Pdf 801.15 K

Total Page:16

File Type:pdf, Size:1020Kb

Pdf 801.15 K The ISC Int'l Journal of Information Security July 2017, Volume 9, Number 2 (pp. 101{110) ISeCure http://www.isecure-journal.org On the Computational Complexity of Finding a Minimal Basis for the Guess and Determine Attack Shahram Khazaei 1, and Farokhlagha Moazami 2;∗ 1Sharif University of Technology, Department of Mathematical Sciences, Iran, Tehran 2Shahid Beheshti University, Cyberspace Research Institute, Iran, Tehran A R T I C L E I N F O. ABSTRACT Article history: Guess-and-determine attack is one of the general attacks on stream ciphers. Received: 6 March 2017 Revised: 13 June 2017 It is a common cryptanalysis tool for evaluating security of stream ciphers. Accepted: 10 July 2017 The effectiveness of this attack is based on the number of unknown bits Published Online: 12 July 2017 which will be guessed by the attacker to break the cryptosystem. In this Keywords: work, we present a relation between the minimum number of the guessed Guess-and-determine Attack, Computational Complexity, bits and uniquely restricted matching of a graph. This leads us to see that NP-complete, Fixed Parameter finding the minimum number of the guessed bits is NP-complete. Although Tractable, Uniquely Restricted Matching, Alternating Cycle Free fixed parameter tractability of the problem in term of minimum number of Matching, Perfect Matching, Jump the guessed bits remains an open question, we provide some related results. Number, Forcing Number. Moreover, we introduce some closely related graph concepts and problems including alternating cycle free matching, jump number and forcing number of a perfect matching. c 2017 ISC. All rights reserved. 1 Introduction ficient on modern w-bit processors where typically w = 8; 16; 32; 64. These ciphers can be described us- uess-and-determine (GD) attack is a general ing some equations over F2w . GD attack is a basic Gcryptanalysis technique for evaluating security of divide-and-conquer approach to solve the correspond- symmetric cryptosystems. In particular, GD attacks ing equation system. The attacker guesses the values have been a favourite tool for evaluating strength of some unknowns, and then recovers the remaining of many prominent stream ciphers during the past variables using the available relations. If the guessed decade. Examples include, the attacks on RC4 in [1], values are incorrect, the attacker reaches a contradic- on A5/1 in [2], on Snow family in [3{7] on Sober tion. However, if he is lucky and the guessed values family in [8{13], on Sosemanuk in [14{16], on Polar are correct, the remaining unknowns will be deter- Bear in [17, 18] and on Rabbit in [19]. mined. To mount the attack, all possible values for the set of guessed variables, known as basis, must be Any cryptosystem can essentially be described us- tried. Thus, the effectiveness of the attack is deter- ing a system of nonlinear equations. In many cases, mined by the size of the basis. the system is an over-defined set of equations over some finite field. In particular, many ciphers proposed In this paper, we consider a class of GD attacks on during the last decades have been designed to be ef- a system of m equations over Fq involving n unknown variables where m = poly(n) and q = O(1). We as- ∗ Corresponding author. sume that each equation in this system has the follow- Email addresses: [email protected] (S. Khazaei), ing property: if the equation depends on, let us say, t f [email protected] (F. Moazami) variables and t − 1 of them are known, then the last ISSN: 2008-2045 c 2017 ISC. All rights reserved. ISeCure 102 Computational Complexity of Finding a Minimal Basis for the Guess and ... | Khazaei and Moazami variable is uniquely and efficiently determined. This GD attack which leads to improved cryptanalytic at- is a typical property of equations derived for many tacks in practice. Finally, the paper is concluded in ciphers in practice. Assume that a basis of size k ex- Section 7. ists and the attacker knows one. To mount the actual attack, the attacker then needs to try all qk possible 2 Graph Preliminaries ways that the unknowns can be assigned. Since the We assume that the reader is familiar with basic graph correctness of each assignment can be efficiently veri- terminologies. Here we introduce some more advance fied, one can find all satisfying solutions essentially notions. Appendix A includes some illustrating exam- k in time O(q ), ignoring polynomial factors. ples. An isolated vertex is a vertex with degree