Climate and Biodiversity (2015)

Total Page:16

File Type:pdf, Size:1020Kb

Climate and Biodiversity (2015) Climate and Biodiversity Promoting Nature-Based Solutions 1 x Great Bird Island, Antigua. © Fauna & Flora International/photo by Jenny Daltry Cover photos clock: © Robin Moore/iLCP, © Benjamin Drummond, © Robin Moore/iLCP, © Robin Moore/iLCP, © Benjamin Drummond 2 About CEPF The Critical Ecosystem Partnership Fund (CEPF) provides grants to nongovernmental and private sector organizations so they can conserve some of the most biologically diverse yet threatened ecosystems—the world’s biodiversity hotspots. The investments are even more meaningful because these regions are home to millions of people who are impoverished and highly dependent on natural resources. The fund is a joint program of l’Agence Française de Développement, Conservation International, the European Union, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. Enabling civil society groups to have stronger voices and exert greater influence in the world around them is the hallmark of our approach. Our grantee partners range from small farming cooperatives and community associations to private sector partners and national and international nongovernmental organizations (NGOs). Our grants: • Target biodiversity hotspots in developing and transitional countries. • Are guided by regional investment strategies—ecosystem profiles—developed with local stakeholders. • Go directly to civil society groups to build this vital constituency for conservation alongside governmental partners. Grants are awarded on a competitive basis to implement the conservation strategy developed in each ecosystem profile. • Help governments meet targets related to the U.N.’s Convention on Biological Diversity, Framework Convention on Climate Change, and Sustainable Development Goals. • Create working alliances among diverse groups, combining unique capacities and eliminating duplication of efforts. • Achieve results through an ever-expanding network of partners working together toward shared goals. For more information, please visit www.cepf.net. At A Glance Hotspot Grantees Committed Amount Protected strategies supported grants leveraged by areas created implemented those grants (hectares) 23 2,000 $192M $347M 13M 3 Where CEPF Works 4 1. ATLANTIC FOREST 9. GUINEAN FORESTS OF WEST AFRICA 17. PHILIPPINES 2. CAPE FLORISTIC REGION 10. HIMALAYA 18. POLYNESIA-MICRONESIA 3. CARIBBEAN ISLANDS 11. INDO-BURMA 19. SUCCULENT KAROO 4. CAUCASUS 12. MADAGASCAR AND INDIAN OCEAN 20. SUNDALAND ISLANDS 5. CERRADO 21. TROPICAL ANDES 13. MAPUTALAND-PONDOLAND-ALBANY 6. COASTAL FORESTS OF EASTERN AFRICA 22. TUMBES-CHOCÓ-MAGDALENA 14. MEDITERRANEAN BASIN 7. EAST MELANESIAN ISLANDS 23. WESTERN GHATS AND SRI LANKA 15. MESOAMERICA 8. EASTERN AFROMONTANE 24. WALLACEA 16. MOUNTAINS OF SOUTHWEST CHINA * Inception through fiscal year 2016 Note: The Eastern Arc Mountains and Coastal Forests of Tanzania and Kenya Hotspot was divided in 2005; a portion of it is now part of the Eastern Afromontane Hotspot, and the remainder is part of the Coastal Forests of Eastern Africa Hotspot. Before the separation, CEPF had initiated an investment in the original Eastern Arc Hotspot and through that investment awarded grants in portions of the hotspots that are now known as the Eastern Afromontane and the Coastal Forests of Eastern Africa. 5 “Reinforcing these storehouses of rich, diverse life and essential resources by working with local conservationists and empowering communities is precisely the sort of approach that, when scaled up, can make a critical difference in the effort to stave off climate-related disaster.” Thomas E. Lovejoy Young volunteers at mangrove nursery, Haiti. © Fondation pour la Protection de la Biodiversité Marine/photo by Jean Wiener 6 Biodiversity and Nature- Based Climate Solutions The intersection of climate change and biodiversity is a point of the utmost importance for the future of humanity. Biodiversity is especially sensitive to climate change after 10,000 years of adjusting to a stable climate. The fingerprints of climate change can be seen anywhere one looks in nature. Beyond the many things that the diversity of life does for us, nature offers remedies to the negative impacts of climate change: it can help living things adapt; prevent future emissions by storing carbon; and