Fault Analysis of Stream Ciphers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Algebraic Attacks on SOBER-T32 and SOBER-T16 Without Stuttering
Algebraic Attacks on SOBER-t32 and SOBER-t16 without stuttering Joo Yeon Cho and Josef Pieprzyk? Center for Advanced Computing – Algorithms and Cryptography, Department of Computing, Macquarie University, NSW, Australia, 2109 {jcho,josef}@ics.mq.edu.au Abstract. This paper presents algebraic attacks on SOBER-t32 and SOBER-t16 without stuttering. For unstuttered SOBER-t32, two differ- ent attacks are implemented. In the first attack, we obtain multivariate equations of degree 10. Then, an algebraic attack is developed using a collection of output bits whose relation to the initial state of the LFSR can be described by low-degree equations. The resulting system of equa- tions contains 269 equations and monomials, which can be solved using the Gaussian elimination with the complexity of 2196.5. For the second attack, we build a multivariate equation of degree 14. We focus on the property of the equation that the monomials which are combined with output bit are linear. By applying the Berlekamp-Massey algorithm, we can obtain a system of linear equations and the initial states of the LFSR can be recovered. The complexity of attack is around O(2100) with 292 keystream observations. The second algebraic attack is applica- ble to SOBER-t16 without stuttering. The attack takes around O(285) CPU clocks with 278 keystream observations. Keywords : Algebraic attack, stream ciphers, linearization, NESSIE, SOBER-t32, SOBER-t16, modular addition, multivariate equations 1 Introduction Stream ciphers are an important class of encryption algorithms. They encrypt individual characters of a plaintext message one at a time, using a stream of pseudorandom bits. -
VMPC-MAC: a Stream Cipher Based Authenticated Encryption Scheme
VMPC-MAC: A Stream Cipher Based Authenticated Encryption Scheme Bartosz Zoltak http://www.vmpcfunction.com [email protected] Abstract. A stream cipher based algorithm for computing Message Au- thentication Codes is described. The algorithm employs the internal state of the underlying cipher to minimize the required additional-to- encryption computational e®ort and maintain general simplicity of the design. The scheme appears to provide proper statistical properties, a comfortable level of resistance against forgery attacks in a chosen ci- phertext attack model and high e±ciency in software implementations. Keywords: Authenticated Encryption, MAC, Stream Cipher, VMPC 1 Introduction In the past few years the interest in message authentication algorithms has been concentrated mostly on modes of operation of block ciphers. Examples of some recent designs include OCB [4], OMAC [7], XCBC [6], EAX [8], CWC [9]. Par- allely a growing interest in stream cipher design can be observed, however along with a relative shortage of dedicated message authentication schemes. Regarding two recent proposals { Helix and Sober-128 stream ciphers with built-in MAC functionality { a powerful attack against the MAC algorithm of Sober-128 [10] and two weaknesses of Helix [12] were presented at FSE'04. This paper gives a proposition of a simple and software-e±cient algorithm for computing Message Authentication Codes for the presented at FSE'04 VMPC Stream Cipher [13]. The proposed scheme was designed to minimize the computational cost of the additional-to-encryption MAC-related operations by employing some data of the internal-state of the underlying cipher. This approach allowed to maintain sim- plicity of the design and achieve good performance in software implementations. -
On the Security of IV Dependent Stream Ciphers
On the Security of IV Dependent Stream Ciphers Côme Berbain and Henri Gilbert France Telecom R&D {[email protected]} research & development Stream Ciphers IV-less IV-dependent key K key K IV (initial value) number ? generator keystream keystream plaintext ⊕ ciphertext plaintext ⊕ ciphertext e.g. RC4, Shrinking Generator e.g. SNOW, Scream, eSTREAM ciphers well founded theory [S81,Y82,BM84] less unanimously agreed theory practical limitations: prior work [RC94, HN01, Z06] - no reuse of K numerous chosen IV attacks - synchronisation - key and IV setup not well understood IV setup – H. Gilbert (2) research & developement Orange Group Outline security requirements on IV-dependent stream ciphers whole cipher key and IV setup key and IV setup