zero. The naive approach to find a basis of size k, if one An empty graph has no edges, i.e., it consists of only n isolated vertices. A pendant vertex is a vertex with exists, is to examine all k subsets of size k of the set of all unknowns. Checking if a given subset is a basis degree one. A matching in a graph is a set of edges can be done in polynomial time. Therefore, this leads where no two edges share a common vertex. A vertex to the time complexity O(nkpoly(n)) for finding a is matched (or saturated) if it is an endpoint of one of basis of size k. the edges in the matching. A matching of a graph is called perfect if all vertices of the graph are matched. Finding a basis using the naive approach is already unfeasible even for moderate values such as n = Definition 2.1 (uniquely restricted matching). 64 and k = 10 since nk = 260 is considered hardly A matching M in a graph G is called a uniquely re- stricted matching if its matched vertices induce a sub- affordable for cryptanalysis purposes. Therefore, GD graph which has a unique (perfect) matching, namely attacks have often been designed ad-hoc based on the experience of cryptanalysts to find a basis of a small M itself (see Figure A.1a and A.1b). size. There are also some research [5{7] trying to find Definition 2.2 (alternating cycle with respect a (non-optimal) basis in a more systematic way using to a matching). Let M be a matching in graph some heuristics based on greedy algorithms. G. A cycle in G is called alternating with respect to M if its edges appear alternately in M and 1.1 Motivation and Contribution E(G)setminusM (see Figure A.1c). Definition 2.3 (alternating cycle free match- Although finding an optimal basis, i.e., a basis with ing). A matching M in a graph G is called alter- minimum size, has been understood to be a difficult nating cycle free if G has no alternating cycle with problem by cryptanalysts, to the best of our knowl- respect to M. edge, no attempt has been devoted to understand the Definition 2.4 (tree decomposition of a graph). computational complexity aspects of this problem. In A tree decomposition of a graph G is a pair (T; B), this paper, we consider a rigorous treatment of the where T is a tree and B = fB g is a collec- problem of finding a minimum-size basis and show i i2V (T ) tion of subsets of V called bags, such that (see Fig- that it is NP-complete. We also study the fixed pa- ure A.2): rameter tractability of the minimal basis problem in terms of the size of optimal basis size k; that is, if it • Every vertex of G is contained in at least one has an O(f(k)poly(n))-algorithm. This is very impor- bag Bi, tant both from a theoretical complexity point of view • For each edge of G, some bag Bi contains both and practical cryptanalysis since the naive approach its vertices, has a lower bound complexity Ω(nk). Although we • For all vertices i; j; k 2 V (T ), if j belongs to the are not able to prove the fixed parameter tractability unique path from i to k in T , then Bi \ Bk ⊂ of the problem in terms of k, we show that it is fixed Bj. parameter tractable in terms of the treewidth of a Definition 2.5 (treewidth of a graph). The graph which we associate to the problem. width of a tree decomposition (T; B) is one less than The remainder of this paper is organized as fol- its maximum bag size, i.e., maxi2V (T )jBi|−1. The lows. In Section 2, we introduce some graph concepts treewidth of a graph G is defined as the minimum that are used in the next sections. In Section 3, we width over all possible tree decompositions of G. give a precise definition of finding a minimal basis See [20, 21] for more details about treewidth and for GD attack and present an equivalent description tree decomposition. of the problem in graph theory terminology. Then in Section 4, we study computational complexity of the 3 Minimal Basis Problem finding a minimal basis. Section 5 relates our prob- lem to two other mathematical problems from graph In this section, we provide a formal definition of theory. In Section 6, we discuss some aspects of the the problem of finding a minimum-size basis of an ISeCure July 2017, Volume 9, Number 2 (pp. 101{110) 103 equation set with some special properties. We also has no basis of size one, but has some bases of size present an equivalent description of the problem in two, e.g., B = fx2; x3g. graph theory terminology which is easier to work with. We need to introduce some definitions. Our goal is to study the problem of finding a mini- mal basis of an invertible equations system.
