The Famous Cultivated Mushroom Bailinggu Is a Separate Species Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Diversity of Basidiomycota Fungi That Have the Potential As a Source of Nutraceutical to Be Developed in the Concept of Integrated Forest Management Poisons
International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-2S, July 2019 The Diversity of Basidiomycota Fungi that Have the Potential as a Source of Nutraceutical to be Developed in the Concept of Integrated Forest Management Mustika Dewi, I Nyoman Pugeg Aryantha, Mamat Kandar straw mushrooms, oyster mushrooms, and shiitake Abstract: The fungus Basidiomycota found in Indonesia have mushrooms. very high diversity, but have not been explored so far. The development of local Basidiomycota mushrooms that Development of fungi Basidiomycota is an alternative as a are cultivated by utilizing space on the forest floor has not source of natural nutraceuticals, especially beta glucan and been done mostly in Indonesia. In several countries such as lovastatin compounds. This compound can be used in the pharmaceutical and food fields. This study aims to obtain Japan, people have long been cultivating shitake mushrooms Basidiomycota fungi isolates that have the potential as a by utilizing forest floors. Reported by (Savoie & Largeteau, nutraceutical source. As the first stage in this research, the 2011) that mushrooms from the Basidiomycota group are activities carried out were exploration, isolation on culture widely produced in forest areas through the utilization of media, and identification of fungi based on genotypic forest floors as a place to grow these fungi which have characters. The results showed that the fungi identified based on economic value quite high by applying the concept of their genotypic characters were Pleurotusostreatus, Ganodermacf, Resinaceum, Lentinulaedodes, micosilviculture. The concept of micosilviculture is a Vanderbyliafraxinea, Auricularia delicate, Pleurotusgiganteus, concept that is applied in the management of integrated Auricularia sp. -
Oyster Mushroom) Related with Its Chemical Composition: a Review on the Past Decade Findings
Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings Rúbia Carvalho Gomes Corrêaa,b,c, Tatiane Brugnaric, Adelar Brachtc, Rosane Marina Peraltac, Isabel C.F.R. Ferreiraa,* aMountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal. bCAPES Foundation, Ministry of Education of Brazil, 70.040-020, Brasília, DF, Brazil. cState University of Maringá, Department of Biochemistry, 87020-900, Maringá, PR, Brazil. * Author to whom correspondence should be addressed (Isabel C.F.R. Ferreira; e-mail: [email protected]; telephone +351-273-303219; fax +351-273-325405). 1 Abstract Background: The particular characteristics of growth and development of mushrooms in nature result in the accumulation of a variety of secondary metabolites, several of them with biological activities. The genus Pleurotus is a cosmopolitan group of mushrooms with high nutritional value and therapeutic properties, besides a wide array of biotechnological and environmental applications. Scope and approach: The present report aims to provide a critical review on aspects related to chemical compounds isolated from the genus Pleurotus with possible biotechnological, nutritional and therapeutic uses. Investigations on the genus have immensely accelerated during the last ten years, so that only reports published after 2005 have been considered. Key findings and conclusions: The most important Pleurotus species cultivated in large scale are P. ostreatus and P. pulmonarius. However, more than 200 species have already been investigated to various degrees. Both basidiomata and mycelia of Pleurotus are a great renewable and easily accessible source of functional foods/nutraceuticals and pharmaceuticals with antioxidant, antimicrobial, anti- inflammatory, antitumor and immunomodulatory effects. -
(Pleurotus Eryngii) Based on 16S Rrna 16
Korean Journal of Microbiology (2015) Vol. 51, No. 2, pp. 148-155 pISSN 0440-2413 DOI http://dx.doi.org/10.7845/kjm.2015.4086 eISSN 2383-9902 Copyright ⓒ 2015, The Microbiological Society of Korea 보 문 Molecular diversity of endobacterial communities in edible part of King oyster mushroom (Pleurotus eryngii) based on 16S rRNA 1 2 3 2 2 Choung Kyu Lee , Md. Azizul Haque , Byoung Rock Choi , Hee Yul Lee , Chung Eun Hwang , 2 2 Min Ju Ahn , and Kye Man Cho * 1 Department of Forest Resources, Gyeongnam National University of Science and Technology, Jinju 660-758, Republic of Korea 2 Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 660-758, Republic of Korea 3 Department of Future Farming, Sacheon Agricultural Development & Technology Center, Sacheon 664-951, Republic Korea 16S rRNA 기초 새송이 버섯(Pleurotus eryngii)의 식용가능 부위 내생세균 군집 다양성 이총규1 ・ 모하메드 아지줄 하크2 ・ 최병록3 ・ 이희율2 ・ 황정은2 ・ 안민주2 ・ 조계만2* 1 2 3 경남과학기술대학교 산림자원학과, 경남과학기술대학교 식품과학부, 사천시농업기술센터 미래농업과 (Received December 17, 2014; Accepted June 10, 2015) ABSTRACT: The diversity of endobacteria in the edible part (cap and stipe) king oyster mushroom (Pleurotus eryngii) was investigated using 16S rRNA sequence analysis. The bacterial 16S rRNA libraries were constructed from the body cap (BC) and the body stipe (BS) of the king oyster mushroom. The twenty sequenced BC clones were divided into four groups and the largest group was affiliated with the Firmicutes (40% of clones). While, the twenty sequenced BS clones could be divided into six groups and the largest group was affiliated with the Actinobacteria (40% of clones). -
Bioactive Compounds and Medicinal Properties of Oyster Mushrooms (Pleurotus Sp.)
