Incubation Temperature Effects on Hatchling Performance

Total Page:16

File Type:pdf, Size:1020Kb

Incubation Temperature Effects on Hatchling Performance INCUBATION TEMPERATURE EFFECTS ON HATCHLING PERFORMANCE IN THE LOGGERHEAD SEA TURTLE (CARETTA CARETTA) A thesis submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE in MARINE BIOLOGY by LEAH FISHER OCTOBER 2012 at THE GRADUATE SCHOOL OF THE COLLEGE OF CHARLESTON Approved by: Dr. David Owens, Thesis Advisor Dr. Allan Strand Dr. Eric McElroy Dr. Melissa Hughes Dr. Amy T. McCandless, Dean of the Graduate School ABSTRACT INCUBATION TEMPERATURE EFFECTS ON HATCHLING PERFORMANCE IN THE LOGGERHEAD SEA TURTLE (CARETTA CARETTA) A thesis submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE in MARINE BIOLOGY by LEAH FISHER OCTOBER 2012 at THE GRADUATE SCHOOL OF THE COLLEGE OF CHARLESTON Incubation temperature has significant developmental effects on oviparous animals, including determining sex for several species. For the Northwest Atlantic loggerhead sea turtle (Caretta caretta), apparent population-wide female-biased hatchling sex ratios contrast with observations of juvenile populations, where sex ratios have remained constant at about 2 to 1 female-biased over the past 30 years. It has been suggested that some unknown factor is affecting loggerhead survival resulting in an unexplained differential loss of ~60% of female hatchlings per year. One theory to explain this hatchling mortality is tested in this project, that incubation temperature affects traits that influence survival. Furthermore, there may be differential survival between male and female hatchlings. I conducted laboratory experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. I tested 68 hatchlings produced from eggs incubated at 8 different constant temperatures ranging from ~27ºC to ~32.5ºC. Following their emergence from the eggs, I tested righting response, crawling speed, and conducted a 24- hour long hatchling swim test. Data indicate an effect of incubation temperature on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, with hatchlings incubated at 27ºC showing decreased locomotor abilities. No hatchlings survived when incubated at 32ºC and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects. TABLE OF CONTENTS Introduction 1 - 10 Materials and Methods 10 - 17 Egg Collection and Incubation Protocol Hatching Protocol Experimental Protocol Righting Response and Crawl Test Swim Test Video Analysis Statistical Analysis Results 17 - 27 Hatch Success and Survivorship Incubation Temperature Effects on Performance Variables Composite Rank Clutch Effect on Performance Variables Discussion 27 - 38 Hatch Success and Survivorship Performance + Incubation Temperature Implications Beyond Controlled Incubation Facing Climate Change Conclusions 39 Future Directions 40 - 42 Acknowledgements 43 Literature Cited 44 - 52 INTRODUCTION Temperature plays a critical role in animal development. In particular, incubation temperature has significant developmental effects on oviparous animals, including determining sex for several species (Deeming and Ferguson 1991). Temperature- dependent sex determination (TSD) is found in seven orders of fish (Conover 2004), and many reptiles: all crocodilians, tuataras, many turtles, and some lizards (reviewed in Valenzuela and Lance 2004). TSD is a type of environmental sex determination (ESD), and contrasts with the more common genetic sex determination (GSD). For reptiles with TSD, climate change impacts, particularly rising temperatures around the world, dictate a need for an improved understanding of how even subtle temperature changes in the nest environment will influence the survivorship of both individuals and species in the next few decades. All sea turtles exhibit TSD, with temperatures greater than ~29°C producing females for six of the seven species, and temperatures below producing males (review in Raynaud and Pieau 1985, Mrosovsky 1988). It has been predicted that females born in warm temperatures would have an increased fitness compared to males born at that same temperature, and the reverse for cool temperatures. Within this prediction is another hypothesis, stating that at the extreme incubation temperatures where only one sex is produced, hatchlings could reach optimal fitness for that sex. On the other hand, close to pivotal temperature may be optimal for both sexes. The fitness of sea turtle hatchlings in terms of lifetime fecundity is nearly impossible to test directly due to their slow growth and late maturity (Hamann et al. 2007). Thus, phenotypic measures have been used to estimate hatchling fitness based on other effects of incubation temperature. 