offset some of the CO2 concentrations that are already changing our world. Natural ecosystems can help people – particularly the poor in rural and urban areas – adapt to changes in our climate. Sustainably managed rivers, aquifers and floodplains can help ensure water supplies and regulate flooding. Healthy coastal ecosystems such as mangroves and wetlands temper the impact of storms. Thriving grasslands counter drought and flooding. Tropical forests provide wild reserves of food and income during failed harvests. The oceans absorb heat and CO2 from the atmosphere, helping to stabilize the climate. Reducing or eliminating deforestation keeps carbon in living forest systems instead of adding to atmospheric greenhouse gas concentrations. At the same time, because a significant portion of the atmospheric greenhouse gas burden comes from the destruction and degradation of modern ecosystems, restoration of ecosystems at a large scale could pull as much as 0.5 degree Celsius of temperature increase out of the climate change equation. That is an impressive amount compared to the 0.85 degree Celsius of climate temperature increase already experienced since the industrial revolution. It is also an important offset considering the December 2015 global agreement to keep the global average temperature change this century to “well under 2 degrees Celsius” above pre-industrial levels, and to drive efforts to limit the temperature increase even further to 1.5 degrees Celsius. The global community should aim to limit temperature increase to 1.5 degrees Celsius to prevent destruction of reefs due to increased water temperature and acidification, and other mass extinctions and ecosystem collapse. That can only be achieved by protecting existing ecosystems and their diversity along with an ambitious restoration program. By funding conservation efforts implemented by civil society in the world’s biodiversity hotspots, the Critical Ecosystem Partnership Fund (CEPF) is already making a major contribution to this goal. For example, CEPF supported 7 percent of the global expansion of terrestrial protected areas during the period 2001-2010. CEPF works with local and international experts, other funders, government officials and communities to develop and implement thoughtful, coordinated conservation strategies via the strengthening of civil society. This approach has proven highly effective. This promise is chronicled here in examples of CEPF-funded work executed by international, national and local civil society organizations in developing countries and territories located in 23 of the 35 biodiversity hotspots. They clearly demonstrate effective approaches that, when taken to scale, will help the global community address the climate challenge using nature-based solutions—solutions that also contribute to the achievement of the 2020 biodiversity targets of the Convention on Biological Diversity (also known as the Aichi Targets), and can help build necessary bridges between global climate and biodiversity initiatives. The time is right to engage the CEPF model to its full potential. Thomas E. Lovejoy, Ph.D. Senior fellow at the United Nations Foundation, George Mason University professor and co-editor of “Climate Change and Biodiversity” Photo © Dylan Coulter 7 Caribbean Islands Land Management Biodiversity Hotspot Jamaica’s Hellshire Hills and Portland Ridge key biodiversity to Prevent Carbon areas include an important watershed that provides Emissions and communities with fresh water, serves as habitat for many fish species and the last population of the Critically Increase Absorption Endangered Jamaican iguana (Cyclura collei), and supports mangrove wetlands. CEPF grantee Caribbean Coastal Area Management Foundation (C-CAM) Careful land management protects and facilitated a climate change risk assessment for Portland restores forests and grasslands, supports Ridge and Hellshire Hills as part of the preparation of sustainable agriculture and balanced use a management plan for the Portland Bight Protected of resources, allowing people to continue Area. This is the first such plan in Jamaica to factor in climate change. The assessment determined that two enjoying, and even expand, the carbon of the major expected climate risks are a decrease storage provided by ecosystems. Proper in freshwater and coastal sedimentation and saline management also promotes fertile soils and intrusion. prevents erosion, to the benefit of farmers. Results Keeping these areas intact prevents further • Completed Jamaica’s first land management plan to carbon emissions and additional warming. include a climate change risk assessment. Expanding them could absorb emissions • Developed an action plan that provides strategies already on their way to feeding further on climate change adaptation and mitigation, land temperature increases. use and development zoning, and afforestation and reforestation initiatives. Implementation is underway. 