FOLIA HORTICULTURAE Folia Hort. 30(2), 2018, 191-201 Published by the Polish Society DOI: 10.2478/fhort-2018-0012 for Horticultural Science since 1989 REVIEW Open access www.foliahort.ogr.ur.krakow.pl Bioactive compounds and medicinal properties of Oyster mushrooms (Pleurotus sp.) Iwona Golak-Siwulska, Alina Kałużewicz*, Tomasz Spiżewski, Marek Siwulski, Krzysztof Sobieralski Department of Vegetable Crops Faculty of Horticulture and Landscape Architecture, Poznań University of Life Sciences Dąbrowskiego 159, Poznań, Poland ABSTRACT There are about 40 species in the Pleurotus genus, including those with high economic significance, i.e. P. ostreatus and P. pulmonarius. The fruiting bodies of oyster mushrooms are of high nutritional and health- promoting value. In addition, many species belonging to the Pleurotus genus have been used as sources of substances with documented medicinal properties, such as high-molecular weight bioactive compounds (polysaccharides, peptides and proteins) and low-molecular weight compounds (terpenoids, fatty acid esters and polyphenols). The bioactive substances contained in the mycelium and fruiting bodies of Pleurotus species exhibit immunostimulatory, anti-neoplastic, anti-diabetic, anti-atherosclerotic, anti-inflammatory, antibacterial and anti-oxidative properties. Their multidirectional positive influence on the human organism is the result of interaction of bioactive substances. Extracts from individual Pleurotus species can be used for the production of dietary supplements increasing the organism’s immunity. -
A New Edible Mushroom Resource, Pleurotus Abieticola, in Southwestern China
菌物学报 [email protected] 15 July 2015, 34(4): 581‐588 Http://journals.im.ac.cn Mycosystema ISSN1672‐6472 CN11‐5180/Q © 2015 IMCAS, all rights reserved. 研究论文 Research paper DOI: 10.13346/j.mycosystema.150051 A new edible mushroom resource, Pleurotus abieticola, in southwestern China LIU Xiao‐Bin1, 2 LIU Jian‐Wei1, 2 YANG Zhu‐Liang1* 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China 2University of Chinese Academy of Sciences, Beijing 100039, China Abstract: Species of the genus Pleurotus are very important edible mushrooms and many of them can be cultivated in commercial scale. Although P. abieticola was originally described from Russian Far East, and then reported from northeastern China and northwestern Russia, its distribution range is still largely unknown. Our morphological and molecular phylogenetic evidence indicated that this species is also distributed in subalpine mountains of southwestern China. This paper documented the taxon based on morphological and ecological features, and DNA sequences generated from materials collected from Sichuan Province and the Tibet Autonomous Region. Key words: Basidiomycetes, new distribution, edible mushroom, taxonomy 冷杉侧耳——中国西南一种新的食用菌资源 刘晓斌 1, 2 刘建伟 1, 2 杨祝良 1* 1 中国科学院昆明植物研究所东亚植物多样性与生物地理学院重点实验室 云南 昆明 650201 2 中国科学院大学 北京 100039 摘 要:侧耳属 Pleurotus 真菌具有重要经济价值,该属不少种类可以商业化人工栽培。冷杉侧耳 P. abieticola 原初报道于 俄罗斯远东地区,后来在我国东北和俄罗斯西北也有记载,但因为文献中记载的标本有限,我国研究人员对该种并不十 分了解。在开展侧耳属的研究中,作者发现该种在我国西南亚高山地区也有分布。基于采自四川和西藏的标本,利用形 态、生态特征及 DNA 序列证据,作者对该种进行了描述,以期为该种的资源开发利用提供科学依据。 关键词:担子菌,新分布,食用菌,分类 Supported by the National Basic Research Program of China (973 Program, 2014CB138305) Corresponding author. E‐mail: [email protected] Received: 10‐02‐2015, accepted: 10‐05‐2015 582 ISSN1672‐6472 CN11‐5180/Q Mycosystema July 15, 2015 Vol. -
A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms
International Journal of Environmental Research and Public Health Review A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms 1, 2,3, Dagmara Strumi ´nska-Parulska * and Jerzy Falandysz y 1 Toxicology and Radiation Protection Laboratory, Faculty of Chemistry, University of Gda´nsk, 80-308 Gda´nsk,Poland 2 Environmental Chemistry & Ecotoxicology Laboratory, Faculty of Chemistry, University of Gda´nsk, 80-308 Gda´nsk,Poland; [email protected] 3 Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia * Correspondence: [email protected]; Tel.: +48-58-5235254 Jerzy Falandysz is visiting professor at affiliation 3. y Received: 22 September 2020; Accepted: 3 November 2020; Published: 6 November 2020 Abstract: Alpha-emitting radioisotopes are the most toxic among all radionuclides. In particular, medium to long-lived isotopes of the heavier metals are of the greatest concern to human health and radiological safety. This review focuses on the most common alpha-emitting radionuclides of natural and anthropogenic origin in wild mushrooms from around the world. Mushrooms bio-accumulate a range of mineral ionic constituents and radioactive elements to different extents, and are therefore considered as suitable bio-indicators of environmental pollution. The available literature indicates that the natural radionuclide 210Po is accumulated at the highest levels (up to 22 kBq/kg dry weight (dw) in wild mushrooms from Finland), while among synthetic nuclides, the highest levels of up to 53.8 Bq/kg dw of 239+240Pu were reported in Ukrainian mushrooms. The capacity to retain the activity of individual nuclides varies between mushrooms, which is of particular interest for edible species that are consumed either locally or, in some cases, also traded on an international scale. -
2 the Numbers Behind Mushroom Biodiversity
15 2 The Numbers Behind Mushroom Biodiversity Anabela Martins Polytechnic Institute of Bragança, School of Agriculture (IPB-ESA), Portugal 2.1 Origin and Diversity of Fungi Fungi are difficult to preserve and fossilize and due to the poor preservation of most fungal structures, it has been difficult to interpret the fossil record of fungi. Hyphae, the vegetative bodies of fungi, bear few distinctive morphological characteristicss, and organisms as diverse as cyanobacteria, eukaryotic algal groups, and oomycetes can easily be mistaken for them (Taylor & Taylor 1993). Fossils provide minimum ages for divergences and genetic lineages can be much older than even the oldest fossil representative found. According to Berbee and Taylor (2010), molecular clocks (conversion of molecular changes into geological time) calibrated by fossils are the only available tools to estimate timing of evolutionary events in fossil‐poor groups, such as fungi. The arbuscular mycorrhizal symbiotic fungi from the division Glomeromycota, gen- erally accepted as the phylogenetic sister clade to the Ascomycota and Basidiomycota, have left the most ancient fossils in the Rhynie Chert of Aberdeenshire in the north of Scotland (400 million years old). The Glomeromycota and several other fungi have been found associated with the preserved tissues of early vascular plants (Taylor et al. 2004a). Fossil spores from these shallow marine sediments from the Ordovician that closely resemble Glomeromycota spores and finely branched hyphae arbuscules within plant cells were clearly preserved in cells of stems of a 400 Ma primitive land plant, Aglaophyton, from Rhynie chert 455–460 Ma in age (Redecker et al. 2000; Remy et al. 1994) and from roots from the Triassic (250–199 Ma) (Berbee & Taylor 2010; Stubblefield et al. -
Pleurotus Species Basidiomycotina with Gills - Lignicolous Mushrooms
Biobritte Agro Solutions Private Limited, Kolhapur, (India) Jaysingpur-416101, Taluka-Shirol, District-Kolhapur, Maharashtra, INDIA. [email protected] www.biobritte.co.in Whatsapp: +91-9923806933 Phone: +91-9923806933, +91-9673510343 Biobritte English name Scientific Name Price Lead time Code Pleurotus species Basidiomycotina with gills - lignicolous mushrooms B-2000 Type A 3 Weeks Winter Oyster Mushroom Pleurotus ostreatus B-2001 Type A 3 Weeks Florida Oyster Mushroom Pleurotus ostreatus var. florida B-2002 Type A 3 Weeks Summer Oyster Mushroom Pleurotus pulmonarius B-2003 Type A 4 Weeks