Recommended publications
  • Algebraic Attacks on SOBER-T32 and SOBER-T16 Without Stuttering
    Algebraic Attacks on SOBER-t32 and SOBER-t16 without stuttering Joo Yeon Cho and Josef Pieprzyk? Center for Advanced Computing – Algorithms and Cryptography, Department of Computing, Macquarie University, NSW, Australia, 2109 {jcho,josef}@ics.mq.edu.au Abstract. This paper presents algebraic attacks on SOBER-t32 and SOBER-t16 without stuttering. For unstuttered SOBER-t32, two differ- ent attacks are implemented. In the first attack, we obtain multivariate equations of degree 10. Then, an algebraic attack is developed using a collection of output bits whose relation to the initial state of the LFSR can be described by low-degree equations. The resulting system of equa- tions contains 269 equations and monomials, which can be solved using the Gaussian elimination with the complexity of 2196.5. For the second attack, we build a multivariate equation of degree 14. We focus on the property of the equation that the monomials which are combined with output bit are linear. By applying the Berlekamp-Massey algorithm, we can obtain a system of linear equations and the initial states of the LFSR can be recovered. The complexity of attack is around O(2100) with 292 keystream observations. The second algebraic attack is applica- ble to SOBER-t16 without stuttering. The attack takes around O(285) CPU clocks with 278 keystream observations. Keywords : Algebraic attack, stream ciphers, linearization, NESSIE, SOBER-t32, SOBER-t16, modular addition, multivariate equations 1 Introduction Stream ciphers are an important class of encryption algorithms. They encrypt individual characters of a plaintext message one at a time, using a stream of pseudorandom bits.
    [Show full text]
  • VMPC-MAC: a Stream Cipher Based Authenticated Encryption Scheme
    VMPC-MAC: A Stream Cipher Based Authenticated Encryption Scheme Bartosz Zoltak http://www.vmpcfunction.com [email protected] Abstract. A stream cipher based algorithm for computing Message Au- thentication Codes is described. The algorithm employs the internal state of the underlying cipher to minimize the required additional-to- encryption computational e®ort and maintain general simplicity of the design. The scheme appears to provide proper statistical properties, a comfortable level of resistance against forgery attacks in a chosen ci- phertext attack model and high e±ciency in software implementations. Keywords: Authenticated Encryption, MAC, Stream Cipher, VMPC 1 Introduction In the past few years the interest in message authentication algorithms has been concentrated mostly on modes of operation of block ciphers. Examples of some recent designs include OCB [4], OMAC [7], XCBC [6], EAX [8], CWC [9]. Par- allely a growing interest in stream cipher design can be observed, however along with a relative shortage of dedicated message authentication schemes. Regarding two recent proposals { Helix and Sober-128 stream ciphers with built-in MAC functionality { a powerful attack against the MAC algorithm of Sober-128 [10] and two weaknesses of Helix [12] were presented at FSE'04. This paper gives a proposition of a simple and software-e±cient algorithm for computing Message Authentication Codes for the presented at FSE'04 VMPC Stream Cipher [13]. The proposed scheme was designed to minimize the computational cost of the additional-to-encryption MAC-related operations by employing some data of the internal-state of the underlying cipher. This approach allowed to maintain sim- plicity of the design and achieve good performance in software implementations.
