is also extended to forest industry from residues generated at primary and secondary and mill managers for providing timber products infor- processors were not canvassed. -
Short Rotation Intensive Culture of Willow, Spent Mushroom Substrate
plants Article Short Rotation Intensive Culture of Willow, Spent Mushroom Substrate and Ramial Chipped Wood for Bioremediation of a Contaminated Site Used for Land Farming Activities of a Former Petrochemical Plant Maxime Fortin Faubert 1 , Mohamed Hijri 1,2 and Michel Labrecque 1,* 1 Institut de Recherche en biologie végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada; [email protected] (M.F.F.); [email protected] (M.H.) 2 African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco * Correspondence: [email protected]; Tel.: +1-514-978-1862 Abstract: The aim of this study was to investigate the bioremediation impacts of willows grown in short rotation intensive culture (SRIC) and supplemented or not with spent mushroom substrate (SMS) and ramial chipped wood (RCW). Results did not show that SMS significantly improved either biomass production or phytoremediation efficiency. After the three growing seasons, RCW- amended S. miyabeana accumulated significantly more Zn in the shoots, and greater increases of some PAHs were found in the soil of RCW-amended plots than in the soil of the two other ground Citation: Fortin Faubert, M.; Hijri, cover treatments’ plots. Significantly higher Cd concentrations were found in the shoots of cultivar M.; Labrecque, M. Short Rotation ‘SX61’. The results suggest that ‘SX61’ have reduced the natural attenuation of C10-C50 that occurred Intensive Culture of Willow, Spent in the unvegetated control plots. The presence of willows also tended to increase the total soil Mushroom Substrate and Ramial concentrations of PCBs. -
Maine Wood Volume and Projection Study
REPORT Maine Wood Volume and Projection Study Prepared for: FOR/Maine Prepared by: Gary Mullaney Ernest Bowling David Stevens May 21, 2018 85138F May 17, 2018 FOR/Maine Page i TABLE OF CONTENTS TABLE OF CONTENTS .............................................................................................................................................. i 1. EXECUTIVE SUMMARY ...................................................................................................................................... 1 Summary by Species Group .................................................................................................................. 2 Summary by Megaregion ....................................................................................................................... 6 2. INTRODUCTION .................................................................................................................................................... 7 Background and Purpose ...................................................................................................................... 7 Methodology - Current ........................................................................................................................... 7 Methodology - Modeling Approach ................................................................................................... 8 Mix By Landownership ........................................................................................................................ 10 3. MAINE’S TIMBER RESOURCE: -
Southern Pulpwood Production, 2014
United States Department of Agriculture Southern Pulpwood Production, 2014 James A. Gray, James W. Bentley, Jason A. Cooper, and David J. Wall Forest Service Southern e-Resource Bulletin Research Station SRS–219 In this report: Page Southern Pulpwood Production by— Appendix 7 • Roundwood and plant residues 9–11 • Species group 9–11 • Territory 9 • Movement 12–13 Pulpmills Using Southern Wood by— • Location 14–15 Note: All tables in this report are available in Microsoft® Excel workbook files. Upon request, these files will be supplied in the format the customer requests. Product Disclaimer The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service. May 2018 Southern Research Station 200 W.T. Weaver Blvd. Asheville, NC 28804 www.srs.fs.usda.gov Southern Pulpwood Production, 2014 James A. Gray, Forester U.S. Department of Agriculture Forest Service Forest Inventory and Analysis, Southern Research Station Knoxville, TN 37919 James W. Bentley, Forester U.S. Department of Agriculture Forest Service Forest Inventory and Analysis, Southern Research Station Knoxville, TN 37919 Jason A. Cooper, Forester U.S. Department of Agriculture Forest Service Forest Inventory and Analysis, Southern Research Station Knoxville, TN 37919 and David J. Wall, Forester U.S. Department of Agriculture Forest Service Forest Inventory and Analysis, Southern Research Station Meadville, MS 39653 INTRODUCTION combined accounted for 77 percent of the total Southern pulpwood production, while hardwoods accounted for the The Forest Inventory Analysis (FIA) unit of the Southern remaining 23 percent. -