Indian Oyster Mushroom Pleurotus sajor-caju B-2004 Type B 4 Weeks Golden Oyster Mushroom Pleurotus citrinopileatus B-2005 Type B 3 Weeks King Oyster Mushroom Pleurotus eryngii B-2006 Type B 4 Weeks Asafetida, White Elf Pleurotus ferulae B-2007 Type B 3 Weeks Pink Oyster Mushroom Pleurotus salmoneostramineus B-2008 Type B 3 Weeks King Tuber Mushroom Pleurotus tuberregium B-2009 Type B 3 Weeks Abalone Oyster Mushroom Pleurotus cystidiosus Lentinula B-3000 Shiitake Lentinula edodes Type B 5 Weeks other lignicoles B-4000 Black Poplar Mushr. Agrocybe aegerita Type-C 5 Weeks B-4001 Changeable Agaric Kuehneromyces mutabilis Type-C 5 Weeks B-4002 Nameko Mushroom Pholiota nameko Type-C 5 Weeks B-4003 Velvet Foot Collybia Flammulina velutipes Type-C 5 Weeks B-4003-1 yellow variety 5 Weeks B-4003-2 white variety 5 Weeks B-4004 Elm Oyster Mushroom Hypsizygus ulmarius Type-C 5 Weeks B-4005 Buna-Shimeji Hypsizygus tessulatus Type-C 5 Weeks B-4005-1 beige variety -
Venturella Layout 1
Fl. Medit. 25 (Special Issue): 143-156 doi: 10.7320/FlMedit25SI.143 Version of Record published online on 26 November 2015 G. Venturella, M. L. Gargano & R. Compagno The genus Pleurotus in Italy Abstract Venturella, G., Gargano, M. L. & Compagno, R.: The genus Pleurotus in Italy. — Fl. Medit. 25 (Special Issue): 143-156. 2015. — ISSN: 1120-4052 printed, 2240-4538 online. On the basis of personal observations, herbarium specimens and, data reported in the literature the authors report morphological, ecological and distributive data on Pleurotus taxa from Italy. New descriptions are here provided based on the most distinctive-discriminating eco-morphological characters of twelve Pleurotus taxa. Key words: oyster mushrooms, descriptions, ecology, distribution. Introduction In modern taxonomy the genus Pleurotus (Fr.) P. Kumm is placed under the family Pleurotaceae Kühner (Agaricales, Basidiomycota). The Pleurotaceae are a family of small to medium-sized mushrooms which have white spores including 6 genera and 94 species (Kirk & al. 2008). The genus Pleurotus is a cosmopolitan group of fungi which comprises ca. 30 species and subspecific taxa also known as oyster mushrooms. The genus Pleurotus also represents the second main group of cultivated edible mushrooms in the world (Zervakis & Labarère 1992). The Pleurotus species are efficient colonizers and bioconverters of lignocellulosic agro-industrial residues into palatable human food with medicinal properties (Philippoussis 2009). Some white-rot fungi of the genus Pleurotus are able to remove lignin with only minor attack on cellulose (Cohen & al. 2002). Besides Pleurotus species demonstrates significant nutritional values (La Guardia & al. 2005; Venturella & al. 2015a) and their bioactive compounds (mainly polysaccharides) possess antibacterial (Schillaci & al. -
Ex Situ Conservation and Exploitation of Fungi in Italy
AperTO - Archivio Istituzionale Open Access dell'Università di Torino Ex situ conservation and exploitation of fungi in Italy This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/89865 since 2016-10-04T16:22:02Z Published version: DOI:10.1080/11263504.2011.633119 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 04 October 2021 This is the author's final version of the contribution published as: G.C. Varese; P. Angelini; M. Bencivenga; P. Buzzini; D. Donnini; M.L. Gargano; O. Maggi; L. Pecoraro; A.M. Persiani; E. Savino; V. Tigini; B. Turchetti; G. Vannacci; G. Venturella; A. Zambonelli. Ex situ conservation and exploitation of fungi in Italy. PLANT BIOSYSTEMS. 145(4) pp: 997-1005. DOI: 10.1080/11263504.2011.633119 The publisher's version is available at: http://www.tandfonline.com/doi/abs/10.1080/11263504.2011.633119 When citing, please refer to the published version. Link to this full text: http://hdl.handle.net/2318/89865 This full text was downloaded from iris - AperTO: https://iris.unito.it/ iris - AperTO University of Turin’s Institutional Research Information System and Open Access Institutional Repository Ex situ conservation and exploitation of fungi in Italy G. -