    [Show full text]
  • Improved Correlation Attacks on SOSEMANUK and SOBER-128
    Improved Correlation Attacks on SOSEMANUK and SOBER-128 Joo Yeon Cho Helsinki University of Technology Department of Information and Computer Science, Espoo, Finland 24th March 2009 1 / 35 SOSEMANUK Attack Approximations SOBER-128 Outline SOSEMANUK Attack Method Searching Linear Approximations SOBER-128 2 / 35 SOSEMANUK Attack Approximations SOBER-128 SOSEMANUK (from Wiki) • A software-oriented stream cipher designed by Come Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois, Henri Gilbert, Louis Goubin, Aline Gouget, Louis Granboulan, Cedric` Lauradoux, Marine Minier, Thomas Pornin and Herve` Sibert. • One of the final four Profile 1 (software) ciphers selected for the eSTREAM Portfolio, along with HC-128, Rabbit, and Salsa20/12. • Influenced by the stream cipher SNOW and the block cipher Serpent. • The cipher key length can vary between 128 and 256 bits, but the guaranteed security is only 128 bits. • The name means ”snow snake” in the Cree Indian language because it depends both on SNOW and Serpent. 3 / 35 SOSEMANUK Attack Approximations SOBER-128 Overview 4 / 35 SOSEMANUK Attack Approximations SOBER-128 Structure 1. The states of LFSR : s0,..., s9 (320 bits) −1 st+10 = st+9 ⊕ α st+3 ⊕ αst, t ≥ 1 where α is a root of the primitive polynomial. 2. The Finite State Machine (FSM) : R1 and R2 R1t+1 = R2t ¢ (rtst+9 ⊕ st+2) R2t+1 = Trans(R1t) ft = (st+9 ¢ R1t) ⊕ R2t where rt denotes the least significant bit of R1t. F 3. The trans function Trans on 232 : 32 Trans(R1t) = (R1t × 0x54655307 mod 2 )≪7 4. The output of the FSM : (zt+3, zt+2, zt+1, zt)= Serpent1(ft+3, ft+2, ft+1, ft)⊕(st+3, st+2, st+1, st) 5 / 35 SOSEMANUK Attack Approximations SOBER-128 Previous Attacks • Authors state that ”No linear relation holds after applying Serpent1 and there are too many unknown bits...”.
    [Show full text]
  • SOBER: a Stream Cipher Based on Linear Feedback Over GF\(2N\)
    Turing: a fast software stream cipher Greg Rose, Phil Hawkes {ggr, phawkes}@qualcomm.com 25-Feb-03 Copyright © QUALCOMM Inc, 2002 DISCLAIMER! •This version (1.8 of TuringRef.c) is what we expect to publish. Any changes from now on will be because someone broke it. (Note: we said that about 1.5 and 1.7 too.) •This is an experimental cipher. Turing might not be secure. We've already found two attacks (and fixed them). We're starting to get confidence. •Comments are welcome. •Reference implementation source code agrees with these slides. 25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 2 Introduction •Stream ciphers •Design goals •Using LFSRs for cryptography •Turing •Keying •Analysis and attacks •Conclusion 25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 3 Stream ciphers •Very simple – generate a stream of pseudo-random bits – XOR them into the data to encrypt – XOR them again to decrypt •Some gotchas: – can’t ever reuse the same stream of bits – so some sort of facility for Initialization Vectors is important – provides privacy but not integrity / authentication – good statistical properties are not enough for security… most PRNGs are no good. 25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 4 Turing's Design goals •Mobile phones – cheap, slow, small CPUs, little memory •Encryption in software – cheaper – can be changed without retooling •Stream cipher – two-level keying structure (re-key per data frame) – stream is "seekable" with low overhead •Very fast and simple, aggressive design •Secure (? – we think so, but it's experimental) 25-Feb-03
    [Show full text]
  • Cryptanalysis Techniques for Stream Cipher: a Survey
    International Journal of Computer Applications (0975 – 8887) Volume 60– No.9, December 2012 Cryptanalysis Techniques for Stream Cipher: A Survey M. U. Bokhari Shadab Alam Faheem Syeed Masoodi Chairman, Department of Research Scholar, Dept. of Research Scholar, Dept. of Computer Science, AMU Computer Science, AMU Computer Science, AMU Aligarh (India) Aligarh (India) Aligarh (India) ABSTRACT less than exhaustive key search, then only these are Stream Ciphers are one of the most important cryptographic considered as successful. A symmetric key cipher, especially techniques for data security due to its efficiency in terms of a stream cipher is assumed secure, if the computational resources and speed. This study aims to provide a capability required for breaking the cipher by best-known comprehensive survey that summarizes the existing attack is greater than or equal to exhaustive key search. cryptanalysis techniques for stream ciphers. It will also There are different Attack scenarios for cryptanalysis based facilitate the security analysis of the existing stream ciphers on available resources: and provide an opportunity to understand the requirements for developing a secure and efficient stream cipher design. 1. Ciphertext only attack 2. Known plain text attack Keywords Stream Cipher, Cryptography, Cryptanalysis, Cryptanalysis 3. Chosen plaintext attack Techniques 4. Chosen ciphertext attack 1. INTRODUCTION On the basis of intention of the attacker, the attacks can be Cryptography is the primary technique for data and classified into two categories namely key recovery attack and communication security. It becomes indispensable where the distinguishing attacks. The motive of key recovery attack is to communication channels cannot be made perfectly secure. derive the key but in case of distinguishing attack, the From the ancient times, the two fields of cryptology; attacker’s motive is only to derive the original from the cryptography and cryptanalysis are developing side by side.