1 Incubation Temperature Effects Incubation temperature influences several factors in sea turtle egg incubation besides hatchling sex, including development time, incubation duration, size, mass, and amount of yolk content converted to hatchling tissue (Foley 1998, Reece et al. 2002, Booth et al. 2004). Embryonic development is faster at warmer temperatures, resulting in shorter incubation periods (Davenport 1997). Incubation temperature can also affect physical traits of hatchlings, such as size and locomotor performance for turtles. It is generally assumed that an increase in locomotor activity, for example crawling faster or swimming longer, is advantageous because it may allow hatchlings to better avoid predators (Janzen 1993). In turn, this increased performance could affect lifetime fitness. For example, a study on the snapping turtle (Chelydra serpentina) found that even after six months that included a period of hibernation, incubation temperature maintained an effect on growth rates and water temperature preferences for male and female turtles (O’Steen 1998). Another study on the Ouachita map turtle (Graptemys ouachitensis) showed an effect of incubation temperature on performance both immediately after hatching and after one year (Freedberg et al. 2004). For freshwater turtles, it has been reported that hatchlings show decreased performance ability at the upper and lower extremes of incubation temperature (Micheli- Campbell et al. 2011, Booth et al. 2004, Freedberg et al. 2004). For loggerhead (Caretta caretta) and green sea turtles (Chelonia mydas), several studies (Booth and Astill 2001, Booth et al. 2004, Booth 2006, Hamann et al. 2007) have suggested that hatchlings produced at warmer temperatures may be smaller, swim faster, and possibly even grow faster (Glen et al. 2003); however, these studies did not test the upper limit of incubation 2 temperature, and the fitness consequences remain untested or unconfirmed (Hawkes et al. 2009). More specifically for green sea turtles, hatchlings incubated at 26°C were seen to have lower flipper stroke rate frequency and force output than hatchlings incubated at 28°C and 30°C (Burgess et al. 2006, Booth et al. 2004). This suggests that male hatchlings, coming from cooler temperatures, have a decreased locomotor ability compared to female hatchlings. In contrast for the loggerhead, one study reported that at cooler incubation temperatures, larger loggerhead eggs produced larger hatchlings, which swam faster but accumulated more lactate and exhibited slower growth rates (Foley 1998). No examination of sex was done in this study. A different study on loggerheads suggests that female hatchlings from warmer temperatures may be larger, possibly helping them evade predators (Reece et al. 2002). However, this study used different methods than similar studies, such as Burgess et al. (2006) and Booth et al. (2004), by physically moving eggs during incubation to manipulate incubation temperatures. Along with Foley (1998), these are the only two published studies on loggerhead hatchlings focusing on possible fitness consequences from physical differences based on incubation temperature. In an unpublished thesis experiment on loggerheads, a crawling test was used as a correlate to fitness, and it was reported that longer incubation duration, produced by cooler incubation temperatures, resulted in faster hatchlings (Nicar and Weber 2002). This would suggest that male hatchlings perform better, contrasting with Reece et al. (2002) and green turtle hatchling performance. These sparse and contradictory results indicate that a study designed to test physical and behavioral differences of loggerhead hatchlings incubated at a wide range of temperatures is needed. 3 Incubation temperature also determines if sea turtle hatchlings survive incubation because successful incubation only occurs within a small range of temperatures (Miller 1985). At temperatures above the upper range of optimal temperatures, approximately 33°C and higher for sea turtles, an increase in morphological abnormalities and decrease in hatching success are seen (Miller 1985, Miller et al. 2003). Even within the optimal range of incubation temperatures, Reid et al. (2009) found that hatchlings are more likely to have supernumerary, or irregularly patterned carapace scutes, with increased incubation temperature. In Mon Repos, Australia, from 2005-2007, average incubation temperatures towards the hotter extreme were correlated with a decrease in hatching success for loggerhead hatchlings (Chu et al. 2008). Chu et al. (2008) state that a prolonged exposure to hotter incubation temperatures results in an overall weakening of hatchlings.