8 Hellshire Hills wetland, Jamaica. © Robin Moore Eastern Afromontane Mediterranean Basin Biodiversity Hotspot Biodiversity Hotspot In eastern Democratic Republic In the dry Anti-Lebanon Mountains of Congo, CEPF is supporting on the Lebanese-Syrian border, the Wildlife Conservation Society
Recommended publications
  • This Keyword List Contains Indian Ocean Place Names of Coral Reefs, Islands, Bays and Other Geographic Features in a Hierarchical Structure
    CoRIS Place Keyword Thesaurus by Ocean - 8/9/2016 Indian Ocean This keyword list contains Indian Ocean place names of coral reefs, islands, bays and other geographic features in a hierarchical structure. For example, the first name on the list - Bird Islet - is part of the Addu Atoll, which is in the Indian Ocean. The leading label - OCEAN BASIN - indicates this list is organized according to ocean, sea, and geographic names rather than country place names. The list is sorted alphabetically. The same names are available from “Place Keywords by Country/Territory - Indian Ocean” but sorted by country and territory name. Each place name is followed by a unique identifier enclosed in parentheses. The identifier is made up of the latitude and longitude in whole degrees of the place location, followed by a four digit number. The number is used to uniquely identify multiple places that are located at the same latitude and longitude. For example, the first place name “Bird Islet” has a unique identifier of “00S073E0013”. From that we see that Bird Islet is located at 00 degrees south (S) and 073 degrees east (E). It is place number 0013 at that latitude and longitude. (Note: some long lines wrapped, placing the unique identifier on the following line.) This is a reformatted version of a list that was obtained from ReefBase. OCEAN BASIN > Indian Ocean OCEAN BASIN > Indian Ocean > Addu Atoll > Bird Islet (00S073E0013) OCEAN BASIN > Indian Ocean > Addu Atoll > Bushy Islet (00S073E0014) OCEAN BASIN > Indian Ocean > Addu Atoll > Fedu Island (00S073E0008)
    [Show full text]
  • Biodiversity and Ecology of Afromontane Rainforests with Wild Coffea Arabica L
    Feyera Senbeta Wakjira (Autor) Biodiversity and ecology of Afromontane rainforests with wild Coffea arabica L. populations in Ethiopia https://cuvillier.de/de/shop/publications/2260 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: [email protected], Website: https://cuvillier.de General introduction 1 GENERAL INTRODUCTION 1.1 Background The term biodiversity is used to convey the total number, variety and variability of living organisms and the ecological complexes in which they occur (Wilson 1988; CBD 1992; Rosenzweig 1995). The concept of biological diversity can be applied to a wide range of spatial and organization scales, including genetics, species, community, and landscape scales (Noss 1990; Austin et al. 1996; Tuomisto et al. 2003). It is becoming increasingly apparent that knowledge of the role of patterns and processes that determine diversity at different scales is at the very heart of an understanding of variation in biodiversity. Processes influencing diversity operate at different spatial and temporal scales (Rosenzweig 1995; Gaston 2000). A variety of environmental events and processes, including past evolutionary development, biogeographic processes, extinctions, and current influences govern the biodiversity of a particular site (Brown and Lomolino 1998; Gaston 2000; Ricklefs and Miller 2000). Biodiversity is valued and has been studied largely because it is used, and could be used better, to sustain and improve human well-being (WWF 1993; WCMC 1994). However, there has been a rapid decline in the biodiversity of the world during the past two to three decades (Wilson 1988; Whitmore and Sayer 1992; Lugo et al.