    [Show full text]
  • Non-Randomness in Estream Candidates Salsa20 and TSC-4
    Non-randomness in eSTREAM Candidates Salsa20 and TSC-4 Simon Fischer1, Willi Meier1, C^omeBerbain2, Jean-Fran¸coisBiasse2, and M.J.B. Robshaw2 1 FHNW, 5210 Windisch, Switzerland fsimon.fischer,[email protected] 2 FTRD, 38{40 rue du G´en´eralLeclerc, 92794 Issy les Moulineaux, France fcome.berbain,jeanfrancois.biasse,[email protected] Abstract. Stream cipher initialisation should ensure that the initial state or keystream is not detectably related to the key and initialisa- tion vector. In this paper we analyse the key/IV setup of the eSTREAM Phase 2 candidates Salsa20 and TSC-4. In the case of Salsa20 we demon- strate a key recovery attack on six rounds and observe non-randomness after seven. For TSC-4, non-randomness over the full eight-round initial- isation phase is detected, but would also persist for more rounds. Key words: Stream Cipher, eSTREAM, Salsa20, TSC-4, Chosen IV Attack 1 Introduction Many synchronous stream ciphers use two inputs for keystream generation; a secret key K and a non-secret initialisation vector IV . The IV allows different keystreams to be derived from a single secret key and facilitates resynchroniza- tion. In the general model of a synchronous stream cipher there are three func- tions. During initialisation a function F maps the input pair (K; IV ) to a secret initial state X. The state of the cipher then evolves at time t under the action of a function f that updates the state X according to Xt+1 = f(Xt). Keystream is generated using an output function g to give a block of keystream zt = g(Xt).
    [Show full text]
  • Alternating Step Generator Using FCSR and Lfsrs: a New Stream Cipher
    Received: May 22, 2019 130 Alternating Step Generator Using FCSR and LFSRs: A New Stream Cipher Nagendar Yerukala1 Venu Nalla1 Padmavathi Guddeti1* V. Kamakshi Prasad2 1C.R. Rao Advanced Institute of Mathematics, Statistics and Computer Science, UoH Campus, Hyderabad, India 2JNTUH College of Engineering, Hyderabad, India * Corresponding author’s Email: [email protected] Abstract: Data encryption play major role in all communications via internet, wireless and wired media. Stream ciphers are used for data encryption due to their low error propagation. This paper presents a new design of stream cipher for generating pseudorandom keystream with two LFSR`s, one FCSR and a non-linear combiner function, which is a bit oriented based on alternating step generator (ASGF). In our design two LFSR`s are controlled by the FCSR . ASGF has two stages one is initialization and the other is key stream generation. We performed NIST test suite for checking randomness on the keystream of length 1500000 generated by our design with 99% confidence level. Keystream of ASGF passes almost all NIST tests for randomness and the results are tabulated. For fixed extreme patterns of key and IV, ASGF is giving random sequence. Throughput of our proposed stream cipher ASGF is 4364 cycles/byte. Throughput comparison of ASGF with existing stream ciphers A5/1, A5/2 and RC4 are presented. It is not possible to mount brute force attack on ASGF due to large key space 2192. Security analysis of ASGF against exhaustive search, Algebraic attack, distinguishing attack is also presented in this paper. Keywords: Stream ciphers, Linear feedback shift register, Feedback with carry shift register, Randomness test, Alternating step generator, Attacks.