Recommended publications
  • Sea Turtles : the Importance of Sea Turtles to Marine Ecosystems
    PHOTO TIM CALVER WHY HEALTHY OCEANS NEED SEA TURTLES : THE IMPORTANCE OF SEA TURTLES TO MARINE ECOSYSTEMS Wilson, E.G., Miller, K.L., Allison, D. and Magliocca, M. oceana.org/seaturtles S E L T R U T Acknowledgements The authors would like to thank Karen Bjorndal for her review of this report. We would also like to thank The Streisand Foundation for their support of Oceana’s work to save sea turtles. PHOTO MICHAEL STUBBLEFIELD OCEANA | Protecting the World’s Oceans TABLE OF CONTENTS WHY HEALTHY OCEANS NEED SEA TURTLES 3 Executive Summary 4 U.S. Sea Turtles 5 Importance of Sea Turtles to Healthy Oceans 6 Maintaining Habitat Importance of Green Sea Turtles on Seagrass Beds Impact of Hawksbill Sea Turtles on Coral Reefs Benefit of Sea Turtles to Beach Dunes 9 Maintaining a Balanced Food Web Sea Turtles and Jellyfish Sea Turtles Provide Food for Fish 11 Nutrient Cycling Loggerheads Benefit Ocean Floor Ecosystems Sea Turtles Improve Nesting Beaches 12 Providing Habitat 14 The Risk of Ecological Extinction 15 Conclusions oceana.org/seaturtles 1 S E L T R U T PHOTO TIM CALVER 2 OCEANA | Protecting the World’s Oceans EXECUTIVE SUMMARY Sea turtles have played vital roles in maintaining the health of the world’s oceans for more than 100 million years. These roles range from maintaining productive coral reef ecosystems to transporting essential nutrients from the oceans to beaches and coastal dunes. Major changes have occurred in the oceans because sea turtles have been virtually eliminated from many areas of the globe. Commercial fishing, loss of nesting habitat and climate change are among the human-caused threats pushing sea turtles towards extinction.
    [Show full text]
  • The Effect of Invertebrate Infestation and Its Correlation with Loggerhead Sea Turtle (Caretta Caretta) Nest Success in Laganas Bay, Zakynthos, Greece
    The effect of invertebrate infestation and its correlation with loggerhead sea turtle (Caretta caretta) nest success in Laganas Bay, Zakynthos, Greece Adam J. Andrews1, Andrew C. Smith1, ALan F. Rees2 & Dimitris Margaritoulis2 1Anglia Ruskin University, Cambridge, CB1 1PT, UK (E-mail: [email protected], [email protected]); 2ARCHELON, Solomou 57, GR104-32 Athens, Greece (E-mail:[email protected], [email protected]) Loggerhead sea turtle (Caretta caretta) nests are vulnerable to relative threat of this source of predation of sea turtle eggs (Bolton predators and scavengers, including invertebrates (Paris et al. 2002). et al. 2008). Dipteran larvae (Phoridae and Sarcophagidae) have been found to At the rookery level, infestation may be high, with reports of infest loggerhead and green sea turtle (Chelonia mydas) nests both 90% (Lopes 1982) and 84.6% (Hall & Parmenter 2006) of nests in northern Cyprus (Broderick & Hancock 1997; McGowan et al. being infested. However, at nest level, infestation is typically much 2001a), and Australia (Hall & Parmenter 2006), green sea turtle lower, e.g., 10.6% (Broderick & Hancock 1997), 0.8% (McGowan nests in Costa Rica and Mexico (Fowler 1979; Lopes 1982), as well et al. 2001a) and 3.6% (Katılmış et al. 2006) of eggs within a nest as hawksbill (Eretmochelys imbricata) (Bjorndal et al. 1985) and being infested. In terms of nest success, Gautreau (2007) noted that leatherback sea turtle (Dermochelys coriacea) nests in Costa Rica it was not significantly lower for infested leatherback nests in Costa (Gautreau 2007). In the Mediterranean, coleopteran larvae were Rica, as did Bolton et al. (2008) for spiny softshell turtles (Apalone found to infest loggerhead nests in Turkey (Baran & Türkozan 1996) spinifera) in Canada.