    [Show full text]
  • Tulbagh Renosterveld Project Report
    BP TULBAGH RENOSTERVELD PROJECT Introduction The Cape Floristic Region (CFR) is the smallest and richest floral kingdom of the world. In an area of approximately 90 000km² there are over 9 000 plant species found (Goldblatt & Manning 2000). The CFR is recognized as one of the 33 global biodiversity hotspots (Myers, 1990) and has recently received World Heritage Status. In 2002 the Cape Action Plan for the Environment (CAPE) programme identified the lowlands of the CFR as 100% irreplaceable, meaning that to achieve conservation targets all lowland fragments would have to be conserved and no further loss of habitat should be allowed. Renosterveld , an asteraceous shrubland that predominantly occurs in the lowland areas of the CFR, is the most threatened vegetation type in South Africa . Only five percent of this highly fragmented vegetation type still remains (Von Hase et al 2003). Most of these Renosterveld fragments occur on privately owned land making it the least represented vegetation type in the South African Protected Areas network. More importantly, because of the fragmented nature of Renosterveld it has a high proportion of plants that are threatened with extinction. The Custodians of Rare and Endangered Wildflowers (CREW) project, which works with civil society groups in the CFR to update information on threatened plants, has identified the Tulbagh valley as a high priority for conservation action. This is due to the relatively large amount of Renosterveld that remains in the valley and the high amount of plant endemism. The CAPE program has also identified areas in need of fine scale plans and the Tulbagh area falls within one of these: The Upper Breede River planning domain.
    [Show full text]
  • The Rarest and Least Protected Forests in Biodiversity Hotspots
    Biodivers Conserv DOI 10.1007/s10531-012-0384-1 ORIGINAL PAPER The rarest and least protected forests in biodiversity hotspots Thomas W. Gillespie • Boris Lipkin • Lauren Sullivan • David R. Benowitz • Stephanie Pau • Gunnar Keppel Received: 20 March 2012 / Accepted: 4 October 2012 Ó Springer Science+Business Media Dordrecht 2012 Abstract The goal of biodiversity hotspots is to identify regions around the world where conservation priorities should be focused. We undertake a geographic information system and remote sensing analysis to identify the rarest and least protected forests in biodiversity hotspots. World Wildlife Fund ecoregions with terrestrial forest were subset from 34 biodiversity hotspots and forest cover calculated from GlobCover data at a 300 m pixel resolution. There were 276 ecoregions in 32 biodiversity hotspots classified as containing terrestrial forests. When the first quartile of forest ecoregions was subset based on smallest extent of forest cover in protected areas, there were 69 rare forests identified within 20 biodiversity hotspots. Most rare forest ecoregions (45) occurred on islands or island archipelagos and 47 rare forest ecoregions contained less than 10 % forest cover in pro- tected areas. San Fe´lix-San Ambrosio Islands Temperate Forests, Tubuai Tropical Moist Forests, Maldives-Lakshadweep-Chagos Archipelago Tropical Moist Forests, and Yap Electronic supplementary material The online version of this article (doi:10.1007/s10531-012-0384-1) contains supplementary material, which is available to authorized users. T. W. Gillespie (&) Á B. Lipkin Á L. Sullivan Á D. R. Benowitz Department of Geography, University of California Los Angeles, Los Angeles, CA 90095-1524, USA e-mail: [email protected] B.