    [Show full text]
  • Fault Analysis of Stream Ciphers
    Fault Analysis of Stream Ciphers Jonathan J. Hoch and Adi Shamir Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Israel Abstract. A fault attack is a powerful cryptanalytic tool which can be applied to many types of cryptosystems which are not vulnerable to direct attacks. The research literature contains many examples of fault attacks on public key cryptosystems and block ciphers, but surprisingly we could not find any systematic study of the applicability of fault attacks to stream ciphers. Our goal in this paper is to develop general techniques which can be used to attack the standard constructions of stream ciphers based on LFSR’s, as well as more specialized techniques which can be used against specific stream ciphers such as RC4, LILI-128 and SOBER- t32. While most of the schemes can be successfully attacked, we point out several interesting open problems such as an attack on FSM filtered constructions and the analysis of high Hamming weight faults in LFSR’s. Keywords: Stream cipher, LFSR, fault attack, Lili-128, SOBER-t32, RC4. 1 Introduction 1.1 Background Attacks against cryptosystems can be divided into two classes, direct attacks and indirect attacks. Direct attacks include attacks against the algorithmic na- ture of the cryptosystem regardless of its implementation. Indirect attacks make use of the physical implementation of the cryptosystem and include a large va- riety of techniques which either give the attacker some ‘inside information’ on the cryptosystem (such as power or timing analysis) or some kind of influence on the cryptosystem’s internal state such as ionizing radiation flipping random bits in the device’s internal memory.
    [Show full text]
  • Cache Timing Analysis of LFSR-Based Stream Ciphers
    Cache Timing Analysis of LFSR-based Stream Ciphers Gregor Leander, Erik Zenner and Philip Hawkes Technical University Denmark (DTU) Department of Mathematics [email protected] Cirencester, Dec. 17, 2009 E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 1 / 24 1 Cache Timing Attacks 2 Attack Model 3 Attacking LFSR-based Stream Ciphers E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 2 / 24 Cache Timing Attacks Outline 1 Cache Timing Attacks 2 Attack Model 3 Attacking LFSR-based Stream Ciphers E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 3 / 24 Cache Timing Attacks Cache Motivation What is a CPU cache? Intermediate memory between CPU and RAM Stores data that was recently fetched from RAM What is is good for? Loading data from cache is much faster than loading data from RAM (e.g. RAM access ≈ 50 cycles, cache access ≈ 3 cycles). Data that is often used several times. ) Keeping copies in cache reduces the average loading time. Why is this a problem? As opposed to RAM, cache is shared between users. ) Cryptographic side-channel attack becomes possible. E. Zenner (DTU-MAT) Cache Timing Analysis Stream Ciphers Cirencester, Dec. 17, 2009 4 / 24 Cache Timing Attacks Cache Workings Working principle (simplified): Let n be the cache size. When we read from (or write to) RAM address a, proceed as follows: Check whether requested data is at cache address (a mod n). If not, load data into cache address (a mod n). Load data item directly from cache.