    [Show full text]
  • Impact of Increased Green Turtle Nesting on Loggerhead Fitness
    University of Central Florida STARS Honors Undergraduate Theses UCF Theses and Dissertations 2018 Impact of Increased Green Turtle Nesting on Loggerhead Fitness Amanda R. Carmichael University of Central Florida Part of the Behavior and Ethology Commons, and the Marine Biology Commons Find similar works at: https://stars.library.ucf.edu/honorstheses University of Central Florida Libraries http://library.ucf.edu This Open Access is brought to you for free and open access by the UCF Theses and Dissertations at STARS. It has been accepted for inclusion in Honors Undergraduate Theses by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Carmichael, Amanda R., "Impact of Increased Green Turtle Nesting on Loggerhead Fitness" (2018). Honors Undergraduate Theses. 284. https://stars.library.ucf.edu/honorstheses/284 Impact of Increased Green Turtle Nesting on Loggerhead Fitness by Amanda R. Carmichael A thesis submitted in partial fulfillment of the requirements for the Honors in the Major Program in Biology in the College of Sciences and in the Burnett Honors College at the University of Central Florida Orlando, Florida Spring Term, 2018 Thesis Chair: Kate Mansfield, Ph.D. ABSTRACT Marine turtles exhibit strong fidelity to their nesting beaches, making the conservation of nesting beaches important for ensuring successful sea turtle populations. Conservation of these nesting beaches involves understanding how species interact with the environment and each other, and understanding how environmental change and population growth can affect the suitability of the nesting habitat. The Archie Carr National Wildlife Refuge (ACNWR) is unusual in its high density of sea turtle nesting by two species: green (Chelonia mydas) and loggerhead (Caretta caretta) turtles.
    [Show full text]
  • Congenital Malformations in Sea Turtles: Puzzling Interplay Between Genes and Environment
    animals Review Congenital Malformations in Sea Turtles: Puzzling Interplay between Genes and Environment Rodolfo Martín-del-Campo 1, María Fernanda Calderón-Campuzano 2, Isaías Rojas-Lleonart 3, Raquel Briseño-Dueñas 2,4 and Alejandra García-Gasca 5,* 1 Department of Oral Health Sciences, Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; [email protected] 2 Marine Turtle Programme, Instituto de Ciencias del Mar y Limnología-UNAM-FONATUR, Mazatlán, Sinaloa 82040, Mexico; [email protected] (M.F.C.-C.); [email protected] (R.B.-D.) 3 Universidad Central “Martha Abreu” de las Villas (IRL), CUM Remedios, Villa Clara 52700, Cuba; [email protected] 4 Banco de Información sobre Tortugas Marinas (BITMAR), Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología-UNAM, Mazatlán, Sinaloa 82040, Mexico 5 Laboratory of Molecular and Cellular Biology, Centro de Investigación en Alimentación y Desarrollo, Mazatlán, Sinaloa 82112, Mexico * Correspondence: [email protected]; Tel.: +52-669-989-8700 Simple Summary: Congenital malformations can lead to embryonic mortality in many species, and sea turtles are no exception. Genetic and/or environmental alterations occur during early develop- ment in the embryo, and may produce aberrant phenotypes, many of which are incompatible with life. Causes of malformations are multifactorial; genetic factors may include mutations, chromosomal aberrations, and inbreeding effects, whereas non-genetic factors may include nutrition, hyperthermia, low moisture, radiation, and contamination. It is possible to monitor and control some of these Citation: Martín-del-Campo, R.; Calderón-Campuzano, M.F.; factors (such as temperature and humidity) in nesting beaches, and toxic compounds in feeding Rojas-Lleonart, I.; Briseño-Dueñas, R.; areas, which can be transferred to the embryo through their lipophilic properties.