constructions satisfying these requirements blockcipher based tree based application example: QUAD incorporate key and IV setup in QUAD's provable security argument IV setup – H. Gilbert (3) research & developement Orange Group Security in IV-less case: PRNG notion m K∈R{0,1} number truly random VS generator g generator g g(K) ∈{0,1}L L OR Z ∈R{0,1} 1 input A 0 or 1 PRNG A tests number distributions: Adv g (A) = PrK [A(g(K)) = 1] − PrZ [A(Z) = 1] PRNG PRNG Advg (t) = maxA,T(A)≤t (Advg (A)) PRNG 80 g is a secure cipher ⇔ g is a PRNG ⇔ Advg (t < 2 ) <<1 IV setup – H. Gilbert (4) research & developement Orange Group Security in IV-dependent case: PRF notion stream cipher perfect random fct. IV∈ {0,1}n function generator VSOR g* gK G = {gK} gK(IV) q oracle queries • A 0 or 1 PRF gK g* A tests function distributions: Adv G (A) = Pr[A = 1] − Pr[A = 1] PRF PRF Adv G (t, q) = max A (Adv G (A)) PRF 80 40 G is a secure cipher ⇔ G is a PRF ⇔ Adv G (t < 2 ,2 ) << 1 IV setup – H. -
9/11 Report”), July 2, 2004, Pp
Final FM.1pp 7/17/04 5:25 PM Page i THE 9/11 COMMISSION REPORT Final FM.1pp 7/17/04 5:25 PM Page v CONTENTS List of Illustrations and Tables ix Member List xi Staff List xiii–xiv Preface xv 1. “WE HAVE SOME PLANES” 1 1.1 Inside the Four Flights 1 1.2 Improvising a Homeland Defense 14 1.3 National Crisis Management 35 2. THE FOUNDATION OF THE NEW TERRORISM 47 2.1 A Declaration of War 47 2.2 Bin Ladin’s Appeal in the Islamic World 48 2.3 The Rise of Bin Ladin and al Qaeda (1988–1992) 55 2.4 Building an Organization, Declaring War on the United States (1992–1996) 59 2.5 Al Qaeda’s Renewal in Afghanistan (1996–1998) 63 3. COUNTERTERRORISM EVOLVES 71 3.1 From the Old Terrorism to the New: The First World Trade Center Bombing 71 3.2 Adaptation—and Nonadaptation— ...in the Law Enforcement Community 73 3.3 . and in the Federal Aviation Administration 82 3.4 . and in the Intelligence Community 86 v Final FM.1pp 7/17/04 5:25 PM Page vi 3.5 . and in the State Department and the Defense Department 93 3.6 . and in the White House 98 3.7 . and in the Congress 102 4. RESPONSES TO AL QAEDA’S INITIAL ASSAULTS 108 4.1 Before the Bombings in Kenya and Tanzania 108 4.2 Crisis:August 1998 115 4.3 Diplomacy 121 4.4 Covert Action 126 4.5 Searching for Fresh Options 134 5. -
Ascon (A Submission to CAESAR)
Ascon (A Submission to CAESAR) Ch. Dobraunig1, M. Eichlseder1, F. Mendel1, M. Schl¨affer2 1IAIK, Graz University of Technology, Austria 2Infineon Technologies AG, Austria 22nd Crypto Day, Infineon, Munich Overview CAESAR Design of Ascon Security analysis Implementations 1 / 20 CAESAR CAESAR: Competition for Authenticated Encryption { Security, Applicability, and Robustness (2014{2018) http://competitions.cr.yp.to/caesar.html Inspired by AES, eStream, SHA-3 Authenticated Encryption Confidentiality as provided by block cipher modes Authenticity, Integrity as provided by MACs \it is very easy to accidentally combine secure encryption schemes with secure MACs and still get insecure authenticated encryption schemes" { Kohno, Whiting, and Viega 2 / 20 CAESAR CAESAR: Competition for Authenticated Encryption { Security, Applicability, and Robustness (2014{2018) http://competitions.cr.yp.to/caesar.html Inspired by AES, eStream, SHA-3 Authenticated Encryption Confidentiality as provided by block cipher modes Authenticity, Integrity as provided by MACs \it is very easy to accidentally combine secure encryption schemes with secure MACs and still get insecure authenticated encryption schemes" { Kohno, Whiting, and Viega 2 / 20 Generic compositions MAC-then-Encrypt (MtE) e.g. in SSL/TLS MAC M security depends on E and MAC E ∗ C T k Encrypt-and-MAC (E&M) ∗ e.g. in SSH E C M security depends on E and MAC MAC T Encrypt-then-MAC (EtM) ∗ IPSec, ISO/IEC 19772:2009 M E C provably secure MAC T 3 / 20 Tags for M = IV (N 1), M = IV (N 2), . ⊕ k ⊕ k are the key stream to read M1, M2,... (Keys for) E ∗ and MAC must be independent! Pitfalls: Dependent Keys (Confidentiality) Encrypt-and-MAC with CBC-MAC and CTR CTR CBC-MAC Nk1 Nk2 Nk` M1 M2 M` IV ··· EK EK ··· EK EK EK EK M1 M2 M` C1 C2 C` T What can an attacker do? 4 / 20 Pitfalls: Dependent Keys (Confidentiality) Encrypt-and-MAC with CBC-MAC and CTR CTR CBC-MAC Nk1 Nk2 Nk` M1 M2 M` IV ··· EK EK ··· EK EK EK EK M1 M2 M` C1 C2 C` T What can an attacker do? Tags for M = IV (N 1), M = IV (N 2), . -
Improved Correlation Attacks on SOSEMANUK and SOBER-128