    [Show full text]
  • Global Ecological Forest Classification and Forest Protected Area Gap Analysis
    United Nations Environment Programme World Conservation Monitoring Centre Global Ecological Forest Classification and Forest Protected Area Gap Analysis Analyses and recommendations in view of the 10% target for forest protection under the Convention on Biological Diversity (CBD) 2nd revised edition, January 2009 Global Ecological Forest Classification and Forest Protected Area Gap Analysis Analyses and recommendations in view of the 10% target for forest protection under the Convention on Biological Diversity (CBD) Report prepared by: United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) World Wide Fund for Nature (WWF) Network World Resources Institute (WRI) Institute of Forest and Environmental Policy (IFP) University of Freiburg Freiburg University Press 2nd revised edition, January 2009 The United Nations Environment Programme World Conservation Monitoring Centre (UNEP- WCMC) is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme (UNEP), the world's foremost intergovernmental environmental organization. The Centre has been in operation since 1989, combining scientific research with practical policy advice. UNEP-WCMC provides objective, scientifically rigorous products and services to help decision makers recognize the value of biodiversity and apply this knowledge to all that they do. Its core business is managing data about ecosystems and biodiversity, interpreting and analysing that data to provide assessments and policy analysis, and making the results
    [Show full text]
  • Land and Maritime Connectivity Project: Road Component Initial
    Land and Maritime Connectivity Project (RRP SOL 53421-001) Initial Environmental Examination Project No. 53421-001 Status: Draft Date: August 2020 Solomon Islands: Land and Maritime Connectivity Project – Multitranche Financing Facility Road Component Prepared by Ministry of Infrastructure Development This initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of the ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to any particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Solomon Islands: Land and Maritime Connectivity Project Road Component – Initial Environmental Examination Table of Contents Abbreviations iv Executive Summary v 1 Introduction 1 1.1 Background to the Project 1 1.2 Scope of the Environmental Assessment 5 2 Legal and Institutional Framework 6 2.1 Legal and Planning Framework 6 2.1.1 Country safeguard system 6 2.1.2 Other legislation supporting the CSS 7 2.1.3 Procedures for implementing the CSS 9 2.2 National Strategy and Plans 10 2.3 Safeguard Policy Statement 11 3 Description of the Subprojects 12 3.1 Location and Existing Conditions – SP-R1 12 3.1.1 Existing alignment 12 3.1.2 Identified issues and constraints 14 3.2 Location and Existing Conditions – SP-R5 15 3.2.1 Location
    [Show full text]
  • Zoologische Verhandelingen
    Corals of the South-west Indian Ocean: VI. The Alcyonacea (Octocorallia) of Mozambique, with a discussion on soft coral distribution on south equatorial East African reefs Y. Benayahu, A. Shlagman & M.H. Schleyer Benayahu, Y., A. Shlagman & M.H. Schleyer. Corals of the South-west Indian Ocean: VI. The Alcyo- nacea (Octocorallia) of Mozambique, with a discussion on soft coral distribution on south equatorial East African reefs. Zool. Verh. Leiden 345, 31.x.2003: 49-57, fig. 1.— ISSN 0024-1652/ISBN 90-73239-89-3. Y. Benayahu & A. Shlagman. Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel (e-mail: [email protected]). M.H. Schleyer. Oceanographic Research Institute, P.O. Box 10712, Marine Parade 4056, Durban, South Africa. Key words: Mozambique; East African reefs; Octocorallia; Alcyonacea. A list of 46 species of Alcyonacea is presented for the coral reefs of the Segundas Archipelago and north- wards in Mozambique, as well as a zoogeographical record for the Bazaruto Archipelago in southern Mozambique. Among the 12 genera listed, Rhytisma, Lemnalia and Briareum were recorded on Mozambi- can reefs for the first time and the study yielded 27 new zoogeographical records. The survey brings the number of soft coral species listed for Mozambique to a total of 53. A latitudinal pattern in soft coral diversity along the south equatorial East African coast is presented, with 46 species recorded in Tanza- nia, 46 along the northern coast of Mozambique, dropping to 29 in the Bazaruto Archipelago in southern Mozambique and rising again to 38 along the KwaZulu-Natal coast in South Africa.