    [Show full text]
  • Year of the Turtle News No
    Year of the Turtle News No. 9 September 2011 Basking in the Wonder of Turtles www.YearoftheTurtle.org Taking Action for Turtles: Year of the Turtle Federal Partners Work to Protect Turtles Across the U.S. Last month, we presented a look at the current efforts being undertaken by many state agencies across the U.S. in an effort to protect turtles nationwide. Federal efforts have been equally important. With hundreds of millions of acres of herpetofaunal habitats under their stewardship, and their many biologists and resource managers, federal agencies play a key role in managing turtle populations in the wild, including land management, supporting and conducting scientific studies, and in regulating and protecting rare and threatened turtles and tortoises. What follows is a collection of work being done by federal agency partners to discover new scientific information and to manage turtles and tortoises across the U.S. – Terry Riley, National Park Service, PARC Federal Agencies Coordinator Alligator Snapping Turtles at common and distributed throughout habitat use, distribution, home Sequoyah National Wildlife all of the area’s major river systems. range, and age structure. Currently, Refuge*, Oklahoma Current populations have declined the refuge collaborates with Alligator The appearance of an Alligator dramatically and now are restricted Snapping Turtle researchers from Snapping Turtle (Macrochelys to a few remote or protected Oklahoma State University, Missouri temminckii) is nearly unforgettable locations. Habitat alterations and More Federal Turtle Projects on p. 8 – the spiked shell, the beak-like jaw, overharvest have likely contributed the thick, scaled tail, not to mention to their declines. Sequoyah National the unique worm-like appendage that Wildlife Refuge boasts one of the lures their prey just close enough to healthiest populations in the state.
    [Show full text]
  • Genetics and Molecular Biology, 43, 4, E20200213 (2020) Copyright © Sociedade Brasileira De Genética
    Genetics and Molecular Biology, 43, 4, e20200213 (2020) Copyright © Sociedade Brasileira de Genética. DOI: https://doi.org/10.1590/1678-4685-GMB-2020-0213 Research Article Animal Genetics Heterochromatin and microsatellites detection in karyotypes of four sea turtle species: Interspecific chromosomal differences Caroline Regina Dias Machado1, Camila Domit2, Marcela Baer Pucci3, Camilla Borges Gazolla1, Larissa Glugoski4, Viviane Nogaroto5 and Marcelo Ricardo Vicari1,5 1Universidade Federal do Paraná, Centro Politécnico, Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, Ponta Grossa, PR, Brazil. 2Universidade Federal do Paraná, Laboratório de Ecologia e Conservação, Pontal do Paraná, PR, Brazil. 3Universidade Nove de Julho, Departamento de Saúde II, Bauru, SP, Brazil. 4Universidade Federal de São Carlos, Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, São Carlos, SP, Brazil. 5Universidade Estadual de Ponta Grossa, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil. Abstract The wide variation in size and content of eukaryotic genomes is mainly attributed to the accumulation of repetitive DNA sequences, like microsatellites, which are tandemly repeated DNA sequences. Sea turtles share a diploid number (2n) of 56, however recent molecular cytogenetic data have shown that karyotype conservatism is not a rule in the group. In this study, the heterochromatin distribution and the chromosomal location of microsatellites (CA)n, (GA)n, (CAG)n, (GATA)n, (GAA)n, (CGC)n and (GACA)n in Chelonia mydas, Caretta caretta, Eretmochelys imbricata and Lepidochelys olivacea were comparatively investigated. The obtained data showed that just the (CA)n, (GA)n, (CAG)n and (GATA)n microsatellites were located on sea turtle chromosomes, preferentially in heterochromatic regions of the microchromosomes (mc).