Improved Correlation Attacks on SOSEMANUK and SOBER-128 Joo Yeon Cho Helsinki University of Technology Department of Information and Computer Science, Espoo, Finland 24th March 2009 1 / 35 SOSEMANUK Attack Approximations SOBER-128 Outline SOSEMANUK Attack Method Searching Linear Approximations SOBER-128 2 / 35 SOSEMANUK Attack Approximations SOBER-128 SOSEMANUK (from Wiki) • A software-oriented stream cipher designed by Come Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois, Henri Gilbert, Louis Goubin, Aline Gouget, Louis Granboulan, Cedric` Lauradoux, Marine Minier, Thomas Pornin and Herve` Sibert. • One of the final four Profile 1 (software) ciphers selected for the eSTREAM Portfolio, along with HC-128, Rabbit, and Salsa20/12. • Influenced by the stream cipher SNOW and the block cipher Serpent. • The cipher key length can vary between 128 and 256 bits, but the guaranteed security is only 128 bits. • The name means ”snow snake” in the Cree Indian language because it depends both on SNOW and Serpent. 3 / 35 SOSEMANUK Attack Approximations SOBER-128 Overview 4 / 35 SOSEMANUK Attack Approximations SOBER-128 Structure 1. The states of LFSR : s0,..., s9 (320 bits) −1 st+10 = st+9 ⊕ α st+3 ⊕ αst, t ≥ 1 where α is a root of the primitive polynomial. 2. The Finite State Machine (FSM) : R1 and R2 R1t+1 = R2t ¢ (rtst+9 ⊕ st+2) R2t+1 = Trans(R1t) ft = (st+9 ¢ R1t) ⊕ R2t where rt denotes the least significant bit of R1t. F 3. The trans function Trans on 232 : 32 Trans(R1t) = (R1t × 0x54655307 mod 2 )≪7 4. The output of the FSM : (zt+3, zt+2, zt+1, zt)= Serpent1(ft+3, ft+2, ft+1, ft)⊕(st+3, st+2, st+1, st) 5 / 35 SOSEMANUK Attack Approximations SOBER-128 Previous Attacks • Authors state that ”No linear relation holds after applying Serpent1 and there are too many unknown bits...”. -
SOBER: a Stream Cipher Based on Linear Feedback Over GF\(2N\)
Turing: a fast software stream cipher Greg Rose, Phil Hawkes {ggr, phawkes}@qualcomm.com 25-Feb-03 Copyright © QUALCOMM Inc, 2002 DISCLAIMER! •This version (1.8 of TuringRef.c) is what we expect to publish. Any changes from now on will be because someone broke it. (Note: we said that about 1.5 and 1.7 too.) •This is an experimental cipher. Turing might not be secure. We've already found two attacks (and fixed them). We're starting to get confidence. •Comments are welcome. •Reference implementation source code agrees with these slides. 25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 2 Introduction •Stream ciphers •Design goals •Using LFSRs for cryptography •Turing •Keying •Analysis and attacks •Conclusion 25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 3 Stream ciphers •Very simple – generate a stream of pseudo-random bits – XOR them into the data to encrypt – XOR them again to decrypt •Some gotchas: – can’t ever reuse the same stream of bits – so some sort of facility for Initialization Vectors is important – provides privacy but not integrity / authentication – good statistical properties are not enough for security… most PRNGs are no good. 25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 4 Turing's Design goals •Mobile phones – cheap, slow, small CPUs, little memory •Encryption in software – cheaper – can be changed without retooling •Stream cipher – two-level keying structure (re-key per data frame) – stream is "seekable" with low overhead •Very fast and simple, aggressive design •Secure (? – we think so, but it's experimental) 25-Feb-03 -
Stream Cipher Designs: a Review
SCIENCE CHINA Information Sciences March 2020, Vol. 63 131101:1–131101:25 . REVIEW . https://doi.org/10.1007/s11432-018-9929-x Stream cipher designs: a review Lin JIAO1*, Yonglin HAO1 & Dengguo FENG1,2* 1 State Key Laboratory of Cryptology, Beijing 100878, China; 2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China Received 13 August 2018/Accepted 30 June 2019/Published online 10 February 2020 Abstract Stream cipher is an important branch of symmetric cryptosystems, which takes obvious advan- tages in speed and scale of hardware implementation. It is suitable for using in the cases of massive data transfer or resource constraints, and has always been a hot and central research topic in cryptography. With the rapid development of network and communication technology, cipher algorithms play more and more crucial role in information security. Simultaneously, the application environment of cipher algorithms is in- creasingly complex, which challenges the existing