    [Show full text]
  • Climate Forcing of Tree Growth in Dry Afromontane Forest Fragments of Northern Ethiopia: Evidence from Multi-Species Responses Zenebe Girmay Siyum1,2* , J
    Siyum et al. Forest Ecosystems (2019) 6:15 https://doi.org/10.1186/s40663-019-0178-y RESEARCH Open Access Climate forcing of tree growth in dry Afromontane forest fragments of Northern Ethiopia: evidence from multi-species responses Zenebe Girmay Siyum1,2* , J. O. Ayoade3, M. A. Onilude4 and Motuma Tolera Feyissa2 Abstract Background: Climate-induced challenge remains a growing concern in the dry tropics, threatening carbon sink potential of tropical dry forests. Hence, understanding their responses to the changing climate is of high priority to facilitate sustainable management of the remnant dry forests. In this study, we examined the long-term climate- growth relations of main tree species in the remnant dry Afromontane forests in northern Ethiopia. The aim of this study was to assess the dendrochronological potential of selected dry Afromontane tree species and to study the influence of climatic variables (temperature and rainfall) on radial growth. It was hypothesized that there are potential tree species with discernible annual growth rings owing to the uni-modality of rainfall in the region. Ring width measurements were based on increment core samples and stem discs collected from a total of 106 trees belonging to three tree species (Juniperus procera, Olea europaea subsp. cuspidate and Podocarpus falcatus). The collected samples were prepared, crossdated, and analyzed using standard dendrochronological methods. The formation of annual growth rings of the study species was verified based on successful crossdatability and by correlating tree-ring widths with rainfall. Results: The results showed that all the sampled tree species form distinct growth boundaries though differences in the distinctiveness were observed among the species.
    [Show full text]
  • Lesotho Fourth National Report on Implementation of Convention on Biological Diversity
    Lesotho Fourth National Report On Implementation of Convention on Biological Diversity December 2009 LIST OF ABBREVIATIONS AND ACRONYMS ADB African Development Bank CBD Convention on Biological Diversity CCF Community Conservation Forum CITES Convention on International Trade in Endangered Species CMBSL Conserving Mountain Biodiversity in Southern Lesotho COP Conference of Parties CPA Cattle Post Areas DANCED Danish Cooperation for Environment and Development DDT Di-nitro Di-phenyl Trichloroethane EA Environmental Assessment EIA Environmental Impact Assessment EMP Environmental Management Plan ERMA Environmental Resources Management Area EMPR Environmental Management for Poverty Reduction EPAP Environmental Policy and Action Plan EU Environmental Unit (s) GA Grazing Associations GCM Global Circulation Model GEF Global Environment Facility GMO Genetically Modified Organism (s) HIV/AIDS Human Immuno Virus/Acquired Immuno-Deficiency Syndrome HNRRIEP Highlands Natural Resources and Rural Income Enhancement Project IGP Income Generation Project (s) IUCN International Union for Conservation of Nature and Natural Resources LHDA Lesotho Highlands Development Authority LMO Living Modified Organism (s) Masl Meters above sea level MDTP Maloti-Drakensberg Transfrontier Conservation and Development Project MEAs Multi-lateral Environmental Agreements MOU Memorandum Of Understanding MRA Managed Resource Area NAP National Action Plan NBF National Biosafety Framework NBSAP National Biodiversity Strategy and Action Plan NEAP National Environmental Action
    [Show full text]
  • Comparative Wood Anatomy of Afromontane and Bushveld Species from Swaziland, Southern Africa
    IAWA Bulletin n.s., Vol. 11 (4), 1990: 319-336 COMPARATIVE WOOD ANATOMY OF AFROMONTANE AND BUSHVELD SPECIES FROM SWAZILAND, SOUTHERN AFRICA by J. A. B. Prior 1 and P. E. Gasson 2 1 Department of Biology, Imperial College of Science, Technology & Medicine, London SW7 2BB, U.K. and 2Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, U.K. Summary The habit, specific gravity and wood anat­ of the archaeological research, uses all the omy of 43 Afromontane and 50 Bushveld well preserved, qualitative anatomical charac­ species from Swaziland are compared, using ters apparent in the charred modem samples qualitative features from SEM photographs in an anatomical comparison between the of charred samples. Woods with solitary ves­ two selected assemblages of trees and shrubs sels, scalariform perforation plates and fibres growing in areas of contrasting floristic com­ with distinctly bordered pits are more com­ position. Some of the woods are described in mon in the Afromontane species, whereas Kromhout (1975), others are of little com­ homocellular rays and prismatic crystals of mercial importance and have not previously calcium oxalate are more common in woods been investigated. Few ecological trends in from the Bushveld. wood anatomical features have previously Key words: Swaziland, Afromontane, Bush­ been published for southern Africa. veld, archaeological charcoal, SEM, eco­ The site of Sibebe Hill in northwest Swazi­ logical anatomy. land (26° 15' S, 31° 10' E) (Price Williams 1981), lies at an altitude of 1400 m, amidst a Introduction dramatic series of granite domes in the Afro­ Swaziland, one of the smallest African montane forest belt (White 1978).