    [Show full text]
  • Taxonomy, External Morphology, and Species Identification
    Research and Management Techniques for the Conservation of Sea Turtles K. L. Eckert, K. A. Bjorndal, F. A. Abreu-Grobois, M. Donnelly (Editors) IUCN/SSC Marine Turtle Specialist Group Publication No. 4, 1999 Taxonomy, External Morphology, and Species Identification Peter C. H. Pritchard Chelonian Research Institute, 401 South Central Avenue, Oviedo, Florida 32765 USA; Tel: +1 (407) 365-6347; Fax: +1 (407) 977-5142 Jeanne A. Mortimer P.O. Box 445, Victoria, Mahe, Republic of Seychelles, Tel: +248 323-050; AND Department of Zoology, University of Florida, Gainesville, Florida 32611-8525 USA; Tel: +1 (352) 373-4480; Fax: +1 (561) 658-5918; email: [email protected] Scientific and Vernacular Names restricted species (Natator depressus, Lepidochelys There are a great many vernacular names for most kempii). In this section, only three examples (English, sea turtle species, although relatively few for the more French, and Spanish) are given for each species. Family Dermochelyidae Dermochelys coriacea: Leatherback (E); Tortue luth (F); Tortuga laúd (S) Family Cheloniidae Chelonia mydas: Green turtle (E); Tortue verte (F); Tortuga verde (S) Chelonia mydas / C. agassizii / C. m. agassizii 1: Black turtle (E); Tortue noire (F); Tortuga prieta (S) Natator depressus: Flatback turtle (E); Chelonée à dos plat (F); Tortuga aplanada (S) Eretmochelys imbricata: Hawksbill (E); Tortue imbriquée (F); Tortuga de carey (S) Caretta caretta: Loggerhead (E); Caouanne (F); Caguama (S) Lepidochelys kempii: Kemp’s ridley (E); Chelonée de Kemp (F); Tortuga lora (S) Lepidochelys olivacea: Olive ridley (E); Chelonée olivâtre (F); Tortuga golfina (S) 1 Authors’ Note: Valid arguments can be presented both in favor and against the designation of the Black turtle as a full species within the genus Chelonia; namely, Chelonia agassizii.
    [Show full text]
  • Water Turtles
    WATER TURTLES Range Bog Turtle Bog Turtle • North America’s smallest turtle (3” to 4.5”); NC’s rarest • Have noticeable bright orange, yellow or red blotch on each side of face • Live in isolated spring-fed fen, sphagnum bogs, marshy meadows and wet pastures • Eat beetles, insect larvae, snails, seeds and millipedes • Females mature from 5-8 years and mate from May to Yellow-bellied Slider June Range • Deposit 2-6 eggs from June to July which hatch after 42 -56 days of incubation • Placed on NC’s threatened list in 1989 ENDANGERED 1 Yellow-bellied Slider • Yellow patch on side of head – on females and juveniles • 5 to 8 inches • Underside of shell is yellow • Males smaller than females with longer, thicker tail and long fingernails • Juveniles eat more carnivorous diet Redbelly Turtle • Adults are omnivores – feeding = underwater • Males mature between 3-5 yrs • 5-7 year old females lay 4 to 23 eggs from May to July • Eggs incubate 2-2.5 months and hatch between July- September • Help control invertebrate and vegetation populations • Live in fresh water Range Red Belly Turtle • 10-15” in length • Like deep water • Eat both plants and animals-insect larvae, crayfish, worms and tadpoles • Active from May thru October Snapping Turtle • Females lay 10-12 eggs in June-July which hatch Range sometime in late summer. • Young sometimes winter over in the nest until spring • Like to bask in the sun 2 Snapping Turtle • 8-14 inches weighing from 10 to 50 lbs • Large head, small plastron, long tail & strong limbs • Males larger than females Range