cipher algorithms and calls for novel suitable designs. To accommodate new strict requirements and provide systematic scientific basis for future designs, this paper reviews the development history of stream ciphers, classifies and summarizes the design principles of typical stream ciphers in groups, briefly discusses the advantages and weakness of various stream ciphers in terms of security and implementation. Finally, it tries to foresee the prospective design directions of stream ciphers. Keywords stream cipher, survey, lightweight, authenticated encryption, homomorphic encryption Citation Jiao L, Hao Y L, Feng D G. Stream cipher designs: a review. Sci China Inf Sci, 2020, 63(3): 131101, https://doi.org/10.1007/s11432-018-9929-x 1 Introduction The widely applied e-commerce, e-government, along with the fast developing cloud computing, big data, have triggered high demands in both efficiency and security of information processing. -
2013 Summer Challenge Book List TM
2013 Summer Challenge Book List TM www.scholastic.com/summer Ages 3-5 (By Title, Author and Illustrator) F ABC Drive, Naomi Howland F Corduroy, Don Freeman F Happy Birthday, Hamster, Cynthia Lord & Derek Anderson F ABC I Like Me!, Nancy Carlson F A Den is a Bed for a Bear, Becky Baines F Harold and the Purple Crayon, Crockett Johnson F The ABCs of Thanks and Please, Diane C. Ohanesian F Dolphin Baby!, Nicola Davies F Here Come the Girl Scouts!, Shana Corey & Hadley Hooper F Abuela, Arthur Dorros & Elisa Kleven F Don’t Worry, Douglas!, David Melling F Homer, Shelley Rotner & Diane Detroit F Alexander and the Terrible, Horrible, No Good, F The Dot, Peter H. Reynolds Very Bad Day, Judith Viorst & Ray Cruz F The House that George Built, Suzanne Slade F Exclamation Mark, Amy Krouse Rosenthal & Tom Lichtenheld F Alice the Fairy, David Shannon F A House is a House for Me, Family Pictures, Carmen Lomas Garza F Mary Ann Hoberman & Betty Fraser F Alphabet Under Construction, Denise Fleming F First the Egg, Laura Vaccaro Seeger F How Do Dinosaurs Say Happy Birthday?, F All Kinds of Families!, Mary Ann Hoberman F Five Little Monkeys Reading in Bed, Eileen Christelow Jane Yolen & Mark Teague F The Are You Ready for Kindergarten? F How Does Your Salad Grow?, Francie Alexander workbook series, Kumon Publishing F The Frog & Toad Are Friends, Arnold Lobel F How Georgie Radboum Saved Baseball, David Shannon F Baby Bear Sees Blue, Ashley Wolff F The Froggy books, Jonathan London & Frank Remkiewicz F Huck Runs Amuck, Sean F Bailey, Harry Bliss F The Geronimo Stilton series, Geronimo Stilton F I Am Small, Emma Dodd F Bats at the Beach, Brian Lies F Gilbert Goldfish Wants a Pet, Kelly DiPucchio & Bob Shea F I Read Signs, Ana Hoban F Bird, Butterfly, Eel, James Prosek F The Giving Tree, Shel Silverstein F If Rocks Could Sing, Leslie McGuirk F Brown Bear, Brown Bear, What Do You See?, F Gone with the Wand, Margie Palatini Bill Martin Jr. -
D-DOG: Securing Sensitive Data in Distributed Storage Space by Data Division and Out-Of-Order Keystream Generation †Jun Feng, †Yu Chen*, ‡Wei-Shinn Ku, §Zhou Su †Dept
D-DOG: Securing Sensitive Data in Distributed Storage Space by Data Division and Out-of-order keystream Generation †Jun Feng, †Yu Chen*, ‡Wei-Shinn Ku, §Zhou Su †Dept. of Electrical & Computer Engineering, SUNY - Binghamton, Binghamton, NY 13902 ‡Dept. of Computer Science & Software Engineering, Auburn University, Auburn, AL 36849 §Dept. of Computer Science, Waseda University, Ohkubo 3-4-1, Shinjyuku, Tokyo 169-8555, Japan {jfeng3, ychen }@binghamton.edu, [email protected], [email protected] ∗ Abstract - Migrating from server-attached storage to system against the attacks/intrusion from outsiders. The distributed storage brings new vulnerabilities in creating a confidentiality and integrity of data are mostly achieved secure data storage and access facility. Particularly it is a using robust cryptograph schemes. challenge on top of insecure networks or unreliable storage However, such a security system is not robust enough to service providers. For example, in applications such as cloud protect the data in distributed storage applications at the computing where data storage is transparent to the owner. It is level of wide area networks. The recent progress of network even harder to protect the data stored in unreliable hosts. technology enables global-scale collaboration over More robust security scheme is desired to prevent adversaries heterogeneous networks under different authorities. For from obtaining sensitive information when the data is in their hands. Meanwhile, the performance gap between the execution instance, in the environment of peer-to-peer (P2P) file speed of security software and the amount of data to be sharing or the distributed storage in cloud computing processed is ever widening. A common solution to close the environment, it enables the concrete data storage to be even performance gap is through hardware implementation. -