Some Critically Endangered Species from Turkey
Fungal Conservation issue 4: February 2014 Fungal Conservation Note from the Editor This issue of Fungal Conservation is being put together in the glow of achievement associated with the Third International Congress on Fungal Conservation, held in Muğla, Turkey in November 2013. The meeting brought together people committed to fungal conservation from all corners of the Earth, providing information, stimulation, encouragement and general happiness that our work is starting to bear fruit. Especial thanks to our hosts at the University of Muğla who did so much behind the scenes to make the conference a success. This issue of Fungal Conservation includes an account of the meeting, and several papers based on presentations therein. A major development in the world of fungal conservation happened late last year with the launch of a new website (http://iucn.ekoo.se/en/iucn/welcome) for the Global Fungal Red Data List Initiative. This is supported by the Mohamed bin Zayed Species Conservation Fund, which also made a most generous donation to support participants from less-developed nations at our conference. The website provides a user-friendly interface to carry out IUCN-compliant conservation assessments, and should be a tool that all of us use. There is more information further on in this issue of Fungal Conservation. Deadlines are looming for the 10th International Mycological Congress in Thailand in August 2014 (see http://imc10.com/2014/home.html). Conservation issues will be featured in several of the symposia, with one of particular relevance entitled "Conservation of fungi: essential components of the global ecosystem”. There will be room for a limited number of contributed papers and posters will be very welcome also: the deadline for submitting abstracts is 31 March. -
Oyster Mushroom Cultivation
MushroomPart II. Oyster Growers Mushrooms’ Handbook 1 Chapter 4. Spawn 54 Oyster Mushroom Cultivation Part II. Oyster Mushrooms Chapter 4 Spawn DESCRIPTIONS OF COMMERCIALLY IMPORTANT PLEUROTUS SPECIES Won-Sik Kong Rural Development Administration, Korea Introduction Oyster mushrooms are one of the most popular edible mushrooms and belong to the genus Pleurotus and the family Pleurotaceae. Like oyster mushroom (Pleurotus ostreatus), many of Pleurotus mushrooms are primary decomposers of hardwood trees and are found worldwide. The type species of the genus Pleurotus (Fr.) Quel. is P. ostreatus (Jacq. et Fr.) Kummer. This mushroom has basidia with four basidiospores and a tetrapolar mating system. Its hyphae have clamp connections and most members of the genus, excepting a small minority, have a monomitic hyphal system. To date approximately 70 species of Pleurotus have been recorded and new species are discovered more or less frequently although some of these are considered identical with previously recognized species. Determination of a species is difficult because of the morphological similarities and possible environmental effects. Mating compatibility studies have demonstrated the existence of eleven discrete intersterility groups in Pleurotus (Table 1) to distinguish one species from the others. Some reports indicate partial compatibility between them, implying the possibility for the creation of another species. Table 1. Established biological species within Pleurotus, their corresponding synonyms and/or taxa at a subspecies level, and the respective intersterility groups. Species Synonyms-subspecies taxa Intersterility groups P. ostreatus P. columbinus, P. florida, P. salignus, P. spodoleucus Ⅰ P. pulmonarius P. sajor-caju, P. sapidus Ⅱ P. populinus Ⅲ P. cornucopiae P. citrinopileatus Ⅳ P. djamor P.