    [Show full text]
  • The Switching Generator: New Clock-Controlled Generator with Resistance Against the Algebraic and Side Channel Attacks
    Entropy 2015, 17, 3692-3709; doi:10.3390/e17063692 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article The Switching Generator: New Clock-Controlled Generator with Resistance against the Algebraic and Side Channel Attacks Jun Choi 1, Dukjae Moon 2, Seokhie Hong 2 and Jaechul Sung 3,* 1 The 2nd branch, Defense Security Institute, Seosomun-ro Jung-gu, Seoul 100-120, Korea; E-Mail: [email protected] 2 Center for Information Security Technologies (CIST), Korea University, Seoul 136-701, Korea; E-Mails: [email protected] (D.M.); [email protected] (S.H.) 3 Department of Mathematics, University of Seoul, Seoul 130-743, Korea * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +82-2-6490-2614. Academic Editors: James Park and Wanlei Zhou Received: 18 March 2015 / Accepted: 1 June 2015 / Published: 4 June 2015 Abstract: Since Advanced Encryption Standard (AES) in stream modes, such as counter (CTR), output feedback (OFB) and cipher feedback (CFB), can meet most industrial requirements, the range of applications for dedicated stream ciphers is decreasing. There are many attack results using algebraic properties and side channel information against stream ciphers for hardware applications. Al-Hinai et al. presented an algebraic attack approach to a family of irregularly clock-controlled linear feedback shift register systems: the stop and go generator, self-decimated generator and alternating step generator. Other clock-controlled systems, such as shrinking and cascade generators, are indeed vulnerable against side channel attacks. To overcome these threats, new clock-controlled systems were presented, e.g., the generalized alternating step generator, cascade jump-controlled generator and mutual clock-controlled generator.
    [Show full text]
  • Cache Timing Analysis of Estream Finalists
    Cache Timing Analysis of eStream Finalists Erik Zenner Technical University Denmark (DTU) Department of Mathematics [email protected] Dagstuhl, Jan. 15, 2009 Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 1 / 24 1 Cache Timing Attacks 2 Attack Model 3 Analysing eStream Finalists 4 Conclusions and Observations Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 2 / 24 Cache Timing Attacks Outline 1 Cache Timing Attacks 2 Attack Model 3 Analysing eStream Finalists 4 Conclusions and Observations Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 3 / 24 Cache Timing Attacks Cache Motivation What is a CPU cache? Intermediate memory between CPU and RAM Stores data that was recently fetched from RAM What is is good for? Loading data from cache is much faster than loading data from RAM (e.g. RAM access ≈ 50 cycles, cache access ≈ 3 cycles). Data that is often used several times. ) Keeping copies in cache reduces the average loading time. Why is this a problem? As opposed to RAM, cache is shared between users. ) Cryptographic side-channel attack becomes possible. Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 4 / 24 Cache Timing Attacks Cache Workings Working principle (simplified): Let n be the cache size. When we read from (or write to) RAM address a, proceed as follows: Check whether requested data is at cache address (a mod n). If not, load data into cache address (a mod n). Load data item directly from cache. Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan.
    [Show full text]
  • The Cultural Contradictions of Cryptography: a History of Secret Codes in Modern America
    The Cultural Contradictions of Cryptography: A History of Secret Codes in Modern America Charles Berret Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences Columbia University 2019 © 2018 Charles Berret All rights reserved Abstract The Cultural Contradictions of Cryptography Charles Berret This dissertation examines the origins of political and scientific commitments that currently frame cryptography, the study of secret codes, arguing that these commitments took shape over the course of the twentieth century. Looking back to the nineteenth century, cryptography was rarely practiced systematically, let alone scientifically, nor was it the contentious political subject it has become in the digital age. Beginning with the rise of computational cryptography in the first half of the twentieth century, this history identifies a quarter-century gap beginning in the late 1940s, when cryptography research was classified and tightly controlled in the US. Observing the reemergence of open research in cryptography in the early 1970s, a course of events that was directly opposed by many members of the US intelligence community, a wave of political scandals unrelated to cryptography during the Nixon years also made the secrecy surrounding cryptography appear untenable, weakening the official capacity to enforce this classification. Today, the subject of cryptography remains highly political and adversarial, with many proponents gripped by the conviction that widespread access to strong cryptography is necessary for a free society in the digital age, while opponents contend that strong cryptography in fact presents a danger to society and the rule of law.
    [Show full text]