    [Show full text]
  • Caretta Caretta): Are Motor Patterns Conserved in the Evolution of New Locomotor Strategies? Angela R.V
    Clemson University TigerPrints Publications Biological Sciences 2011 Forelimb kinematics and motor patterns of swimming loggerhead sea turtles (Caretta caretta): are motor patterns conserved in the evolution of new locomotor strategies? Angela R.V. Rivera Jeanette Wyneken Richard W. Blob Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/bio_pubs Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Biological Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. 3314 The Journal of Experimental Biology 214, 3314-3323 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jeb.057364 RESEARCH ARTICLE Forelimb kinematics and motor patterns of swimming loggerhead sea turtles (Caretta caretta): are motor patterns conserved in the evolution of new locomotor strategies? Angela R. V. Rivera1,*, Jeanette Wyneken2 and Richard W. Blob1 1Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA and 2Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Box 3091, Boca Raton, FL 33431, USA *Author for correspondence ([email protected]) Accepted 5 July 2011 SUMMARY Novel functions in animals may evolve through changes in morphology, muscle activity or a combination of both. The idea that new functions or behavior can arise solely through changes in structure, without concurrent changes in the patterns of muscle activity that control movement of those structures, has been formalized as the neuromotor conservation hypothesis. In vertebrate locomotor systems, evidence for neuromotor conservation is found across evolutionary transitions in the behavior of terrestrial species, and in evolutionary transitions from terrestrial species to flying species.
    [Show full text]
  • Loggerhead Sea Turtle (Caretta Caretta)
    Loggerhead Sea Turtle (Caretta caretta) FAMILY: Cheloniidae STATUS: The loggerhead sea turtle was initially listed as threatened throughout its range (Federal Register, July 28, 1978). On September 22, 2011, the listing was revised from a single global threatened species to a listing of nine Distinct Population Segments (DPS); four listed as threatened (Northwest Atlantic Ocean, South Atlantic Ocean, Southwest Indian Ocean, Southeast Indo-Pacific Ocean, and South Atlantic Ocean DPSs) and five listed as endangered (Northeast Atlantic Ocean, Mediterranean Sea, North Pacific Ocean, South Pacific Ocean, and North Indian Ocean DPSs). DESCRIPTION: The loggerhead is characterized by a large head with blunt jaws. The carapace and flippers are a reddish-brown color; the plastron is yellow. The carapace has five pairs of costal scutes with the first touching the nuchal scute. There are three large inframarginal scutes on each of the bridges between the plastron and carapace. Adults grow to an average weight of about 200 pounds and an average length of 3 feet. The species feeds on mollusks, crustaceans, fish, and other marine animals. HABITAT: The loggerhead is widely distributed within its range. It may be found hundreds of miles out to sea, as well as in inshore areas such as bays, lagoons, salt marshes, creeks, ship channels, and the mouths of large rivers. Coral reefs, rocky places, and ship wrecks are often used as feeding areas. Nesting occurs mainly on open beaches or along narrow bays having suitable sand and it is often in association with other species of sea turtles. Most loggerhead hatchlings originating from U.S.