    [Show full text]
  • A New Map of Standardized Terrestrial Ecosystems of Africa
    Major contributors to this publication include: The Association of American Geographers is a nonprofit scientific and educational society with a membership of over 10,500 individuals from more than 60 countries. AAG members are geographers and related professionals who work in the public, private, and academic sectors to advance the theory, methods, and practice of geography. This booklet is published by AAG as a special supplement to the African Geographical Review. The U.S. Geological Survey (USGS) was created in 1879 as a science agency charged with providing information and understanding to help resolve complex natural resource problems across the nation and around the world. The mission of the USGS is to provide relevant, impartial scientific information to 1) describe and understand the Earth, 2) minimize loss of life and property from natural disasters, 3) manage water, biological, energy, and mineral resources, and 4) enhance and protect our quality of life. NatureServe is an international conservation nonprofit dedicated to providing the sci- entific basis for effective conservation action. NatureServe’s network in the Americas includes more than 80 member institutions that collect and maintain a unique body of scientific knowledge about the species and ecosystems. The information products, data management tools, and biodiversity expertise that NatureServe’s scientists, technologists, and other professionals provide help meet local, national, and global conservation needs. The Regional Centre for Mapping of Resources for Development (RCMRD) was es- tablished in Nairobi, Kenya in 1975 to provide quality Geo-Information and allied Information Technology products and services in environmental and resource manage- ment for sustainable development in our member countries and beyond.
    [Show full text]
  • Human Population Reduction Is Not a Quick Fix for Environmental Problems
    Human population reduction is not a quick fix for environmental problems Corey J. A. Bradshaw1 and Barry W. Brook The Environment Institute and School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia Edited by Paul R. Ehrlich, Stanford University, Stanford, CA, and approved September 15, 2014 (received for review June 5, 2014) The inexorable demographic momentum of the global human of Earth’s human population because resource demands and population is rapidly eroding Earth’s life-support system. There are living space increase with population size, and proportional consequently more frequent calls to address environmental prob- ecological damage increases even when consumption patterns lems by advocating further reductions in human fertility. To exam- stabilize (22, 23); it is therefore essential that scenarios for future ine how quickly this could lead to a smaller human population, we human population dynamics are explored critically if we are to used scenario-based matrix modeling to project the global popula- plan for a healthy future society (24). tion to the year 2100. Assuming a continuation of current trends in There have been repeated calls for rapid action to reduce the mortality reduction, even a rapid transition to a worldwide one- world population humanely over the coming decades to centuries child policy leads to a population similar to today’s by 2100. Even (1, 3), with lay proponents complaining that sustainability a catastrophic mass mortality event of 2 billion deaths over a hypo- advocates ignore the “elephant in the room” of human over- st thetical 5-y window in the mid-21 century would still yield around population (25, 26).
    [Show full text]