A Vision for Forest Products Extension in Wisconsin
Wisconsin’s Forest Industry: Rooted in our Lives Rooted in our Economy Wisconsin Department of Natural Resources Forestry Division, Forest Products Services Wisconsin forest industry overview Industry sectors and trends Emerging markets Part I: Forest Industry Overview Wisconsin’s forest industry ~1,200 establishments Over 60,000 jobs $24.1 billion in goods and services annually Approximately 14% of manufacturing jobs Wisconsin’s forest industry (cont’d) Exports total over $2.2 billion annually Top employer in 10 counties Supports employment of over 111,000 additional jobs Why should we care? . The health of Wisconsin’s economy depends upon the health of Wisconsin’s forest industry . The health of Wisconsin’s forests depends upon the health of Wisconsin’s forest industry Why should we care? . We as consumers depend on forests! Flooring Baseball bats Houses Ice cream thickener Lumber Garden stakes Furniture Toilet paper Pressboard Charcoal Crafts Broom sticks Veneer Bowling pins Roofs Imitation bacon Plywood Toys Stairways Candy wrappers Dowels Signs Cider Fruit Paper Syrup Vitamins Cutting boards Paneling Pallets Cooking utensils Desks Windows Cardboard Pencils Food packaging Doors Grocery bags Shampoo Toilet seats Railroad ties Chewing gum Oars Toothpaste Energy Paper towels Coffee filters Nuts Firewood Oil spill agents Toothpicks Magazines Christmas trees Hockey sticks Diapers Golf tees Tool handles Liquid smoke Sponges Nail polish Animal bedding Cosmetics Mulch Wood pellets Fence posts Baby foods Postage stamps AND MORE! Can -
Use of Fire-Impacted Trees for Oriented Strandboards
Use of fire-impacted trees for oriented strandboards Laura Moya✳ Jerrold E. Winandy✳ William T. Y. Tze✳ Shri Ramaswamy Abstract This study evaluates the potential use of currently unexploited burnt timber from prescribed burns and wildfires for oriented strandboard (OSB). The research was performed in two phases: in Phase I, the effect of thermal exposure of timber on OSB properties was evaluated. Jack pine (Pinus banksiana) trees variously damaged by a moderately intense prescribed burn in a northern Wisconsin forest were selected. Four fire-damage levels of wood were defined and processed into series of single-layer OSB. The flakes used in Phase I had all char removed. Mechanical and physical properties were evaluated in accordance with ASTM D 1037. Results showed that OSB engineering performance of all four fire-damage levels were similar, and their me chanical properties met the CSA 0437 requirements. In Phase II, we assessed OSB properties from fire-killed, fire-affected and virgin red pine (Pinus resinosa) trees from a central Wisconsin forest exposed to an intense wildfire. The effect of various thermal exposures and varying amounts of char on OSB performance were evaluated. Phase II findings indicate that fire-damage level and bark amount had significant effects on the board properties. Addition of 20 percent charred bark had an adverse effect on bending strength; however, OSB mechanical properties still met the CSA requirements for all fire levels. Conversely, bark addition up to 20 percent was found to improve dimension stability of boards. This study suggests that burnt timber is a promising alternative bio-feedstock for commercial OSB production. -
Forest Biorefining and Implications for Future Wood Energy Scenarios
Presentation 2.4: Forest biorefining and implications for future wood energy scenarios Jack N. Saddler Position: Professor & Dean Organization/Company: University of British Columbia, Faculty of Forestry E-mail: [email protected] Abstract The diversification of the forest products industry to include bioenergy may be characterized by evolution of a number of co products. The biorefinery concept, which considers energy, fuels, and chemical or material production within a single facility or cluster of facilities, may be the route forward for the forest industry that provides optimal revenues and environmental benefits. Forest- based biorefining platforms may use traditional or innovative platforms. A review of biorefineries in other sectors is followed by an examination of potential co products. A number of existing pilot or demonstration facilities exist around the world today, and many of these are described. The growth of biorefining in developed regions creates a technology transfer opportunity that could be facilitated through an FAO-led network similar to IEA Implementing Agreements or Tasks. 149 Forest biorefining and implications for future wood energy scenarios W.E. Mabee, J.N. Saddler Forest Products Biotechnology, Department of Wood Science Faculty of Forestry, University of British Columbia 4043-2424 Main Mall, Vancouver, BC, Canada V6T 1Z4 [email protected] International Seminar on Energy and the Forest Products Industry Rome, Italy: October 30 2006 Forest Products Biotechnology at UBC Outline 1. Defining biorefining in