    [Show full text]
  • Turtles and Tortoises
    Lizards (continued) MRR-247 12” Chuckwalla MRR-248 8” Vietnamese Golden Gecko MRR-249 4” Mediterranean Gecko Eye Size: 6mm Eye Size: 5mm Eye Size: 2mm MRR-250 5” Prairie Skink MRR-251 19” Egyptian Uromastyx MRR-252 5 1/2” Ornate Tree Lizard - Utah Eye Size: 1mm Eye Size: 6mm Eye Size: 2mm MRR-253 11” Tiger Whiptail MRR-254 9” Clark Spiney Lizard MRR-270 4” Ornate Tree Lizard - Arizona Eye Size: 3mm Eye Size: 3mm Eye Size: 2mm Turtles MRR-18 7” Alligator Snapping Turtle MRR-19 11” Shell Mata Mata MRR-20 4” Shell Spotted Eye Size: 5mm Eye Size: 4mm Eye Size: 4mm MRR-21 4” Shell Eastern Box MRR-22 4” Shell Bog Turtle MRR-23 7” Shell Wood Eye Size: 5mm Eye Size: 4mm Eye Size: 5mm MRR-24 5” Shell Diamondback Terrapin MRR-57 5 ½” Shell Painted Turtle MRR-58 11 ½” Shell Desert Tortoise Eye Size: 4mm Eye Size: 4mm Eye Size: 6mm MRR-59 5” Shell Snapping Turtle MRR-61 2” Loggerhead Sea Turtle MRR-73 4 ½” Shell Mud Eye Size: 4mm Eye Size: 3mm Eye Size: 4mm MRR-74 4” Shell Musk MRR-80 13” Shell African Leopard MRR-81 5” Star Tortoise Eye Size: 4mm Eye Size: 7mm Eye Size: 4mm MRR-84 13” Kemp Ridley MRR-85 15” Shell Spiney Softshell MRR-88 5” Shell Wood Turtle Eye Size: 18mm Eye Size: 4mm Eye Size: 3mm MRR-91 6” Female Diamondback Terrapin MRR-97 7” Fly River Turtle MRR-98 19” Green Sea Turtle Eye Size: 4mm Eye Size: 4mm Eye Size: 18mm MRR-100 12” Yellow-bellied Slider MRR-126 3” Eastern Box Turtle MRR-134 3 1/2” Shell Loggerhead Eye Size: 6mm Eye Size: 3mm Eye Size: 3mm Turtles (continued) MRR-136 5” Red-eared Slider MRR-148 10” Gopher Tortoise MRR-190
    [Show full text]
  • Loggerhead Sea Turtle Caretta Caretta
    Rare Animals of Louisiana Loggerhead Sea Turtle Caretta caretta Rarity Rank: S1/G3 Identification: Delaware Game & Fish Commission Reddish—brown carapace and yellowish plastron Other diagnostic features include 5 or more costal scutes, with the first one always touching the nuchal Large, block like head The carapace length of full-grown adults averages about 1.1 m (43.3 in) with a maximum measured length of 1.2 m (47.2 in) Adults may weigh more than 227 kg (500 lb) Habitat: Marine open deep water, marine open shallow water (especially with submerged seagrass beds, salt marshes, bays, tidal passes, and coastal dunes (nesting)) Loggerheads generally inhabit warm water over the continental shelf and regularly enter marshes, estuaries and coastal rivers Food habits: Omnivorous, feeding on aquatic plants, crustaceans, mollusks, jellyfish, squid, sea urchins and fish Range: Primarily found in the warm water of the Atlantic basin but may range as far north as Canada or as far south as Argentina In Louisiana, this species has been found throughout the coastal region, but nesting has only been recorded on the Chandeleur Islands Reproduction: Ideal nesting habitat is provided by well—drained dunes with clean sand and scattered grassy vegetation Females lay an average of 2 clutches (range 1-7) of 60- 80 eggs per season Most females nest on 2 year or 3 year intervals Nesting in Louisiana usually occurs between May and August, with a peak in late June Threats: Erosion of barrier islands on which the species nests Take of eggs, young, and adult turtles as food for people Incidental take of turtles by fishing and shrimping gear Range based on occurrences in Natural Heritage database Rare Animals of Louisiana Coastal land loss Beneficial Management Practices: Protection of females, eggs and hatchlings on breeding beaches Use of turtle exclusion devices (TEDS) on shrimp trawls Reduced trawling time for shrimping LA River Basins: Pontchartrain, Mississippi, Barataria Drawing from: A Field Guide to Reptiles and Amphibians of Eastern and Central North America.
    [Show full text]