Scream on MSP430 07282015
Implementation of the SCREAM Tweakable Block Cipher in MSP430 Assembly Language William Diehl George Mason University, Fairfax VA 22033, USA [email protected] Abstract. The encryption mode of the Tweakable Block Cipher (TBC) of the SCREAM Authenticated Cipher is implemented in the MSP430 microcontroller. Assembly language versions of the TBC are prepared using both precomputed tweak keys and tweak keys computed “on-the-fly.” Both versions are compared against published results for the assembly language version of SCREAM on the ATMEL AVR microcontroller, and against the C reference implementation in terms of performance and size. The assembly language version using precomputed tweak keys achieves a speedup of 1.7 and memory savings of 9 percent over the reported SCREAM implementation in the ATMEL AVR. The assembly language version using tweak keys computed “on-the-fly” achieves a speedup of 1.6 over the ATMEL AVR version while reducing memory usage by 15 percent. Keywords: Cryptography, encryption, MSP430, assembly, speed, efficiency 1 Introduction Authenticated ciphers combine the functionality of confidentiality and integrity into one algorithm. In 2014 the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) called for submission of authenticated cipher candidates [1]. CAESAR candidates are evaluated in terms of security, size, robustness, flexibility, and performance. Software reference implementations written in C code are required as part of Rounds One and Two submissions. Many of the Round One submissions contained the authors’ evaluations in both hardware and software. Additionally, several Round One submissions investigated the software performance of the authors’ algorithms on various types of platforms, including high-end CPU and resource-constrained microcontrollers suitable for embedded applications. -
Cryptanalysis Techniques for Stream Cipher: a Survey
International Journal of Computer Applications (0975 – 8887) Volume 60– No.9, December 2012 Cryptanalysis Techniques for Stream Cipher: A Survey M. U. Bokhari Shadab Alam Faheem Syeed Masoodi Chairman, Department of Research Scholar, Dept. of Research Scholar, Dept. of Computer Science, AMU Computer Science, AMU Computer Science, AMU Aligarh (India) Aligarh (India) Aligarh (India) ABSTRACT less than exhaustive key search, then only these are Stream Ciphers are one of the most important cryptographic considered as successful. A symmetric key cipher, especially techniques for data security due to its efficiency in terms of a stream cipher is assumed secure, if the computational resources and speed. This study aims to provide a capability required for breaking the cipher by best-known comprehensive survey that summarizes the existing attack is greater than or equal to exhaustive key search. cryptanalysis techniques for stream ciphers. It will also There are different Attack scenarios for cryptanalysis based facilitate the security analysis of the existing stream ciphers on available resources: and provide an opportunity to understand the requirements for developing a secure and efficient stream cipher design. 1. Ciphertext only attack 2. Known plain text attack Keywords Stream Cipher, Cryptography, Cryptanalysis, Cryptanalysis 3. Chosen plaintext attack Techniques 4. Chosen ciphertext attack 1. INTRODUCTION On the basis of intention of the attacker, the attacks can be Cryptography is the primary technique for data and classified into two categories namely key recovery attack and communication security. It becomes indispensable where the distinguishing attacks. The motive of key recovery attack is to communication channels cannot be made perfectly secure. derive the key but in case of distinguishing attack, the From the ancient times, the two fields of cryptology; attacker’s motive is only to derive the original from the cryptography and cryptanalysis are developing side by side.